elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Traffic State Estimation with Bayesian Networks at Extremely Low V2X Penetration Rates

Junghans, Marek und Leich, Andreas (2016) Traffic State Estimation with Bayesian Networks at Extremely Low V2X Penetration Rates. In: 19th International Conference on Information Fusion, FUSION 2016. 19th International Conference on Information Fusion, 2016-07-05 - 2016-07-08, Heidelberg, Deutschland.

[img] PDF
1MB

Kurzfassung

In this paper the concept of Bayesian Networks (BN) is applied to the problem of traffic data acquisition by data fusion. Two wireless communication based sensors are used as data sources: IEEE 802.15.1 Bluetooth and IEEE 802.11p V2X (vehicle to vehicle and vehicle to infrastructure). Via V2X, so called cooperative awareness messages (CAM) are being received, which provide information on vehicle location and speed. Via Bluetooth, only the presence of a Bluetooth equipped device can be detected. Nowadays and in the near future, only a low number of road users is expected to be equipped with V2X. Therefore the rate of vehicles equipped is very low (around 1%). The equipment rate of Bluetooth devices is much higher. We assume, that between 5% and 50% of all road users can be detected ad reidentified with a Bluetooth scanning device. Bluetooth detectors have been notably used for traffic management purposed for years, e.g. for obtaining accurate journey times, but they have not been applied for Speed estimation so far. The approach of this paper is providing vehicle speed and vehicle count data by fusing moderate Penetration Bluetooth data and low penetration V2X data. The challenging task is to obtain accurate speed estimation data. Applying BNs for this purpose, we will show that the robustness of this stochastic fusion engine is capable of reaching speed RMSEs from 2 to 5m/s and complete the state estimation by 35% by fusing 1% V2X with 30% Bluetooth. The investigations are made on the basis of simulation.

elib-URL des Eintrags:https://elib.dlr.de/103393/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Traffic State Estimation with Bayesian Networks at Extremely Low V2X Penetration Rates
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Junghans, Marekmarek.junghans (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Leich, Andreasandreas.leich (at) dlr.dehttps://orcid.org/0000-0001-5242-2051170938009
Datum:8 Juli 2016
Erschienen in:19th International Conference on Information Fusion, FUSION 2016
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Data Fusion, Bayesian Networks, V2X
Veranstaltungstitel:19th International Conference on Information Fusion
Veranstaltungsort:Heidelberg, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:5 Juli 2016
Veranstaltungsende:8 Juli 2016
Veranstalter :International Society of Information Fusion
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - I.MoVe (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik
Hinterlegt von: Junghans, Marek
Hinterlegt am:16 Nov 2016 09:54
Letzte Änderung:04 Nov 2024 14:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.