Guerra Niehoff, Alejandro und Thomey, Dennis und Romero, Moises und Streber, Hans-Peter und Lapp, Justin L. und Roeb, Martin und Sattler, Christian und Pitz-Paal, Robert (2016) Thermodynamic Model of a Solar Receiver for Superheating of Sulfur Trioxide and Steam at Pilot Plant Scale. In: ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2016 10th International Conference on Energy Sustainability, 2016-06-26 - 2016-06-30, Charlotte, USA. doi: 10.1115/ES2016-59167.
PDF
2MB |
Kurzfassung
Within the European research project SOL2HY2, key components for a solar hybrid sulfur cycle are being developed and demonstrated at pilot scale in a real environment. Regarding the thermal portion, a plant for solar sulfuric acid decomposition is set up and initially operated at the research platform of the DLR Solar Tower in Jülich, Germany. One major component is the directly irradiated volumetric receiver, superheating steam and SO3 coming from a tube-type evaporator to above 1000 °C. At the design flow rate of sulfuric acid (50%-wt.) of 1 l/min, a nominal solar power of 57 kW is required at the receiver. With a flat ceramic absorber made from SiC and a flat quartz glass window, the design is based on lab scale reactors successfully demonstrated at the solar furnace of the German Aerospace Centre (DLR) in Cologne, Germany. A flexible lumped thermodynamic tool representing the receiver, compiled to assess different configurations, is presented in detail. An additional raytracing model has been established to provide the irradiation boundaries and support the design of a conical secondary concentrator with an aperture diameter of 0.6 m. A comparison with first experimental data (up to 65% nominal power), obtained during initial operation, indicates the models to be viable tools for design and operational forecast of such systems. With a provisional method to account for the efficiency of the secondary concentrator, measured fluid outlet temperatures (up to 1000 °C) are predicted with deviations of ±60 °C. Respective absorber front temperatures (up to 1200 °C) are under-predicted by 100-200 °C, with lower deviations at higher mass flows. The measured window temperature (up to 700 °C) mainly depends on the absorber front temperature level, which is well predicted by the model.
elib-URL des Eintrags: | https://elib.dlr.de/106480/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||
Titel: | Thermodynamic Model of a Solar Receiver for Superheating of Sulfur Trioxide and Steam at Pilot Plant Scale | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | Juni 2016 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1115/ES2016-59167 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | Solar, Fuel-Production, Hybrid-Sulfur-Cycle, Sulfur, Receiver, Efficiency, Thermodynamics, Lumped Model, Design | ||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ASME 2016 10th International Conference on Energy Sustainability | ||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Charlotte, USA | ||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 26 Juni 2016 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 30 Juni 2016 | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Erneuerbare Energie | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Solare Brennstoffe | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SF - Solarforschung | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Solare Brennstoffe (alt) | ||||||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Solare Verfahrenstechnik | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Guerra Niehoff, Alejandro | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 14 Okt 2016 15:26 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags