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Abstract—The performance and the decoding complexity of a which we will denote as source symbols. The sender computes
novel coding scheme based on the concatenation of maximumjinear combinations (also referred to as fountain code#gtac
distance separable (MDS) codes and linear random fountain or output symbols) of thé: source packets and broadcasts

codes are investigated. Differently from Raptor codes (wlth are L - .
based on a serial concatenation of a high-rate outer block cte them through the communication medium. After receiving

and an inner Luby-transform code), the proposed coding schme  fountain coded packets, the receivers can try to recover the
can be seen as a parallel concatenation of a MDS code and asource packets. In case of decoding failure, they will trgiag
linear random fountain code, both operating on the same finié to decode after receiving additional packets. The effigienc
field. Upper and lower bounds on the decoding failure probaHity of a fountain code deals with the amount of packets that
under maximum-likelihood (ML) decoding are developed. It & . .

shown how, for example, the concatenation of 15, 10) Reed- & T€CeIvVer needs tc_) collect for recovering the source b_Iock.
Solomon (RS) code and a linear random fountain code over An idealized fountain code would allow the recovery with
a finite field of order 16, Fis, brings to a decoding failure a failure probability P = 0 from any set ofk received
probability 4 orders of magnitude lower than the one of a packets. Actual fountain decoders need in general to receiv
linear random fountain code for the same receiver 92\/erh§ad a larger amount of packetsp = k + &, for succeeding

in a channel with a erasure probability of ¢ = 5-107“. It is . . .
illustrated how the performance of the novel scheme approdtes in the recovery. Comr_nonly& IS refe_rrEd to as (rece'ver)_
that of an idealized fountain code for higher-order fields ami Overheadof the fountain code, and is used to measure its

moderate erasure probabilities. An efficient decoding alggthm  efficiency. The first class of practical fountain codes arby-u

is developed for the case of a (generalized) RS code. transform (LT) codes [3]. Among them, random LT codes
Index Terms—Fountain codes, maximum distance separable Or linear random fountain codes (LRFCs) [4], [5] deserve a
codes, maximum likelihood decoding, erasure correction. particular attention due to their excellent performance tm
the relatively simple performance model. Under maximum-
|. INTRODUCTION likelihood (ML) decoding, the failure probability of a bina

FFICIENT reliable multicasting/broadcasting technique R§C2 [ﬂ (Ei]n CS: bﬁ)?ggutggy .mod?Ie(fl @‘IN 27° for

have been investigated during the past thirty years [1] and= " s P /1S aclually aways upper
especially during the past decade [2]-[10]. Perhaps, thet m oundeq b)Q_ [.4]’ [51, [11]. In [6], [9] !t was shown that this
successful approach to reliable multicast deals with the sgipression s still accurate for fountain codes based orsepa

called fountain codes [2]. Consider the case where a sen arltrlces eg, Rapt(_)r codes [4]) unde_r ML. decodmg._ In .[6]’
(or source) needs to deliver a source block (e.g., a file) e performance achievable by performing linear combamesti

a set of N receivers. Consider furthermore the case whef} packets on finite fields of order larger t.har(IFq, 4= .2.)
receivers are affected by packet losses. In this scendméo, fvas analyzed. Eor a LRFC ové,, the failure probability
usage of an Automatic Retransmission Query (ARQ) protoclérllder ML decoding is bounded as [6]

can result in large inefficiencies, since receivers may doos 1

different packets, and hence a large number of retransmissi ¢ OV < Pr(6,q) < ——q7° Q)
would crowd the downlink channel. When a fountain code is ¢-1

used, the source block is split in a set /ofsource packets, where both bounds are tight already fpr- 2, and become
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costd are O(log(1/¢)) [4, Theorem 5], being = §/k the generator matrixG’. The encoded block is hence given by
overhead (normalized tg) needed to recover the source syme’ = uG’ = (¢, c, ..., c,). Additional redundancy symbols
bols with a high probability. For a LRFC the encoding cost isan be obtained by computing linear random combinations of
O(k) and the decoding cost@(k?), and thus it does not scalethe k& source symbols as
favorably with the source block size. However, BP decoding i
is scarcely used in practical Raptor decoder implememtstio G=dl = Zgﬂ’ uj, i=n+1,...,1 )
[13] due its poor performance with source block lengths of pa ’
practical interest X up to few thousands symbols). Efficient o _ ) )
ML decoding algorithms based on Gaussian elimination (Gi¢§1ere the coefficientg;; in (2) are picked fromF, with a
are usually adopted [13]-[18], for which the decoding cest Hniform probability. _
O(k?), though the fraction of symbols that are recovered with The encoded sequence is thus= (c’|c”). The generator
quadratic cost can be kept remarkably small. Similarlyia t Matrix of the concatenated code has the form
short source block length regime, the application of LRFCs 91,1 91,2 - Gin || G91nt1 Gint2 --- G110
under GE decoding is usually considered practical [6], [10] 921 92,2 --- G2.n || 92041 G2n+2 --- G2,

In this paper, we introduce and analyze a further improve-G = . . . .
ment of the approach proposed in [6], [10] to design fountain : ' ' '
codes with good performance for short block lengths. More gkt Gk2 - -+ Gk | | Gkntl Gknt2 - Gkl
specifically, a(n,k) maximum distance separable (MDS) G/ (el
code is introduced in parallel concatenation with the LRFGyhere ¢
By doing that, the firstx output symbols are the codewor

symbols of the MDS codé.We will assume that the MDS grow indefinitely. The encoder can be seen hence as a parallel

linear block code is constructed on the same figjdas the ¢,ncatenation of the linear block codeand of a LRFC (Fig.
fountain code. A related rate-less construction was prwosl) and the encoded sequence can be writter as uG —

in [19], where a mother non-binary low-density parity-ckec(. .. . The proposed construction allows generating
code was modified by replicating the codeword symbols (pri finitely many redundancy symbols. Thus, the encoder may
multiplication by a non-zero field element) and thus by (arb'be seen as a modified fountain encoder, whose firstitput
trarily) lowering the code rate. In our work, the mother cigle symbols (1, ¢a, . .., ) correspond to the codeword output

a MDS code, while additional redundant symbols are producsg the encoder of’, whereas the following— n symbols are
by a linear random fountain encoder. For the proposed sc;heq?]@3 output of the L’RFC encoder.

we illustrate how the performance of LRFCs in terms of
probability of decoding failure can be remarkably improved ,
thanks to the concatenation, especially for low to moderate (n, k) Block Code
packet loss probabilities. Tight bounds on the decodingrai ¢
probability vs. overhead are derived under the assumption u
of ML decoding. The accuracy of the bounds is confirmed———
through simulations. An efficient ML decoding algorithm is
presented for the case where a (generalized) Reed-Solomon ¢
(RS) is used in the concatenation. An analysis for the génera LREC — °
case where the MDS code is replaced by any arbitrary linear
block code, m_ a finite _rate regime, IS prowdeq in the Appgnlei . 1. Fountain coding scheme seen as a parallel concaterafta (n, k)
The paper is organized as follows. In Section Il the proposestar block code and a LRFEC.
concatenated scheme is introduced. Section Ill provides an
efficient ML decoding algorithm. In Section IV the perfor-
mance is analyzed and tight bounds on the decoding failure
probability are derived, while numerical results are pnése

®3)

is the generator matrix of the LRFC. Note that,
doeing the LRFC rate-less, the numbesf columns of G can

IIl. EFFICIENT DECODING

in Section V. Conclusions follow in Section VI. We consider a multicast setting, where a number of receivers
try to retrieve the source block from the respectively-eagd

[I. CONCATENATION OF BLOCK CODES WITHLINEAR output symbols. In this context, the decoder behaves as for a
RANDOM FOUNTAIN CODES conventional fountain decoder. At each receiver, the ctisre

We define the source block = (uy,us,...,u;) as a received output symbols are forwarded to the decoder. As

vector of source symbols belonging to a finite field of ordefo0n ask output symbols are collected, a decoding attempt

g, i.e.,u € F¥. In the proposed approach, the source block {§ performed. If the decoding is not successtul, furthepatt

first encoded via dn, k) linear block codeC’ over F, with symbols are collected. Whenever an additional output symbo
is received, another decoding attempt is performed. In case

1The cost is defined as the number of arithmetic field operstiimided  of successful decoding, the receiver acknowledges theciorr

by the number of source symbols, _ reception. The overall number of symbols collected at a
This represents a crucial difference with Raptor codesyfich the output

of the precode is further encoded by a LT Code. Hence the sirstitput receiver is denoted bm =k+6 (r.eca” thats is referred to as
symbols of a Raptor encoder do not coincide with the outpuhefprecode. the overhead). On the encoder side, as soon as a targetsucces
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rate among the receivers is attained, encoding stops. Nate permutations ovelG” and row permutations/combinations
at each receiver, the, output symbols that are collected mayver G'7) in the form

belong to - IlA
i) the output of theC’ encoder only, G = (0 B) ) (6)
i) the output of the LRFC encoder only,

H ! /A H H i " ! _
iif) both the outputs of th€’ encoder and the LRFC encoderWhereI Is them’ x m” identity matrix,0 is am” x m” all-0

While in the third h . dife ¢ with ¢ tmatrix, andA, B have respective sizes’ x (k —m') and
e n e third case there 1S no dierent With respect 19,/ (1 —m’). Note that the lower part a&”' given by(0|B)

a classical LRFC case, in the other two cases the Strum%ﬁr%btained by adding to each row&'T a linear combination

; X . g
of the C’ generator matrix can be exploited to reduce thS‘f rows fromG/7, in a way that then’ leftmost columns of

decoding complexity, as we will see next. Furthermore, Wh%”T are zeroed-out. It follows that the statistical propertiés

the channel erasure probability is sufficiently low, the mveé//T are inherited by then” x (k —m’') submatrixB, whose

) may dominatg, leading to a remarkable Improvement e ot are hence uniformly distributedtipn It follows that
the decoding failure probability. In this sense, the pragbs 4) is solvable if and only ifB is full rank, i.e., if and only
scheme provides the same performance of a (universal) LRf#ank(B) P , Le,

at high channel erasure probabilities, whereas it will grgo
boost in the efficiency when the channel erasure probability an Efficient Decoding Algorithm

1S low. We denote by 7 = {ji,j2,--,jm} the set of the We assume next the case where the MDS code (is, &)

indexes on the symbols af that have been collected by a eneralized Reed-Solomon (GRS) code with transposed gen-

specific receiver. The received vectplis hence given by 9 1zed R Wi P 9
erator matrix in Vandermonde form

y:(y17y2a---aym):(ijcjz""’cjm) 151 fil
. ~ k—1
and it can be related to the source blaclkasy = uG. Here, QT _ 1 By - By )
G denotes thé: x m matrix made by the columns @& with I I ’
indexes in_¢#, i.e., 18, --- gkt
91,51 91,52 -+ G1,jm where g;, i = 1,...,n, aren distinct non-zero elements of
G 92,51 92,52 -+ 92,4m IF,. Efficient decoding can be achieved by taking advantage

of the structure ofG'.2 In fact, a Vandermonde matrix can be
inverted with quadratic complexity [20]-[24]. This proper
has been widely exploited for efficient decoding of GRS
The recovery ofi reduces to solving the systemmf=k+dJ  over erasure channels [25]-[28]. In the following, we first
linear equations irk unknowns review an efficient method for the inversion of a Vandermonde
GTuT = y7. () matrix based on the LU factorization [21]. Then, we apply the

algorithm of [21] to the decoding of the proposed concatkethat
The solution of (4) can be obtained (e.g., via Gaussiggheme.

elimination) if and only if rankG) = k.
Assuming C’ being MDS, the system is solvable with
probability 1 if, among them received symbols, at leadt

gkajl gkij te gk;jnl

1) Vandermonde Matrices and Their Inversieet us con-
sider ay x v Vandermonde matrix

have indexes if{1,2,...,n}, i.e., if at leastm’ > k symbols T - ivY_l
produced by the linear block encoder have been received. Let 1ag - a:}’l
us consider the less trivial case wheré < k& among the V=

m received symbols have indexes {,2,...,n}. We can

< . 'y.*l
partition G” as 12y .

ol
wherex;, i = 1,...,~, are~ distinct non-zero elements of
IF,. In the following,~ will be referred to as theegreeof the
Vandermonde matrix.

The inverse of aV matrix can be efficiently computed

91,51 92,41 - Gk
91,52 92,42 -+ kg2

- el i, G2, - Gk, according to [21] by means of two recursions. In particular,
GT = = = 2 Jm Jm . (5) ) 1 .
G GLgos iy 92es - Tkdos n the inverse matriX¥ —+ can be obtained as
gl7jm/+2 g27jm/+2 oo gkajm’+2 V—l _ U—lL—l
: ; . ; whereU is an upper triangular matrix wheredsis a lower
91,5m  92,5m - Gkyjm triangular matrix. The coefficients ; of L=! are given by
The MDS property o’ assures that rar@é-}’) =m/, i.e., the i 1 -
first m’ rows of GT are linearly independent. Note that the lij = H z; —an J<i,1>1
m/” x k matrix G"T (with m” = m —m’) can be modeled as h=1,h#j

a random matrix whose ele.m_ents are uniformly di.StribUted iN3|y this work we consider MDS codes based on Vandermonde ceatri
IF,. It follows that the matrix in (5) can be put (via columnbut similar arguments hold for MDS codes based on Cauchyiceatr
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with [, = 1 andl; ; = 0 for j§ > 4. Note that, for thej-th Referring to Fig. 2, thei-th row of the matrix B (for
column of L1, the elements below the main diagonal can bie=1,...,m — m') can be zeroed-out by adding to it a linear
computed according to the recursion combination of them’ rows of (I|/A’). The complexity of
zeroing-outB is O((m — m/)m/(k — m’)), and the resulting

li1,
—i=ld system matrix is depicted in Fig. 3. In fadg is a random

lij =

_ _ Ti T ) o matrix with entries uniformly distributed iff,. Due to the
fori = j+ 1,...,7,1after computingl; ;.  Similarly, the jinear combinations performed to zero-out the mathy
coefficientsu; ; of U™" are given by the matrix C results in in a new matrixC’. Thus, a GE

o . i
w1 — w1 j>i>1 step IS/ performeq on the matri’ in order to recover the
Wij = Ui 1T i>ii=1 k — m' symbols involved in the lower part of the system

of equations with complexityO((k — m’)3). Finally, back-
substitution is applied in order to recover the¢ symbols
involved in the upper part of the system of equations with
complexity O(m/ (k — m/)).

with u;; = 1 andwu;; = 0 for j < ¢. The complexity of
computingL=! andU~! is O(4?).

Let us denote with 7’ = {j1, ja, ..., jm’} @ny set ofim’ <
n indexes of rows ofG'”. Consider the square submatix
of G'T composed by then’ rows (shortened to their first’

elements) ofG'” with indexes in_¢’, m k- m
L By e By
T
o E A
1B, [3;7;,—1 -
+
Note thatV is always a Vandermonde matrix of degree =
m’, with elementse{ ™' = /=1, for i,t = 1,...,m’. This
observation leads to the following decoding algorithm.
2) Decoding Algorithm:Decoding can be performed with = 5 c
complexity O(k?) (equivalently, with aO (k) cost) if m’ > k ‘E
symbols from the MDS code have been received. In fact, this

is the complexity of inverting a Vandermonde matrix of degre
k. If m" = 0, the decoding complexity is equivalent to thatig. 2.
of LRFC decoder, thus cubic ih (resulting in aO(k?) cost), M.
which is the complexity of applying the GE algorithm to solve
a linear system of at leat equations ink unknowns.

