Agamirzov, Evgeny (2016) Parallel Best-First Heuristic Search applied to Cooperative Planning for Automated Vehicles. Masterarbeit, Technische Universität München.
PDF
- Nur DLR-intern zugänglich
3MB |
Kurzfassung
This paper studies the utilization of multi-core processors for path planning algorithms. A* best-first heuristic search algorithm is used for path finding, where the state space is a search tree that is built from discrete trajectory paths (motion primitives). Particularity of the given search problem is computationally expensive expansion step and large branching factor of the tree. Most recent parallelization techniques has been evaluated to identify which one fits best for the existing planning problem (considering significant differences between A* parallelization approaches). Finally, two schemes were chosen to be tested in real life scenarios - PA* and PRA* (HDA*). These algorithms represent two basic strategies of the best-first search parallelization that are shared OPEN list (PA*) and private OPEN lists (PRA*, HDA*). Both approaches has been tested for execution time and memory usage, and eventually compared head to head. Experiments were conducted for different road scenarios with various complexity. The main goal of this work was to show that multi-core machines can be successfully applied to path finding (planning) problems for automated vehicles. The thesis was funded and supported by Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Verkehrssystemtechnik. All implemented algorithms were embedded into DLR’s simulation environment where real car models and road scenarios are being tested.
elib-URL des Eintrags: | https://elib.dlr.de/105063/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Parallel Best-First Heuristic Search applied to Cooperative Planning for Automated Vehicles | ||||||||
Autoren: |
| ||||||||
Datum: | 30 Juni 2016 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 95 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Automated Vehicles, Motion Planning, Cooperative Driving | ||||||||
Institution: | Technische Universität München | ||||||||
Abteilung: | Computational Science and Engineering | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Bodengebundener Verkehr (alt) | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V BF - Bodengebundene Fahrzeuge | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Fahrzeugintelligenz (alt) | ||||||||
Standort: | Braunschweig | ||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik | ||||||||
Hinterlegt von: | Heß, Daniel | ||||||||
Hinterlegt am: | 18 Jul 2016 07:57 | ||||||||
Letzte Änderung: | 16 Jul 2021 17:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags