Cui, Shiyong (2016) Comparison of Approximation Methods to Kullback-Leibler Divergence between Gaussian Mixture Models for Satellite Image Retrieval. IEEE Geoscience and Remote Sensing Letters, 7 (7), Seiten 651-660. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1080/2150704X.2016.1177241. ISSN 1545-598X.
PDF
1MB |
Offizielle URL: http://dx.doi.org/10.1080/2150704X.2016.1177241
Kurzfassung
As a probabilistic distance between two probability density functions, Kullback-Leibler divergence is widely used in many applications, such as image retrieval and change detection. Unfortunately, for some models, e.g., Gaussian Mixture Models (GMMs), Kullback-Leibler divergence is not analytically tractable. One has to resort to approximation methods. A number of methods have been proposed to address this issue. In this letter, we compare seven methods, namely Monte Carlo method, matched bound approximation, product of Gaussians, variational method, unscented transformation, Gaussian approximation, and min-Gaussian approximation, for approximating the Kullback-Leibler divergence between two Gaussian mixture models for satellite image retrieval. Two experiments using two public datasets have been performed. The comparison is carried out in terms of retrieval accuracy and computational time.
elib-URL des Eintrags: | https://elib.dlr.de/103789/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Comparison of Approximation Methods to Kullback-Leibler Divergence between Gaussian Mixture Models for Satellite Image Retrieval | ||||||||
Autoren: |
| ||||||||
Datum: | April 2016 | ||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 7 | ||||||||
DOI: | 10.1080/2150704X.2016.1177241 | ||||||||
Seitenbereich: | Seiten 651-660 | ||||||||
Herausgeber: |
| ||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||
ISSN: | 1545-598X | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Gaussian Mixture Models (GMMs), Kullback-Leibler Divergence, Image retrieval | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||
Hinterlegt von: | Cui, Shiyong | ||||||||
Hinterlegt am: | 08 Apr 2016 15:04 | ||||||||
Letzte Änderung: | 31 Okt 2023 07:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags