Andreou, Charoula und Rogge, Derek und Müller, Rupert (2016) A new approach for endmember extraction and clustering addressing inter- and intra-class variability via multi-scaled-band partitioning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (9), Seiten 4215-4231. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2016.2519610. ISSN 1939-1404.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7414396
Kurzfassung
In this paper a new method is introduced for detecting and clustering spectrally similar but physically distinct materials. The method exploits the spectral information by dividing the spectral domain into band subsets whose width vary from broad to narrower wavelength ranges. Multiple candidate endmembers containing intra-class spectral variability are extracted using a maximum volume-based endmember extraction method at each band subset. Spectral clustering of the extracted spectra is also accomplished by using a multi-scaled-band partitioning approach. This allows for the generation of multi-scaled clustering identification vectors that can be used to remove partial mixtures and also be used to derive the final set of endmember bundles which retain inter-class endmember variability. The proposed method was evaluated using simulated and real hyperspectral data and in comparison with well-known methods for extracting a fixed set or multiple sets of endmembers. Results revealed the advantages of the multi-scaled-band partitioning on both multiple endmember extraction and clustering with the latter being an independent module that can be applicable to endmember candidate libraries derived from other methods.
elib-URL des Eintrags: | https://elib.dlr.de/102306/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A new approach for endmember extraction and clustering addressing inter- and intra-class variability via multi-scaled-band partitioning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2016 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 9 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2016.2519610 | ||||||||||||||||
Seitenbereich: | Seiten 4215-4231 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | endmember extraction, intra-class variability, multi-scaled-band partitioning, spectral clustering, hyperspectral | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Deutsches Fernerkundungsdatenzentrum > Landoberfläche | ||||||||||||||||
Hinterlegt von: | Andreou, Charoula | ||||||||||||||||
Hinterlegt am: | 22 Jan 2016 14:37 | ||||||||||||||||
Letzte Änderung: | 27 Nov 2023 12:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags