Babaee, Mohammadreza und Yu, Xuejie und Rigoll, Gerhard und Datcu, Mihai (2016) Immersive Interactive SAR Image Representation Using Non-negative Matrix Factorization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (7), Seiten 2844-2853. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2015.2511449. ISSN 1939-1404.
PDF
3MB |
Offizielle URL: http://ieeexplore.ieee.org/document/7426732/
Kurzfassung
Earth observation (EO) image clustering is a challenging problem in data mining, where each image is represented by a high-dimensional feature vector. However, the feature vectors might not be appropriate to express the semantic content of images, which eventually lead to poor results in clustering and classification. To tackle this problem, we propose an interactive approach to generate compact and informative features from images content. To this end, we utilize a 3-D interactive application to support user-image interactions. These interactions are used in the context of two novel nonnegative matrix factorization (NMF) algorithms to generate new features. We assess the quality of new features by applying k-means clustering to the generated features and compare the obtained clustering results with those achieved by original features. We perform experiments on a synthetic aperture radar (SAR) image dataset represented by different state-of-the-art features and demonstrate the effectiveness of the proposed method. Moreover, we propose a divide-and-conquer approach to cluster a massive amount of images using a small subset of interactions.
elib-URL des Eintrags: | https://elib.dlr.de/105903/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Immersive Interactive SAR Image Representation Using Non-negative Matrix Factorization | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2016 | ||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 9 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2015.2511449 | ||||||||||||||||||||
Seitenbereich: | Seiten 2844-2853 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Nonnegative matrix factorization (NMF), clustering, feature learning, immersive interactive systems | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Schwarz, Gottfried | ||||||||||||||||||||
Hinterlegt am: | 05 Sep 2016 10:43 | ||||||||||||||||||||
Letzte Änderung: | 19 Nov 2021 20:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags