Babaee, Mohammadreza und Tsoukalas, Stefanos und Babaee, Maryam und Datcu, Mihai (2015) Active Learning Using a Low-Rank Classifier. In: Electrical Engineering (ICEE), 2015 23rd Iranian Conference on, Seiten 561-566. 23rd Iranian Conference on Electrical Engineering (ICEE) 2015, 2015-05-10 - 2015-05-14, Tehran, Iran. doi: 10.1109/IranianCEE.2015.7146279. ISBN 978-1-4799-1971-0.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7146279
Kurzfassung
The majority of learning algorithms work based on a training dataset. However, labeling the collected data is costly and time consuming. Active learning has gained high attention due to its ability to label a vast amount of unlabeled collected data. However, the performance of the current state-of-the-art methods declines when the number of training data is increasing. In this paper, we propose and study a variant of Support Vector Machine (SVM), namely low-rank classifier, which is regularized by the trace-norm of learning parameters in active learning scenario. We compare this algorithm with the standard SVM algorithms in depth and analyze its computational complexity and optimization solution. Our experimental results confirm, that the proposed method outperforms the other methods for an increasing amount of training data.
elib-URL des Eintrags: | https://elib.dlr.de/100387/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Active Learning Using a Low-Rank Classifier | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2015 | ||||||||||||||||||||
Erschienen in: | Electrical Engineering (ICEE), 2015 23rd Iranian Conference on | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IranianCEE.2015.7146279 | ||||||||||||||||||||
Seitenbereich: | Seiten 561-566 | ||||||||||||||||||||
ISBN: | 978-1-4799-1971-0 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Active learning, Low-rank classifier, Trace-norm regularization, SVM | ||||||||||||||||||||
Veranstaltungstitel: | 23rd Iranian Conference on Electrical Engineering (ICEE) 2015 | ||||||||||||||||||||
Veranstaltungsort: | Tehran, Iran | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 10 Mai 2015 | ||||||||||||||||||||
Veranstaltungsende: | 14 Mai 2015 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Schwarz, Gottfried | ||||||||||||||||||||
Hinterlegt am: | 04 Dez 2015 11:45 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags