DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Differentiation and core formation in accreting planetesimals

Neumann, W. und Breuer, D. und Spohn, T. (2012) Differentiation and core formation in accreting planetesimals. Astronomy and Astrophysics, 543 (A141), Seiten 1-21. DOI: 10.1051/0004-6361/201219157

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Offizielle URL: http://dx.doi.org/10.1051/0004-6361/201219157


Aims. The compositions of meteorites and the morphologies of asteroid surfaces provide strong evidence that partial melting and differentiation were widespread among the planetesimals of the early solar system. However, it is not easily understood how planetesimals can be differentiated. To account for significantly smaller radii, masses, gravity and accretion energies early, intense heat sources are required, e.g. the short-lived nuclides 26Al and 60Fe. Here, we investigate the process of differentiation and core formation in accreting planetesimals taking into account the effects of sintering, melt heat transport via porous flow and redistribution of the radiogenic heat sources. Methods. We use a spherically symmetric one-dimensional model of a partially molten planetesimal consisting of iron and silicates, which considers the accretion by radial growth. The common heat conduction equation has been modified to consider also melt segregation. In the initial state, the planetesimals are assumed to be highly porous and consist of a mixture of Fe,Ni-FeS and silicates consistent to an H-chondritic composition. The porosity change due to the so called hot pressing is simulated by solving a corresponding differential equation. Magma segregation of iron and silicate melt is treated according to the flow in porous media theory by using the Darcy flow equation and allowing a maximal melt fraction of 50%. Results. We show that the differentiation in planetesimals depends strongly on the formation time, accretion duration, and accretion law and cannot be assumed as instantaneous. Iron melt segregation starts almost simultaneously with silicate segregation and lasts between 0.4 and 10 Ma. The degree of differentiation varies significantly and the most evolved structure consists of an iron core, a silicate mantle, which are covered by an undifferentiated but sintered layer and an undifferentiated and unsintered regolith – suggesting that chondrites and achondrites can originate from the same parent body.

Titel:Differentiation and core formation in accreting planetesimals
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID
Neumann, W.wladimir.neumann@dlr.deNICHT SPEZIFIZIERT
Breuer, D.doris.breuer@dlr.deNICHT SPEZIFIZIERT
Spohn, T.Tilman.Spohn@dlr.deNICHT SPEZIFIZIERT
Datum:12 Juli 2012
Erschienen in:Astronomy and Astrophysics
Referierte Publikation:Ja
In Open Access:Nein
In ISI Web of Science:Ja
DOI :10.1051/0004-6361/201219157
Seitenbereich:Seiten 1-21
Name der Reihe:Planets and planetary systems
Stichwörter:convection / planets and satellites: formation / planets and satellites: interiors / minor planets, asteroids: general / conduction
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EW - Erforschung des Weltraums
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Exploration des Sonnensystems (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Institut für Planetenforschung
Hinterlegt von: Noack, Lena
Hinterlegt am:19 Sep 2012 08:25
Letzte Änderung:19 Jul 2016 17:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2017 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.