elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Infrared-Reflective Coating on Fused Silica for a Solar High-Temperature Receiver

Röger, Marc und Rickers, Christoph und Uhlig, Ralf und Neumann, Frank und Polenzky, Christina (2009) Infrared-Reflective Coating on Fused Silica for a Solar High-Temperature Receiver. Journal of Solar Energy Engineering, 131 (2), . ASME. DOI: [10.1115/1.309727]. ISSN 0199-6231.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Offizielle URL: http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000131000002021004000001&idtype=cvips&gifs=Yes

Kurzfassung

In concentrating solar power, high-temperature solar receivers can provide heat to highly efficient cycles for electricity or chemical production. Excessive heating of the fused-silica window and the resulting recrystallization are major problems of high-temperature receivers using windows. Excessive window temperatures can be avoided by applying an infrared-reflective solar-transparent coating on the fused-silica window inside. Both glass temperatures and receiver losses can be reduced. An ideal coating reflects part of the thermal spectrum (lambda>2.5 µm) of the hot absorber (1100°C) back onto it without reducing solar transmittance. Extensive radiation simulations were done to screen different filter types. The examined transparent conductive oxides (TCO) involve a high solar absorptance, inhibiting their use in high-concentration solar systems. Although conventional dielectric interference filters have a low solar absorption, the reflection of solar radiation which comes from various directions is too high. It was found that only rugate filters fulfill the requirements for operation under high-flux solar radiation with different incident angles. A thermodynamic qualification simulation of the rugate coating on a window of a flat-plate receiver showed a reduction of almost 175 K in mean window temperature and 11% in receiver losses compared to an uncoated window. For the configuration of a pressurized receiver (REFOS type), the temperature could be reduced by 65 K with slightly reduced receiver losses. Finally, a first 25-µm thick rugate filter was manufactured and optically characterized. The measured spectra fitted approximately the design spectra, except for two absorption peaks which can be avoided in future depositions by changing the deposition geometry and using in-situ monitoring. The issue of this paper is to share the work done on the choice of filter type, filter design, thermodynamic evaluation, and deposition experiments.

Dokumentart:Zeitschriftenbeitrag
Titel:Infrared-Reflective Coating on Fused Silica for a Solar High-Temperature Receiver
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Röger, Marcmarc.roeger@dlr.de
Rickers, ChristophFraunhofer IST
Uhlig, Ralfralf.uhlig@dlr.de
Neumann, FrankFraunhofer IST
Polenzky, ChristinaFraunhofer IST
Datum:Mai 2009
Erschienen in:Journal of Solar Energy Engineering
Referierte Publikation:Ja
In Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:131
DOI :[10.1115/1.309727]
Seitenbereich:
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der Herausgeber
Steinfeld, AldoPSI
Verlag:ASME
ISSN:0199-6231
Status:veröffentlicht
Stichwörter:coating techniques, receivers, recrystallisation, solar power, solar radiation
HGF - Forschungsbereich:Energie
HGF - Programm:Erneuerbare Energie
HGF - Programmthema:E SF - Solarforschung (alt)
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SF - Solarforschung
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Hochtemperatursysteme (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Solarforschung
Hinterlegt von: Marc Röger
Hinterlegt am:19 Feb 2010 16:45
Letzte Änderung:04 Apr 2013 16:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.