elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Models for Intralaminar Damage and Failure of Fiber Composites - A Review

Rohwer, Klaus (2016) Models for Intralaminar Damage and Failure of Fiber Composites - A Review. Facta Universitatis. Series Mechanical Engineering, 14 (1), Seiten 1-19. ISSN 0354-2025.

[img] PDF
588kB

Kurzfassung

Abstract. In order to fully exploit the potential of structures made from fiber composites, designers need to know how damage occurs and develops and under what conditions the structure finally fails. Anisotropy and inhomogeneity cause a rather complex process of damage development which may be one reason for an exceptionally large number of existing models. This paper intends to provide an overview over those models and give some hints about current developments. As such it is an updated version of a recent publication [1]. The survey is limited to laminates from unidirectional layers out of straight continuous fiber polymer composites under quasi-static loading. Furthermore, focus is laid on intralaminar damage. Many failure models smear out the inhomogeneity between fibers and the matrix. Simply limiting each stress component separately can lead to surprisingly good results as documented in the first World-Wide Failure Exercise. Interpolation criteria consider mutual influence of normal and shear stresses, predominantly through a quadratic failure condition. Traditionally one distinguishes between interpolation criteria and physically based ones. As an important physical effect the difference between fiber failure and inter-fiber failure is considered. Furthermore, stress invariants are taken as a basis, increased shear strength under compression is accounted for, and characteristic failure modes are captured. Fibers and the matrix material are characterized by a large disparity in stiffness and strength. Micromechanical models consider this inhomogeneity but suffer from the difficulty to determine relevant material properties. Compressive strength in fiber direction has attracted special attention. However, the role of kink band formation, which is observed in the failure process, seems to be not yet fully understood. In summary it must be concluded that despite the tremendous effort which has been put into the model development the damage and failure simulation of fiber composites are not in a fully satisfying state. That is partly due to lack of accurate and reliable test results.

elib-URL des Eintrags:https://elib.dlr.de/103734/
Dokumentart:Zeitschriftenbeitrag
Titel:Models for Intralaminar Damage and Failure of Fiber Composites - A Review
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rohwer, KlausKlaus.Rohwer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2016
Erschienen in:Facta Universitatis. Series Mechanical Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
Seitenbereich:Seiten 1-19
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Marinkovic, DraganUniversity of NisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
ISSN:0354-2025
Status:veröffentlicht
Stichwörter:Fiber Composites, Unidirectional Layers, Strength, Failure Conditions
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturen und Werkstoffe (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Faserverbundleichtbau und Adaptronik
Hinterlegt von: Rohwer, Klaus
Hinterlegt am:31 Okt 2016 15:21
Letzte Änderung:31 Okt 2023 07:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.