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Abstract

The application of Synthetic Aperture Radar (SAR) for ship and iceberg monitoring is important to promote maritime
safety in Arctic waters. Although the detection of ships and icebergs in SAR images is well established using adap-
tive threshold techniques, the discrimination between the two target classes still represents a challenge for operational
scenarios. This paper proposes the application of Convolutional Neural Networks (CNN) for ship-iceberg discrimina-
tion in high resolution TerraSAR-X StripMap images. The CNN model is compared with a Support Vector Machine
(SVM), and the final results indicate a superior classification performance of the proposed method.

1 Introduction

Spaceborne Synthetic Aperture Radar (SAR) is an impor-
tant instrument for oceanographic observations. Due to
its active radar, it is able to monitor the oceans and float-
ing structures in all weather conditions. In SAR images,
ships and icebergs typically have a stronger backscatter
response than the surrounding open water, and are there-
fore detectable using adaptive threshold techniques. The
Constant False Alarm Rate (CFAR) algorithm is typically
applied to detect ships and icebergs [5, 8, 13, 14]. Ice-
bergs occur in a large variety of sizes and shapes, im-
posing additional challenge to their detection in SAR im-
ages. In [7], the detection of icebergs is performed in
high resolution TerraSAR-X images using iterative cen-
soring CFAR (IC-CFAR), resulting in a higher iceberg
detectability at lower false alarm rates.
After detection, additional processing is needed to dis-
tinguish between ships and icebergs. The discrimina-
tion between the two classes is carried out through fea-
ture extraction and target classification steps. In [6],
intensity and polarimetric parameters are used as fea-
tures to a Support Vector Machine (SVM) classifier, in
order to discriminate ships from icebergs in simulated,
dual polarized, medium resolution SAR data. In [9],
the differences in the dominant scattering mechanism
between ships and icebergs are used to divide the two
classes. These methods exploit polarimetric information
from medium resolution SAR products, and therefore,
not applicable for the discrimination of ships and icebergs
in single-polarization data. However, with the availabil-
ity of high resolution SAR image, the discrimination can
be performed using intensity and shape features.
This abstract proposes the application of Convolutional
Neural Networks (CNN) to ship-iceberg discrimination
in high resolution TerraSAR-X data. Convolutional Neu-
ral Networks are able to learn complex representations

from the input data, without the need of handcrafted fea-
tures, and have been successfully used in many image
classification tasks [2, 10, 11]. Only recently CNN have
been successfully adopted for demanding SAR classifi-
cation tasks, as in [3, 12]. This abstract is organized as
follows: Section 2 describes the dataset and CNN ar-
chitecture used in our experiments. Section 3 presents
the experimental results using the proposed model trained
with targets extracted from TerraSAR-X StripMap prod-
ucts. Finally, Section 4 presents our conclusions and fu-
ture work.

2 Development

Figure 1-(a)-(b) illustrate the typical SAR signature of a
ship and an iceberg in an X-Band high resolution image.
The high resolution of TerraSAR-X StripMap mode al-
lows the detection of structural components from both
floating structures. Even though ships and icebergs can
have similar intensity and size values, their structures and
shapes typically follow different patterns. The CNN is
designed to learn a set of features from the input image
in a supervised training process, in a way to capture the
differences between the two observed classes.
The classifier architecture is presented in Figure 2. It is
composed of two convolutional layers (Feature Map layer
followed by a Pooling layer) and a fully connected layer
D. The output class is defined using a soft-max operation
in the final layer S. The CNN model is implemented in
Python using the optimized library Theano [1, 4].
The classification dataset is composed of ships and ice-
bergs extracted from TerraSAR-X Multi Look Ground
Range Detected (MGD) products, with ground resolution
of 3 meters. A total of 277 ships and 68 icebergs are used
in the classification dataset. The targets (ships and ice-
bergs) are extracted from the SAR images and stored in a



sub-image set of Regions of Interest (ROI) Rtarget.

Figure 1: Example of a ship and an iceberg SAR sig-
nature: (a) Ship structure, (b) Iceberg structure, (c) 3D
visualization of the ship structure, (d) 3D visualization
of the iceberg structure. Note that both ship and iceberg
are similar in size and intensity, but differ significantly in
their spatial signature

Figure 2: Convolutional Neural Network architecture
used in our experiments is composed of two convolu-
tional layers (Feature Map + Pooling operation), one full
connected layer (D), and one soft-max layer to generate
the classification probabilities.

To all elements in the set Rtarget, the following opera-
tions are performed: 1) Image sampling to a pixel spac-
ing of 1.5 meters; 2) Image cropping to 128× 128 pixels
centered in the ROI element; 3) Image normalization.

The image sampling and cropping transform the image
in a standard input vector of 128 × 128 elements. This
is necessary because the neural network input filed has a
fixed number of elements. The image normalization pro-
cess is responsible to reduce strong backscattering signals
from targets. The strong backscattering represented by
high pixel values can introduce instabilities in the training
process. In addition to that, target’s peak values do not
generalize well in the classification task, once the high
value is highly dependent of target orientation towards
the satellite. The following nonlinear normalization func-
tion is proposed:

N(x) =
L(x)

maxL(x)
(1)

where:

L(x) =

{
1 + log x if x > 1

x if x ≤ 1
(2)

The log function in equation 2 attenuates the high inten-
sity values of the target signal. The normalization func-
tion changes the target pixel distribution from a highly
skewed (right tail) distribution to a normal-like symmet-
ric distribution.
The effects of the normalization processing step are illus-
trated in Fig. 3, where Fig. 3-(a) and Fig. 3-(c) are scaled
from min(ROI) to max(ROI), in order to better depict
the information content from the target’s signal. The tar-
get profile is presented in Fig. 3-(b) and Fig. 3-(d), using
3D plots (ROI coordinates x× y vs ROI intensity).
The classification dataset is artificially enlarged, in order
to balance the number of samples per class and to avoid
model overfitting. This process is performed by sampling
(with replacement) the ships and icebergs in the dataset,
applying a set of label-preserving transformations. The
following transformations were used: Horizontal and ver-
tical reflections; Image rotation; Image translation. The
augmented dataset contains 600 elements (300 ships, 300
icebergs), and is divided in two groups: training dataset,
with 90% of data; test dataset, with 10% of data.

Figure 3: ROI normalization preprocessing. (a) The
input target, with image scaled from min(ROI) to
max(ROI) to better visualize the unbalanced intensity
distribution of the target. (b) 3D representation of the
input ROI. (c) Visualization of the target intensity distri-
bution, from min(ROI) to max(ROI). (d) 3D repre-
sentation of the normalized ROI.

3 Experimental Results
The CNN structure is optimized using training error
curves, to determine the network performance during the
training phase. Different convolutional layer sizes were
tested, and the best model over the training dataset was
selected. The final architecture was then validated in the



test dataset. Two Support Vector Machine (SVM) mod-
els were also trained using the same dataset, for compar-
ison purposes. The first SVM model uses as feature vec-
tor parameters extracted from the segmented target con-
tours. This feature vector is composed of: area, perime-
ter, seven central moments, and seven Hu invariant mo-
ments. The resultant vector has 16 elements per target
sample. For the second SVM model, the target sub-image
(128×128 pixels) is transformed in a vector of 16384 el-
ements (stacking sub-image elements, row by row, from
the 128 × 128 input image). After that, the input vector
is compressed to a feature vector of 60 components using
Principal Component Analysis (PCA). The SVM mod-
els are optimized using cross validation over the train-
ing dataset, and hyper-parameters are chosen using grid
search methods. The best model over the training dataset
is then validated using the same test dataset from the
CNN model.
Table 1 presents the results obtained with all models in
the test dataset. The final score is evaluated using the
f1-score, defined as the harmonic mean between the pre-
cision and the recall percentages, as illustrated below in
Equation 3:

f1-score = 2 · Precision ·Recall

Precision+Recall
(3)

The CNN model, with f1-score of 97%, performs better
than the SVM models. This result indicates that the con-
volutional layer is able to extract useful features during
the training process, resulting in a better generalization
during the test phase.

Classifier Target Precision Recall F1-Score
CNN Iceberg 95% 100% 98%

Ship 100% 95% 97%
Average 98% 97% 97%

SVM Iceberg 88% 88% 88%
Ship 88% 88% 88%

Average 88% 88% 88%
PCA+SVM Iceberg 100% 88% 94%

Ship 90% 100% 94%
Average 95% 94% 94%

Table 1: Classification results: All models are trained
and have their hyper-parameters selected using the train-
ing dataset. The best final model is then validated using
the test dataset. The results are presented in the form of
the f1-score, to balance both precision and recall perfor-
mances.

Figure 4 illustrates the CNN classification output. Fig-
ure 4-(a) shows a ship, correctly classified with high
probability output. Figure 4-(b) shows an elongated ice-
berg structure, correctly classified as iceberg. It is possi-
ble to observe that the network also considered the elon-
gated structure as a ship, but with lower probability. Fig-
ure 4-(c) illustrates a misclassified ship. The visible sig-
nature of the ship in the image is small, misguiding the
network to select the iceberg class.

Figure 4: CNN classification results, illustrating the nor-
malized target sub-image (on the left) and the classifica-
tion probability plot (on the right). (a) example of a cor-
rectly classified ship; (b) example of a correctly classified
iceberg; (c) example of a misclassified ship.

4 Conclusion
This paper presents the use of Convolutional Neural Net-
works for ship-iceberg discrimination in high resolution
TerraSAR-X images. A total of 277 ships and 68 icebergs
were extracted from StripMap MGD images, and used to
build a balanced augmented dataset of 600 samples. The
CNN architecture is trained using 90% of the data, and
the final model is validated in the test dataset, composed
of the remaining 10% of the data. Two SVM models were
used to evaluate the CNN performance. The final results
show that the CNN model outperform the SVM models
with a total f1-score of 97%. The CNN has the disadvan-
tage of a longer training time, but is able to learn relevant
features from the input image, resulting in a better gen-
eralized model. Future work will focus on the utilization
of CNN models in high resolution dual-pol SAR images,
incorporating the polarimetric channels into the network
convolutional layers.
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