de Souza, César Roberto und Gaidon, Adrien und Vig, Eleonora und López, Antonio Manuel (2016) Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition. In: Proceedings of the 14th European Conference on Computer Vision (ECCV), 9911 (P VII), Seiten 697-716. Springer International Publishing. 14th European Conference on Computer Vision (ECCV), 2016-10-11 - 2016-10-14, Amsterdam, NL. doi: 10.1007/978-3-319-46478-7_43. ISBN 978-3-319-46477-0 (P) 978-3-319-46478-7 (E). ISSN 0302-9743.
PDF
5MB |
Offizielle URL: http://link.springer.com/chapter/10.1007%2F978-3-319-46478-7_43
Kurzfassung
Action recognition in videos is a challenging task due to the complexity of the spatio-temporal patterns to model and the difficulty to acquire and learn on large quantities of video data. Deep learning, although a breakthrough for Image classification and showing promise for videos, has still not clearly superseded action recognition methods using hand-crafted features, even when training on massive datasets. In this paper, we introduce hybrid video classification architectures based on carefully designed unsupervised representations of hand-crafted spatio-temporal features classified by supervised deep networks. As we show in our experiments on five popular benchmarks for action recognition, our hybrid model combines the best of both worlds: it is data efficient (trained on 150 to 10000 short clips) and yet improves significantly on the state of the art, including recent deep models trained on millions of manually labelled images and videos.
elib-URL des Eintrags: | https://elib.dlr.de/107744/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2016 | ||||||||||||||||||||
Erschienen in: | Proceedings of the 14th European Conference on Computer Vision (ECCV) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 9911 | ||||||||||||||||||||
DOI: | 10.1007/978-3-319-46478-7_43 | ||||||||||||||||||||
Seitenbereich: | Seiten 697-716 | ||||||||||||||||||||
Verlag: | Springer International Publishing | ||||||||||||||||||||
Name der Reihe: | Series Lecture Notes in Computer Science | ||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||
ISBN: | 978-3-319-46477-0 (P) 978-3-319-46478-7 (E) | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Action Recognition | ||||||||||||||||||||
Veranstaltungstitel: | 14th European Conference on Computer Vision (ECCV) | ||||||||||||||||||||
Veranstaltungsort: | Amsterdam, NL | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 11 Oktober 2016 | ||||||||||||||||||||
Veranstaltungsende: | 14 Oktober 2016 | ||||||||||||||||||||
Veranstalter : | University of Amsterdam | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||||||
Hinterlegt am: | 30 Nov 2016 17:46 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags