DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

The Thermal Subsurface Structure of Martian Soil and the Measurability of the Planetary Heat Flux

Grott, M. und Helbert, J. und Nadalini, R. und Spohn, T. (2006) The Thermal Subsurface Structure of Martian Soil and the Measurability of the Planetary Heat Flux. In: Eos Trans. AGU Fall Meeting suppl., 87 (52), P51C-1213. American Geophysical Union Fall Meeting 2006, 2006-12-11 - 2006-12-15, San Francisco (USA).

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.


The Heat flow and Physical Properties Package (HP3) is one of the possible payloads for ESA's upcoming ExoMars mission and includes an instrumented mole system, a self-penetrating probe designed for long term measurements of thermal conductivity and temperature in the martian soil to a depth of approximately 5 m. As a precursory study to the ExoMars mission, we have investigated the thermal subsurface structure of the martian soil as driven by diurnal, seasonal and climate temperature-cycles to investigate the measurability of the planetary heat flow. The soil model adopted here incorporates a depth and temperature dependent thermal conductivity, a temperature dependent specific heat and a depth dependent density. The thermal conductivity of the near surface layers is given by the temperature dependent conductivity of atmospheric CO<sub>2</sub>. The surface temperatures driving the thermal waves have been adopted from the Mars Climate Database (http://www-mars.lmd.jussieu.fr/mars.html) evaluated at a possible landing site at 120° E, 20° N. The simulations show that at a depth of 5 m the seasonal cycle induces temperature variations of 0.3 K, too large to reliably calculate the heat flow from short period measurements. Only if annual mean temperatures can be accurately determined by, e.g., extending the measurement time to a Martian year, this problem can be solved. Our simulations indicate that for a perfect measurement the heat flow can then be determined with an accuracy of one per cent if the mole reaches a penetration depth of 2.5 m. For shallower depths, the error may become as large as 10 per cent. Modeling the Martian climate cycle by obliquity changes as computed by Laskar et al. 2004, we have found the influence of climate change on the heat flow measurements to be negligible. Only for unrealistically fast changes with a period of 3000 yrs a small error in the heat flow measurement of 5 per cent is to be expected. We therefore conclude that the measurement of the Martian planetary heat flow is feasible as long as measurements are extended over at least the period of a full Martian year.

Dokumentart:Konferenzbeitrag (NICHT SPEZIFIZIERT)
Titel: The Thermal Subsurface Structure of Martian Soil and the Measurability of the Planetary Heat Flux
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID
Datum:Dezember 2006
Erschienen in:Eos Trans. AGU Fall Meeting suppl.
In Open Access:Nein
In ISI Web of Science:Nein
Name der Reihe:Eos Transactions AGU
Stichwörter:Heat flow, Surface materials and properties, Instruments and techniques, Mars
Veranstaltungstitel:American Geophysical Union Fall Meeting 2006
Veranstaltungsort:San Francisco (USA)
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:2006-12-11 - 2006-12-15
Veranstalter :AGU
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EW - Erforschung des Weltraums
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Vergleichende Planetologie (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Musiol, Stefanie
Hinterlegt am:15 Jan 2007
Letzte Änderung:27 Apr 2009 13:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.