Mostegel, Christian und Rumpler, Markus und Fraundorfer, Friedrich und Bischof, Horst (2016) Using Self-Contradiction to Learn Confidence Measures in Stereo Vision. In: Proceedings of Computer Vision and Pattern Recognition 2016, Seiten 4067-4076. IEEE Xplore. Conference on Computer Vision and Pattern Recognition 2016, 2016-06-27 - 2016-06-30, Las Vegas, USA. doi: 10.1109/CVPR.2016.441.
PDF
2MB |
Offizielle URL: http://cvpr2016.thecvf.com/program/news_updates#proceedings
Kurzfassung
Learned confidence measures gain increasing impor- tance for outlier removal and quality improvement in stereo vision. However, acquiring the necessary training data is typically a tedious and time consuming task that involves manual interaction, active sensing devices and/or synthetic scenes. To overcome this problem, we propose a new, flexi- ble, and scalable way for generating training data that only requires a set of stereo images as input. The key idea of our approach is to use different view points for reason- ing about contradictions and consistencies between multi- ple depth maps generated with the same stereo algorithm. This enables us to generate a huge amount of training data in a fully automated manner. Among other experiments, we demonstrate the potential of our approach by boost- ing the performance of three learned confidence measures on the KITTI2012 dataset by simply training them on a vast amount of automatically generated training data rather than a limited amount of laser ground truth data.
elib-URL des Eintrags: | https://elib.dlr.de/105149/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Using Self-Contradiction to Learn Confidence Measures in Stereo Vision | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2016 | ||||||||||||||||||||
Erschienen in: | Proceedings of Computer Vision and Pattern Recognition 2016 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/CVPR.2016.441 | ||||||||||||||||||||
Seitenbereich: | Seiten 4067-4076 | ||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Confidence Measures, Stereo Vision | ||||||||||||||||||||
Veranstaltungstitel: | Conference on Computer Vision and Pattern Recognition 2016 | ||||||||||||||||||||
Veranstaltungsort: | Las Vegas, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 27 Juni 2016 | ||||||||||||||||||||
Veranstaltungsende: | 30 Juni 2016 | ||||||||||||||||||||
Veranstalter : | IEEE Computer Society and the Computer Vision Foundation (CVF) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||||||
Hinterlegt am: | 20 Jul 2016 10:35 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags