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Abstract we present atmospheric gravity wave (GW) measurements obtained by a Rayleigh/Raman
lidar at Lauder, New Zealand, (45°S, 170°E) during and after the Deep Propagating Gravity Wave Experiment
campaign. GW activity and characteristics are derived from 557 h of high-resolution lidar data recorded
between June and November 2014 in an altitude range between 28 and 76 km. In this period, strong GW
activity occurred in sporadic intervals lasting a few days. Enhanced stratospheric GW potential energy
density is detected during periods with high tropospheric wind speeds perpendicular to New Zealand’s
Southern Alps. These enhancements are associated with the occurrence of quasi-stationary GW (mountain
waves). Surprisingly, the largest response in the mesosphere is observed for conditions with low to
moderate lower tropospheric wind speeds (2—12 m/s). On the other hand, large-amplitude mountain
waves excited by strong tropospheric forcings often do not reach mesospheric altitudes, either due to wave
breaking and dissipation in the stratosphere or refraction away from New Zealand.

1. Introduction

The influence of gravity waves (GWs) on atmospheric dynamics, most notably the residual mesospheric circu-
lation, was first recognized by Dunkerton [1978] and Lindzen [1981]. GWs play a key role in the vertical coupling
of the atmosphere. Excited by various mechanisms mostly at tropospheric levels, GWs propagate through
the atmosphere and deposit energy and momentum at the region of dissipation (see, e.g., reviews by Fritts
and Alexander [2003] and Plougonven and Zhang [2014]). To this day, the details and importance of processes
regarding the excitation, propagation, and dissipation of GW are not fully understood.

The objective of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) was to “quantify GW dynamics
and effects from orographic and other GW sources to regions of dissipation at high altitudes” [Fritts et al., 2015].
The field campaign took place in June/July 2014 on New Zealand’s South Island, one of the world’s gravity
wave hot spots [e.g., Jiang et al., 2003, 2005; Hoffmann et al., 2013]. Fritts et al. [2015] provide an overview
of initial observations during the campaign as well as definitions of so-called intensive observation periods
(IOPs) relating to airborne activities, as well as ground-based IOPs (GBs), to which we will refer in this paper
(their Tables 4 and 5). One of the hypotheses of DEEPWAVE was that mountain waves (MW) excited by the
flow over the Southern Alps act as a primary source of mesospheric GW activity above New Zealand. Here,
ground-based high-resolution lidar observations are analyzed to investigate the vertical propagation of MW
into the mesosphere.

2. Instrumentation

The TELMA (Temperature Lidar for Middle Atmosphere Research) instrument developed by the Institute of
Atmospheric Physics of the German Aerospace Center is a mobile middle-atmosphere Rayleigh/Raman lidar
installed in an 8 ft container. It was set up at the atmospheric research station of the National Institute of
Water and Atmospheric Research in Lauder (45.04°S, 169.68°E), New Zealand, in June 2014. TELMA emits 12 W
optical power at 532 nm wavelength and 100 Hz pulse repetition rate. Backscattered light is collected using a
63 cm diameter telescope with a field of view of 240 prad. The fiber-coupled receiver comprises three detector
channels, a 608 nm Raman channel and high and low rate 532 nm channels. The detectors are operated in
single-photon counting mode and the timing of detected photons is stored with 2 ns resolution. This allows
for flexible vertical and temporal binning during data analysis.
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3. Data and Analysis

The lidar system was operated at Lauder during and after the DEEPWAVE campaign whenever weather con-
ditions are permitted. In the period between 21 June 2014 and 2 November 2014 the instrument was run on
90 nights totaling 754 h. In this study we use a subset of 557 h which are of good data quality. The longest
measurement is 12.3 h and the mean is 7.7 h. Raw photon data from the two 532 nm channels are binned
to a 100 m x 2 min grid. The photon count profiles are then smoothed to 900 m x 10 min using a running
mean filter. Temperatures are retrieved by integration of the range-corrected photon count profiles assum-
ing hydrostatic equilibrium. In a first step, nightly mean profiles are integrated from top to bottom using seed
temperatures from SABER at 100-107 km. Then 2 h averages are formed which are seeded with the nightly
mean temperature profile at a lower altitude. In iterating this step with increasing time resolution, tempera-
ture profiles with 10 min resolution are finally obtained between 22 and 85 km (typically). Due to increased
uncertainties in the retrieved temperatures caused by the presence of aerosols in the lower stratosphere, in
this work we limited the GW analysis to altitudes above 28 km.

Temperature perturbations are calculated from the temperature data by removal of estimated
time-dependent background profiles. The filter is chosen in a way that both propagating and mountain
waves can be isolated from the background. Background temperature profiles are determined from a series
of third order polynomial fits of length 20 km which are shifted in altitude by 100 m steps. This method is
commonly used for extraction of GW induced perturbations [e.g., Duck et al., 2001; Alexander et al., 2011;
Kaifler et al., 2015]. The polynomial fitting method does not involve temporal averaging and is thus able to
capture quasi-stationary structures originating from MW which are not retrieved by methods such as the
subtraction of nightly means. GW induced perturbations with vertical wavelengths between 2 and 12 km are
effectively extracted from retrieved temperature profiles using the polynomial fitting method. We note that
this method suppresses waves with vertical wavelengths significantly larger than 12 km, which may cause
an underestimate of variance growth with altitude for MW at higher altitudes. Increasing the filter length
beyond 12 km leads to mistaking temperature perturbations caused by non-GW sources (e.g., planetary
waves, tides, and mesospheric inversion layers) for GW.

Based on extracted temperature perturbations T’, the gravity wave potential energy density per mass, E,,, is
calculated as a function of altitude z according to

1. & (T@y)
50= e (1) W

using the acceleration of gravity g, the Brunt-Vaisala period N and the background temperature T,. The over-
bar denotes a temporal average, here either over the duration of the nightly measurement or 3 h periods. £,
is commonly used to estimate the magnitude of GW activity in a given altitude range [e.g., Tsuda et al., 2000;
Alexander et al., 2011]. Due to normalization per mass, its value increases with altitude due to the decrease
in air density. In case of conservative wave propagation in a constant background wind field £, increases
exponentially. Comparing measured £, profiles with calculated profiles assuming conservative propagation
of linear GW allows for identification of height regions where wave energy is likely being dissipated.

E, as calculated from temperature perturbations T’ includes contributions from GW originating from oro-
graphic sources (MW) as well as other sources. In general, signatures of MW in lidar temperature data appear
as quasi-stationary T’ patterns, whereas propagating waves are characterized by tilted T’ patterns. In order
to differentiate between MW and propagating GW, we apply two-dimensional wavelet analysis to the tem-
perature perturbations. The two-dimensional Morlet wavelet [see also Wang and Lu, 2010] is ideally suited to
discern T’ patterns according to their phase angle 8 and scale s, the latter corresponding to the wavelength
in the direction of propagation. The wavelet parameters 8 and s are related to the GW vertical wavelength 4
and period 7 according to

A=sin""0 (a5 —a,) 2)

r=cos ' 0 (b;s—b,), 3)

where the coefficients a,, a,, b;, andb, were determined empirically using simulated harmonic waves.

KAIFLER ET AL.

MOUNTAIN WAVES IN THE MIDDLE ATMOSPHERE 2



@AG U Geophysical Research Letters

10.1002/2015GL066465

Using this method, it is possible to derive E,
for a specific class of GW defined by the phase
angle 6 which is varied using a step width of 15°.
We define three classes: MW (9 = 90°), upward
propagating GW (9 = 0°...45°), and down-
ward propagating GW (6 = 135°...180°). The
E gapsinangle between MW and propagating GW
] are chosen intentionally in order to clearly dif-
ferentiate the three classes. We note that the
E, of MW might be slightly underestimated in
case of apparent phase propagation due to the
changing background wind. Spectral broaden-
ing which results from the finite size of the
wavelet leads to the variance being distributed
Figure 1. E, as a measure of GW activity averaged over three over a considerable range in parameter space.
different height ranges. Lines represent the time series By introducing a gap between the three classes,
smoothed with a 10 day Hann window. LT T .
the selectivity is significantly improved.
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The procedure to derive E, for the three classes is as follows: first, for each nightly observation, we compute
the wavelet spectrum using the full set of parameters, i.e., one transformation for each pair (9, s). T'(z, t) can be
fully reconstructed from the wavelet spectrum after normalization to the variance of T’(z, t). Next, we recon-
struct T’'(z, t) only from wavelet transformations with parameters matching the respective class definitions
and calculate £, accordingly. Please note that the relative magnitude of £, per wave class is depending on
the selected range of parameters. As the wavelet transformation also preserves temporal and spatial infor-
mation, we can derive Ep within intervals of 3 h and in three different height ranges 28-44 km, 44-60 km,
and 60-76 km, roughly representing the stratosphere, the stratopause region, and the mesosphere. Thus, we
obtain E, estimates every 3 h for upward propagating, downward propagating, and quasi-stationary waves
(MW) at three different height ranges.

4, Results

Mean E, is shown in Figure 1. As expected, E, increases with altitude and decreases with time, following
roughly the seasonal cycle found in previous studies of GW activity [e.g., Murayama et al., 1994; Alexander,
1998; Kaifler et al., 2015]. The temporal evolution of £, is modulated with a period of 1-3 weeks at nearly all
altitudes, and large enhancements are seen in particular at low altitudes.

Strong stratospheric GW activity is detected during the period 29 July to 1 August 2014 (GB21) in conjunc-
tion with strong surface winds at Lauder exceeding 20 m/s. However, this event does not lead to significant
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Figure 2. (left) Temperature perturbations and (right) Ep on 1 August (GB21). For reference, the monthly mean for
August estimated from observations under quiet MW conditions (10 observations with |hyy| < 2 m/s; see discussion
for details) is also shown. The shaded area marks the standard error of the mean. Dashed lines mark curves exp(z/H)

(green) assuming conservative propagation, exp(z/2.3H) (blue) which is from observations and a spectral model that fits
mean observations with altitude [Fritts and VanZandt, 1993], and exp(z/3.5H) (brown) as a fit to the observations in the
lower stratosphere; H = 7 km.
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Figure 3. Ep in the height ranges (top) 60-76 km, (middle) 44-60 km, and (bottom) 28-44 km. Colored dots represent
3 h data points based on at least 30 min of observational data. Red: quasi-stationary GW (MW), black: upward
propagating GW, and blue: downward propagating GW. Colored lines represent the time series smoothed with a 6 day
Hann window.

enhancements in £, at mesospheric altitudes. Figure 2 shows T'(z,t) and the corresponding £, profile for 1
August 2014. Quasi-stationary GW with T’ up to 10K, 4 = 3 ... 8km and nearly stationary phase are visible
for several hours after around 13 UT. MW with comparable amplitudes have been observed previously in the
lower stratosphere above northern Scandinavia and Greenland [Dérnbrack et al., 1999; Doyle et al., 2005]. The
large-amplitude horizontal structures in Figure 2, which are indicative of MW, cause a dramatic increase in E,
up to ~40 km altitude. On 1 August, the pronounced decrease of £, between 35 and 45 km altitude is indica-
tive of dissipative processes, e.g., the breaking of the large-amplitude MW. Another possibility is the refraction
of MW away from South Island into the polar night jet, caused by changing wind directions with altitude.
Although GB21 is the strongest MW event recorded by our instrument, similar signatures of quasi-stationary
MW are often observed at Lauder. The much more rapid increase of £, above 66 km is related to a large meso-
spheric inversion layer at approximately 75 km (not shown) and downward propagating large-amplitude
secondary GW (phase lines progressing upward with time, best visible between 1300 and 1430 UT).

The evolution of £, per wave class is shown in Figure 3. Generally, £, of upward propagating waves is larger
than E, of downward propagating waves, and this disparity increases with altitude. In the stratosphere
(Figure 3, bottom), large enhancements seen in E, of quasi-stationary GW (MW) during GB21 and GB22 clearly
stand out. While there is still a significant response in the stratopause region for GB22, the MW signal is sup-
pressed in case of GB21. Only weak responses are seen in the mesosphere. The strongest mesospheric MW
signal was observed on 25 July (IOP16). Other significant events include 4 July (GB15 and IOP10), 10 July (GB16
and F06), 28 August, 13 September, and 24 September. All of these events are associated with moderate E, of
MW in the stratosphere.

5. Discussion

Stratospheric MW are generated during meteorological conditions of moderate to high tropospheric wind
speeds across mountain ranges. Depending on the vertical wind structure and the amplitudes that they
achieve at lower altitudes, MW excited near ground level can propagate into the lower stratosphere where
they may be subjected to filtering and breaking [e.g., Eckermann and Preusse, 1999; Smith et al., 2008]. Smith
et al. [2009] were the first to observe MW in the mesosphere/lower thermosphere.

There is a well known GW hot spot in the stratosphere above the South Island [e.g., Jiang et al., 2003, 2005;
Hoffmann et al., 2013]. Lauder, located 120 km downstream of the Southern Alps (peaks 2500 m), is thus
an ideal site for MW observations. In contrast to GW climatologies at polar latitudes [Yamashita et al., 2009;
Alexander et al., 2011; Ehard et al., 2014; Kaifler et al., 2015], GW activity at Lauder is dominated by individual
events of approximately 1-3 days in duration alternating with quiet intervals resulting in varying conditions
for wave generation and vertical propagation (see Figure 1).
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Figure 4. Correlation between (left) wind speed perpendicular to the Southern Alps at 1 km altitude and nightly mean
Ep and (right) 3 h averages of MW Ep (based on at least 90 min of observational data) in the stratosphere (28-44 km).

In order to study the relationship between MW forcing and GW activity observed by our lidar at Lauder, we
evaluate European Centre for Medium-Range Weather Forecasts (ECMWF) wind fields upstream of the New
Zealand South Island (44.2°S, 167.5°E, ~50 km off the coast northwest of Lauder). Using the ECMWF oper-
ational model 1 h data sets, the component of the horizontal wind speed perpendicular to the mountain
range (@ = 115°, direction from north-northwest to southeast-east) is averaged over the same intervals dur-
ing which the lidar acquired data. In line with the analysis of Yamashita et al. [2009], we assume that GWs
are filtered if the rotation of the horizontal wind vector exceeds 90° in the altitude range 1-30 km. Observa-
tions obtained during these conditions are excluded from subsequent analysis. These conditions frequently
occur during the months September, October, and November. Figure 4 shows the correlation between ECMWF
wind speed upstream of Lauder (and the Southern Alps) at 1 km altitude and GW activity above Lauder for
the remaining data sets. Positive values of the correlation coefficient r are found in the lower stratosphere
(28-44 km altitude) for total £, (r = 0.73) as well as £, of MW (red curve in Figure 3, bottom) (r = 0.68). The
high degree of correlation suggests that a large portion of stratospheric GW activity observed above Lauder is
indeed caused by MW, particularly during winter months June, July, and August. When removing the restric-
tion on wind vector rotation, i.e., inclusion of all data sets, the correlation breaks down (correlation coefficients
for MW E,, are on the order of 0.1). GW activity in spring appears to be dominated by sources other than MW.
Indeed, E, of stratospheric MW in September and October is significantly less compared to July and August
(see Figure 3).

A further potential source for the large-amplitude quasi-stationary GW observed by our lidar is the jet exit
region of the tropospheric jet. However, if these waves do propagate into the middle and upper stratosphere,
there is no reason as to why this should be possible primarily above the island and to a much lesser degree
above the ocean. Satellite observations clearly indicate that there is a GW hot spot above New Zealand, and
the strong localization is difficult to bring in line with moving sources such as the jet exit region.

During favorable meteorological conditions for so-called deep propagation, MW can propagate from the tro-
posphere to mesospheric altitudes (e.g., see 25 July in Figure 3). Figure 5a shows that E, for mesospheric MW
reaches a maximum in the range 2-12 m/s (wind at 1 km and wind rotation <90° between 1 and 60 km) and
decreases for larger wind speeds. The latter decrease is probably associated with large-amplitude MW break-
ing in the stratosphere. At high wind speeds MW forcing is so strong that the waves likely become unstable

MW E, (J/kg)
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Figure 5. E, of quasi-stationary GW (MW) from 3 h averages (at least 30 min of observational data) in the height range
60-76 km versus (left) wind speed perpendicular to the Southern Alps at 1 km altitude and (right) minimum wind
speed perpendicular to the Southern Alps in the height range 15-40 km. The solid line shows the values smoothed with
an 8 m/s Hann window. Colors indicate three different wind speeds (1 km level): <2 m/s (red), 2-4 m/s (magenta), and
>4 m/s (blue).
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in the lower stratosphere, resulting in an effective reduction of MW activity in the mesosphere. This is con-
sistent with the GV UV lidar observations and WRF modeling shown by Fritts et al. [2015], which reveal both
dissipation of strong MW in the stratosphere and radiation of secondary GW with nonzero phase speeds at
higher altitudes. Changing wind directions with altitude might also cause oblique propagation, refracting the
MW away from South Island. In addition to the tropospheric forcing, the minimum stratospheric wind speed
is another important factor which controls the vertical propagation of MW. For MW generated under condi-
tions of weak tropospheric forcing (2-4 m/s, magenta symbols in Figure 5) E, of mesospheric MW shows a
large variation. This variation is likely caused by MW encountering critical levels or convective instabilities.
In case of weak mean winds, large-amplitude MW can achieve wind amplitudes larger than the mean wind
resulting in convective overturning and breaking. Indeed, according to Figure 5b minimum E, of mesospheric
MW is observed when the minimum stratospheric wind speed is below 10 m/s, while maximum E, occurs for
minimum wind speeds above 11 m/s. This implies that moderate forcing conditions (wind speed near ground
level in the range 2-12 m/s) and sufficiently high stratospheric wind speeds (>11 m/s) are favorable for MW
to reach the mesosphere.

6. Conclusion

We have presented observations of GW activity in the middle atmosphere derived from temperature measure-
ments acquired during winter and spring at Lauder, New Zealand, a midlatitude southern-hemisphere site.
The high-cadence observations detected transient GW events which occur periodically in winter (June, July,
and August) and significantly enhance the average E,. Quasi-stationary waves were identified as MW by corre-
lating observed GW activity with the tropospheric wind speed perpendicular to New Zealand'’s Southern Alps,
a proxy for MW forcing. Large-amplitude MW observed during DEEPWAVE did not reach mesospheric altitudes
above New Zealand, either due to breaking in the stratosphere or refraction away from South Island. Deep
propagation of MW occurs under conditions of weak to moderate forcing and sufficiently stronger strato-
spheric winds to allow vertical propagation. MW activity peaks in July and August. Later in the season, the
rotation of the horizontal wind in the troposphere and lower stratosphere prevents vertical wave propaga-
tion. In this case, observed GW activity in the mesosphere is dominated by sources other than MW. A possible
candidate are sources in the region of the stratospheric jet. As Lauder is close to the edge of the southern
polar vortex, GW generated there may be able to propagate to Lauder.
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