elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Analysis Method for Guided Wave Propagation Direction in Anisotropic Structures

Szewieczek, Artur und Sinapius, Michael (2016) Analysis Method for Guided Wave Propagation Direction in Anisotropic Structures. In: International Conference on Innovation in European Aeronautics Research. 6th International Conference on Innovation in European Aeronautics Research, 2016-10-18 - 2016-10-21, Porto, Portugal.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://easnconference.eu/

Kurzfassung

Guided waves, such as Lamb waves, enable a Structural Health Monitoring (SHM) of modern composite structures. However, due to the complex wave propagation different scanning and imaging methods were developed in the past. They enable a better understanding of the wave interaction with complex structures. Beyond video animations of the wave propagation advanced analysis methods are possible. A promising application is the virtual design and optimization of sensors and sensor networks based on acquired measurements. In this technique a piezoelectric transducer is used for guided wave excitation in a specimen. An air-coupled ultrasonic sensor is moved across the specimen surface. For every scanning point the received signal is recorded. After this, a compensation of the wave radiation through the air gap combined with a model of the investigated specimen is used to reconstruct its dynamic surface deformation. The deformation is applied to a numerical model of a virtual sensor which delivers the response signal. In this way an optimal dimensioning of sensors in number, position, form and material properties can be developed for SHM sensor networks. Applications like this require knowledge of the propagation direction of every guided wave mode within a wave field. The actuator position cannot be used exclusively because mode conversion may occur on any position. This paper presents a method for propagation direction evaluation based on acquired measurement data. In combination with a mechanical model of the structure anisotropic propagation is utilised for accuracy improvement. The results are calculated in the time domain and contain a specific time window for any identified wave mode. The presented method can be used for advanced applications of guided wave analysis.

elib-URL des Eintrags:https://elib.dlr.de/107775/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Analysis Method for Guided Wave Propagation Direction in Anisotropic Structures
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Szewieczek, Arturdlr-fa-mwNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sinapius, Michaeltu braunschweig / dlr braunschweigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2016
Erschienen in:International Conference on Innovation in European Aeronautics Research
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:structural health monitoring, sensor design, virtual sensors, guided waves, lamb waves, wave analysis
Veranstaltungstitel:6th International Conference on Innovation in European Aeronautics Research
Veranstaltungsort:Porto, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:18 Oktober 2016
Veranstaltungsende:21 Oktober 2016
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturen und Werkstoffe (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Faserverbundleichtbau und Adaptronik
Hinterlegt von: Szewieczek, Artur
Hinterlegt am:12 Dez 2016 08:44
Letzte Änderung:24 Apr 2024 20:12

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.