elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Bayesian Network based speed estimation in case of C2X data at very low equipment rates

Junghans, Marek und Leich, Andreas und Härri, Jerome (2016) Bayesian Network based speed estimation in case of C2X data at very low equipment rates. In: 9th Triennal Symposium on Transportation Analysis. 9th Triennial Symposium on Transportation Analysis, 2016-06-13 - 2016-06-17, Oranjestad, Aruba.

[img] PDF
211kB

Kurzfassung

The estimation of the traffic state, particularly speed and vehicle counts, is important for modern traffic light control (TLC) algorithms. Recent developments in the field of so called self-organizing TLC focus on using cooperative traffic data transmitted via Car-to-Infrastructure (C2I) communication. In this context, vehicles periodically exchange their GPS position and speed via so called Cooperative Awareness Messages (CAM) in the EU (a.k.a. Basic Safety Messages (BMS) in the US) transmitted on a vehicular-specific Extension to the WiFi ad-hoc mode IEEE802.11p. Equipped with such technology, TLC may intercept CAM/BSM and use the contained data to estimate its local traffic state. This technology is yet emerging and car manufacturers are not expecting a sufficient penetration at the time future self-organizing TLC systems will be deployed. In this paper, a novel approach proposes to complement missing C2I technology with Bluetooth technology (BT), which is already widely available in all modern vehicles as well as smartphones. BT data has notably been tested for traffic data acquisition for years, but neither provide the same type nor the same quality of C2I cooperative data. Accordingly, we propose to rely on a stochastic data fusion engine based on Bayesian Networks (BN) to enrich and integrate traffic state data from a low C2I penetration rate (less than 1%) and moderate BT Penetration rate (30%). One of the challenges addressed is to be able to extrapolate mobility from detection processes, and then extract the estimated BT speed likelihood. Using BN, we will propose to link such likelihood to different a-priori knowledge of mobility states. Another challenge will be to integrate the BT and C2I speed likelihood, considering both processes have different properties. We show the robustness of our approach assuming a BN being able to reach already 2 m/s speed RMSE and complete the traffic state estimation by 35% by fusing 1% C2I with 30% BT.

elib-URL des Eintrags:https://elib.dlr.de/102972/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Bayesian Network based speed estimation in case of C2X data at very low equipment rates
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Junghans, Marekmarek.junghans (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Leich, Andreasandreas.leich (at) dlr.dehttps://orcid.org/0000-0001-5242-2051NICHT SPEZIFIZIERT
Härri, Jeromejerome.haerri (at) eurecom.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 Juni 2016
Erschienen in:9th Triennal Symposium on Transportation Analysis
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:C2X, Bayesian Networks, data Fusion, traffic state estimation
Veranstaltungstitel:9th Triennial Symposium on Transportation Analysis
Veranstaltungsort:Oranjestad, Aruba
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 Juni 2016
Veranstaltungsende:17 Juni 2016
Veranstalter :Technische Universität Eindhoven, TU Delft, Erasmus University
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - I.MoVe (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik
Hinterlegt von: Junghans, Marek
Hinterlegt am:21 Jun 2016 12:28
Letzte Änderung:24 Apr 2024 20:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.