Palubinskas, Gintautas (2016) Model based view at multi-resolution image fusion methods and quality assessment measures. International Journal of Image and Data Fusion, 7 (3), Seiten 203-218. Taylor & Francis. doi: 10.1080/19479832.2016.1180326. ISSN 1947-9832.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: http://www.tandfonline.com/doi/abs/10.1080/19479832.2016.1180326
Kurzfassung
We propose to look at multi-resolution image fusion or pan-sharpening task from a model based perspective. Explicit definition of all models or assumptions used in the derivation of a fusion method allows us to understand the rationale or properties of existing methods and shows a way for a proper usage or proposal/selection of new methods better satisfying the needs of a particular application. Earlier mentioned property ‘better’ should be measurable quantitatively, e.g. by means of so-called quality measures. The difficulty of a quality assessment task in multi-resolution image fusion is that a reference image is missing. Existing measures or so-called protocols are still not satisfactory because quite often the rationale or assumptions are not valid or not fulfilled. From a model based view it follows naturally that a quality assessment measure can be defined as a combination of error model residuals using common or general models assumed in fusion methods. It is shown that most existing methods based on a spectral transformation or filtering are model based methods. Unfortunately, it was found out that they are based additionally on a pure pixels assumption. As they are applied for mixed pixels too that can lead to wrong fusion results. Model based view analysis shows which methods respect models assumed and thus can help to select methods which deliver correct or physically justified fusion results.
elib-URL des Eintrags: | https://elib.dlr.de/104383/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Model based view at multi-resolution image fusion methods and quality assessment measures | ||||||||
Autoren: |
| ||||||||
Datum: | 2016 | ||||||||
Erschienen in: | International Journal of Image and Data Fusion | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 7 | ||||||||
DOI: | 10.1080/19479832.2016.1180326 | ||||||||
Seitenbereich: | Seiten 203-218 | ||||||||
Herausgeber: |
| ||||||||
Verlag: | Taylor & Francis | ||||||||
ISSN: | 1947-9832 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | remote sensing; image processing; multi-resolution image fusion; pan-sharpening; quality assessment; model based | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||
Hinterlegt von: | Palubinskas, Dr.math. Gintautas | ||||||||
Hinterlegt am: | 26 Mai 2016 09:26 | ||||||||
Letzte Änderung: | 20 Jun 2024 11:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags