elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The Schmittlets for automated SAR image enhancement

Schmitt, Andreas (2015) The Schmittlets for automated SAR image enhancement. In: IEEE International Geoscience and Remote Sensing Symposium, Seiten 1-4. International Geoscience and Remote Sensing Symposium, 2015-07-26 - 2015-07-31, Mailand, Italien.

[img] PDF
233kB

Kurzfassung

Multi-looking is the essential step in SAR image preprocessing with respect to distributed targets. The presumably independent single intensity measurements of the same target are averaged in order to reduce the local variability and to retrieve a stable “mean” intensity for the target of interest [1]. In practice, multi-looking commonly is performed with a uniform number of looks all over the image though numerous studies already proofed that this is not suitable because signal of smaller targets possibly get mixed while larger targets are insufficiently smoothed. Thus, it is necessary to identify single targets, i.e. their location and their shape, to aggregate sample coming from the same main unit (statistically speaking). Three different approaches can be found in literature and in practice so far. Firstly, locally adaptive filtering techniques switch the filtering kernel of a fixed extension according to the local environment (multi-directional) [2]. Unfortunately, the extension of the local environment to be considered is uniform for the whole image. Hence, the scale of the targets of interest must be known in advance. Secondly, image segmentation aggregates neighboring pixels to segments of arbitrary shape according to homogeneity criteria (multi-directional and quasi multi-scale) [3]. The introduction of sharp edges between neighboring pixels, though very practical for computation, is not justified from an image processing perspective because a higher image resolution is feigned than existent. Furthermore, it denies the existence of mixed pixels in the single look image which are unavoidable due to the limited resolution of SAR images [4]. And thirdly, alternative image representations deliver an optimal multi-directional and multi-scale image description [5]. Evaluating the difference between neighboring scales of the image their application is restricted to images showing additive characteristics, i.e. a normal distribution as commonly accepted for optical images or logarithmic SAR intensities [6]. Therefore, this contribution introduces the Schmittlets as first alternative image representation (multi-directional, multi-scale, and multi-shape) that is applicable to SAR intensities in linear scale. Accordingly, it can easily be utilized for SAR image enhancement and SAR image analysis as well. The Schmittlet index layer indicating the best-fitting Schmittlet out of a selection of 35 geometric primitives for each location in the image gives valuable texture or structure information which can be used for scene characterization or classification purposes.

elib-URL des Eintrags:https://elib.dlr.de/100097/
Dokumentart:Konferenzbeitrag (Poster)
Titel:The Schmittlets for automated SAR image enhancement
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schmitt, AndreasAndreas.Schmitt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2015
Erschienen in:IEEE International Geoscience and Remote Sensing Symposium
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Ja
Seitenbereich:Seiten 1-4
Status:veröffentlicht
Stichwörter:Multi-looking, SAR, Schmittlets, Image Enhancement
Veranstaltungstitel:International Geoscience and Remote Sensing Symposium
Veranstaltungsort:Mailand, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:26 Juli 2015
Veranstaltungsende:31 Juli 2015
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Fernerkundung der Landoberfläche (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Schmitt, Andreas
Hinterlegt am:07 Dez 2015 13:46
Letzte Änderung:24 Apr 2024 20:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.