Babaee, Mohammadreza und Tsoukalas, Stefanos und Babaee, Maryam und Rigoll, Gerald und Datcu, Mihai (2015) Discriminative Nonnegative Matrix Factorization for Dimensionality Reduction. Neurocomputing, 173 (Part 2), Seiten 212-223. Elsevier. doi: 10.1016/j.neucom.2014.12.124. ISSN 0925-2312.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://www.sciencedirect.com/science/journal/09252312
Kurzfassung
Nonnegative Matrix Factorization (NMF) has been widely used for different purposes such as feature learning, dictionary leaning and dimensionality reduction in data mining and computer vision. In this work, we present a label constrained NMF, namely Discriminative Nonnegative Matrix Factorization (DNMF), which utilizes the label information of a fraction of the data as a discriminative constraint. The labeled samples are used in a regularization term, which is a linear regression based on the samples, coupled with the main objective function of NMF. In contrast to recently proposed semi-supervised NMF techniques, the proposed approach does not merge the samples with the same label into a single point. However, the algorithm enforces the samples with the same label to be aligned on the same axis in the new representation. The performed experiments on synthetic and real datasets expose the strength of our proposed method compared to the state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/100121/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Discriminative Nonnegative Matrix Factorization for Dimensionality Reduction | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2015 | ||||||||||||||||||||||||
Erschienen in: | Neurocomputing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 173 | ||||||||||||||||||||||||
DOI: | 10.1016/j.neucom.2014.12.124 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 212-223 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0925-2312 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Dimensionality reduction, nonnegative matrix factorization, data mining | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Schwarz, Gottfried | ||||||||||||||||||||||||
Hinterlegt am: | 30 Nov 2015 10:38 | ||||||||||||||||||||||||
Letzte Änderung: | 06 Sep 2019 15:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags