Meynberg, Oliver und Cui, Shiyong und Reinartz, Peter (2016) Detection of High-Density Crowds in Aerial Images Using Texture Classification. Remote Sensing, 8 (6), Seiten 1-17. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs8060470. ISSN 2072-4292.
PDF
5MB |
Offizielle URL: http://www.mdpi.com/2072-4292/8/6/470
Kurzfassung
Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density estimation. However, these methods work only when a correct manual count is available to serve as a reference. Therefore, it is the objective of this paper to detect high-density crowds in aerial images, where counting– or regression–based approaches would fail. We compare two texture–classification methodologies on a dataset of aerial image patches which are grouped into ranges of different crowd density. These methodologies are: (1) a Bag–of–words (BoW) model with two alternative local features encoded as Improved Fisher Vectors and (2) features based on a Gabor filter bank. Our results show that a classifier using either BoW or Gabor features can detect crowded image regions with 97% classification accuracy. In our tests of four classes of different crowd-density ranges, BoW–based features have a 5%–12% better accuracy than Gabor.
elib-URL des Eintrags: | https://elib.dlr.de/104803/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Detection of High-Density Crowds in Aerial Images Using Texture Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2 Juni 2016 | ||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 8 | ||||||||||||||||
DOI: | 10.3390/rs8060470 | ||||||||||||||||
Seitenbereich: | Seiten 1-17 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | texture; crowd detection; bag of words; fisher vectors; local binary patterns; gabor filter; aerial images; crowd density | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 04 Jul 2016 12:13 | ||||||||||||||||
Letzte Änderung: | 03 Nov 2023 07:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags