Geiß, Christian und Taubenböck, Hannes (2015) Object-Based Postclassification Relearning. IEEE Geoscience and Remote Sensing Letters, 12 (11), Seiten 2336-2340. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2015.2477436. ISSN 1545-598X.
PDF
- Preprintversion (eingereichte Entwurfsversion)
6MB |
Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7276994
Kurzfassung
In this letter, we present an object-based postclassification relearning approach for enhanced supervised remote sensing image classification. Conventional postclassification processing techniques aim to enhance the classification accuracy by imposing smoothness priors in the image domain (based on, for example, majority filtering or Markov random fields). In contrast to that, here, a supervised classification model is learned for the second time, with additional information generated from the initial classification outcome to enhance the discriminative properties of relearned decision functions. This idea is followed within an object-based image analysis framework. Therefore, we model spatial-hierarchical context relations with the preliminary classification outcome by computing class-related features using a triplet of hierarchical segmentation levels. Those features are used to enlarge the initial feature space and impose spatial regularization in the relearned model. We evaluate the relevance of the method in the context of classifying of a high-resolution multispectral image, which was acquired over an urban environment. The experimental results show an enhanced classification accuracy using this method compared to both per-pixel-based approach and outcomes obtained with a conventional object-based postclassification processing technique (i.e., object-based voting).
elib-URL des Eintrags: | https://elib.dlr.de/102275/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Object-Based Postclassification Relearning | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2015 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 12 | ||||||||||||
DOI: | 10.1109/LGRS.2015.2477436 | ||||||||||||
Seitenbereich: | Seiten 2336-2340 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Classification postprocessing (CPP), object-based image analysis (OBIA), relearning, SVM | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Zivile Kriseninformation und Georisiken (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||
Hinterlegt von: | Geiß, Christian | ||||||||||||
Hinterlegt am: | 18 Jan 2016 11:32 | ||||||||||||
Letzte Änderung: | 06 Nov 2023 13:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags