Griparis, Andreea und Faur, Daniela und Datcu, Mihai (2015) Feature space dimensionality reduction for the optimization of visualization methods. In: Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, Seiten 1120-1123. IEEE Xplore. IGARSS 2015, 2015-07-26 - 2015-07-31, Milan, Italy. doi: 10.1109/IGARSS.2015.7325967.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7325967
Kurzfassung
Visual data mining methods are of great importance in exploratory data analysis having a high potential for mining large databases. As the data feature space is generally n-dimensional, visual data mining relies on dimensionality reduction techniques. This is the case for image feature spaces which can be visualized by giving each data point a location in a three dimensional space. This paper aims to present a comparative study of several dimensionality reduction methods considering as input image feature spaces, in order to detemine an optimal visualization method to illustrate the separation of the classes. At the beginning, to check the performance of the envisaged method, an artificial dataset consisting of random vectors describing six, 20-dimensional Gaussian distributions with spaced means and low variances was generated. Further, two real images datasets are used to evaluate the contributions of dimensionality reduction algorithms related to data visualization. The analysis focuses on the PCA, LDA and t-SNE dimensionality reduction techniques. Our tests are performed on images for which the computed features include the color histogram and Weber descriptors.
elib-URL des Eintrags: | https://elib.dlr.de/100672/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Feature space dimensionality reduction for the optimization of visualization methods | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2015 | ||||||||||||||||
Erschienen in: | Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2015.7325967 | ||||||||||||||||
Seitenbereich: | Seiten 1120-1123 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | classification, dimensionality reduction, features vectors, visualization | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2015 | ||||||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 26 Juli 2015 | ||||||||||||||||
Veranstaltungsende: | 31 Juli 2015 | ||||||||||||||||
Veranstalter : | IEEE Geoscience and Remote Sensing Society | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 11 Dez 2015 17:10 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags