Zhao, Juanping und Guo, Weiwei und Cui, Shiyong und Zhang, Zenghui und Yu, Wenxian (2016) Convolutional neural Network for SAR Image Classification at Patch Level. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 945-948. IEEE Xplore. IGARSS 2016, 2016-07-10 - 2016-07-15, Beijing, China. doi: 10.1109/IGARSS.2016.7729239. ISSN 2153-7003.
PDF
- Nur DLR-intern zugänglich
8MB |
Offizielle URL: http://ieeexplore.ieee.org/document/7729239/
Kurzfassung
Convolutional Neural Network (CNN) has attracted much at- tention for feature learning and image classification, mostly related to close range photography. As a benchmark work, we trained a relatively large CNN to classify SAR image patches into five different categories, where the image patches tiled and annotated from a typical TerraSAR-X spotlight scene of Wuhan, China. The neural network designed in this paper consists of seven layers, including one input layer, two convolutional layers where each followed by a max-pooling layer, as well as two fully-connected layers with a final five-class softmax. Using the toolkit caffe, we achieved the training and testing accuracy of 85:7% and 85:6% respectively, which is considerably better than the traditional feature extraction and classification based SVM method and shows great potential of CNN used for SAR image interpretation. In order to accelerate the training process, a very efficient GPU implementation was employed.
elib-URL des Eintrags: | https://elib.dlr.de/104213/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Convolutional neural Network for SAR Image Classification at Patch Level | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2016 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS.2016.7729239 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 945-948 | ||||||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | SAR image classification, patch level, convolutional neural network, caffe, GPU. | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2016 | ||||||||||||||||||||||||
Veranstaltungsort: | Beijing, China | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 10 Juli 2016 | ||||||||||||||||||||||||
Veranstaltungsende: | 15 Juli 2016 | ||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Cui, Shiyong | ||||||||||||||||||||||||
Hinterlegt am: | 04 Mai 2016 12:35 | ||||||||||||||||||||||||
Letzte Änderung: | 21 Okt 2024 09:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags