elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Active Control of Counter-Rotating Open Rotor Interior Noise in a Dornier 728 Experimental Aircraft: Optimised Sensor Placement

Haase, Thomas und Unruh, Oliver (2016) Active Control of Counter-Rotating Open Rotor Interior Noise in a Dornier 728 Experimental Aircraft: Optimised Sensor Placement. Acta acustica united with Acustica, 102, Seiten 361-372. Hirtzel. doi: 10.3813/AAA.918952. ISSN 1610-1928.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.ingentaconnect.com/content/dav/aaua/2016/00000102/00000002/art00018

Kurzfassung

For the next generation of aircraft, new engine and fuselage concepts are investigated because of the increasing demand for fuel efficiency and the CO2/NOx restrictions declared by the European Union. A lightweight design of civil aircraft combined with efficient engines like the counter-rotating open rotor (CROR) is a key technology to reach these ambitious goals. Especially in the lower frequency range, where the CROR blade-passing frequencies (BPF’s) are dominating the acoustic response, the transmission loss of lightweight structures is typically poor. Active control techniques was tested on plates and beams to increase the system performance in terms of global vibration or sound power reduction. Yet to the authors’ best knowledge, only very little work has been conducted to establish sensor or actuator position optimisation on a complex aircraft structure. The presented paper investigates the potential of a sensor position optimisation on a Dornier 728 experimental aircraft of the German Aerospace center (DLR). This experimental aircraft provides a real fuselage structure and the multi-sinusoidal CROR excitation is induced by a 112-channel loud speaker array. The system model of a fuselage segment is experimentally identified, a sensor optimisation is established and compared to empirically placed sensor configurations. The sensor optimisation includes the simulation of an multiple-input multipleoutput (MIMO) active feedforward vibration controller and the resulting sound radiating vibration patterns. It is shown in the experiments that the feedforward controller using optimised sensor locations reduces the radiated sound power by 7 dB, whereas the empirically placed sensors achieve only 4.5 dB. Furthermore, the potential of the proposed optimisation method regarding sound power reduction performance and the number of required sensors is shown for a real aircraft structure and a complex acoustic excitation.

elib-URL des Eintrags:https://elib.dlr.de/103299/
Dokumentart:Zeitschriftenbeitrag
Titel:Active Control of Counter-Rotating Open Rotor Interior Noise in a Dornier 728 Experimental Aircraft: Optimised Sensor Placement
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Haase, ThomasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Unruh, OliverNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 März 2016
Erschienen in:Acta acustica united with Acustica
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:102
DOI:10.3813/AAA.918952
Seitenbereich:Seiten 361-372
Verlag:Hirtzel
Name der Reihe:European Acoustics Association
ISSN:1610-1928
Status:veröffentlicht
Stichwörter:CROR, feedforward control, active control
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Faserverbundleichtbau und Adaptronik > Adaptronik
Hinterlegt von: Haase, Thomas
Hinterlegt am:07 Mär 2016 08:27
Letzte Änderung:27 Nov 2023 14:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.