Let us consider the case where< m’ < k symbols of the
MDS code have been collected, among the> k received
symbols. We can define’ as a fraction ofk, m’ = £k, with
0 < £ < 1. The matrixGT can be written as

(35

whereV is a Vandermonde matrix of degre€, whereasA,

B, C have respective sizes’ x (k —m'), (m —m') x m/,
(m—m") x (k—m’). An efficient decoding algorithm can be
derived by invertingv according to the algorithm presented in
Section IlI-Al. Given the matriv ~!, G can be multiplied
by a full-rank matrixM, with

—1
M_<V 0

Matrix of the system of equations in (5) after the nplittation with

k—m'

m'

k+0

(el

m—m'

0 |I

I being a(m —m’) x (m —m') identity matrix, leading to the Fig. 3.
matrix depicted in Fig. 2. Accordingly, (4) is modified as

M-GT . u" =M.y

Matrix of the system of equations in (5) wih = 0.

Sincem/ is a fraction ofk, the complexity of the proposed

The complexity of multiplying them’ x m’ matrix V1
with the matrix A, leading to them’ x (k —m’) matrix A’,
is O(m’*(k —m')), which is the complexity of performing
standard matrix multiplications.

algorithm isO(k?) (i.e., O(k?) cost). However, the constant
hidden by theO-notation becomes smaller ag' approaches
k (in the limit case wheren’ = k, the decoding complexity
is actually quadratic irk).
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IV. PERFORMANCEANALYSIS in (11) tend to coincide with the bounds in (1). When the

Based on the bounds (1), tight upper and lower bounds fghhannel conditions argood (i.e., sma_lle), most of the time
the decoding failure probability of the fountain codingsste 7" = & symbols produced by the linear block encoder are
can be derived in case of a memory-less erasure channel. Téfe¢ived, leading to a decoding success (recall the asgmpt
decoding failure probability’s = Pr{F}, where F' denotes of MDS code). In these condmonfi?,(e) < 1_,.and according
the decoding failure event is defined as the probability that 0 the bounds in (11) the failure probability may decrease
source blocku cannot be recovered out of a set of receivedy Several orders of magnitude. Since the probability of
symbols. We focus on the case where the linear block cofligcoding failure of the concatenated scheme is a function of
used in concatenation with the LRFC is maximum distandB€ erasure probability, the scheme is not universal angmor
separable (MDS). When binary codes will be used, we assuMere specifically, at. low channel erasure probabilities the
(k + 1,k) single parity-check (SPC) codes. When operatirRjoposed scheme will outperform universal (random) LRFCs,
on higher order finite fields, we consider GRS codes. whereas for large erasure probabilities it will perform as a

Suppose now that an encoded sequancemposed of > uqiversal LRFC. _Fig. 4 shows the probability of decoding
n symbols is transmitted over an erasure channel with erasffuré as a function of the number of overhead symbols for
probability of e.4 The probability that at least symbols out @ concatenated code built usindia, 10) SPC code oveF.

of the n symbols produced by the linear block code encodércan be observed how, for lower erasure probabilities, the
are received is given by gain in performance of the concatenated code with respect to

LRFC increases. Far= 0.01 the decoding failure probability

Q(e) = Z <”> (1 — e)ien. is more thar2 orders of magnitude lower than that of a LRFC.
~ i Fig. 5 shows the probability of decoding failure vs. the nemb

) . ) of overhead symbols for the concatenation of14, 10) RS

Hence, with a probability’(e) = 1 - Q(e) the receiver would o, 5 | REC oveir,;. The performance of the concatenated

need to collect symbols encodeq by the LRFC .encoder {Bdeis compared with that of the LRFC built on the same field

recover the source block. Assuming that the receiver dB"e(for different erasure probabilities. In this case the daseein

m = k + & symbols, out of which onlyn’ < k have been iomq of probability of decoding failure is even more eviden
produced by the linear block encoder, the conditional d&epd 1,5, the one of the binary case. For a channel with an erasure
failure probability can be expressed as probabilitye = 0.05, the probability of decoding failure of the

Pr{F|m',m’ <k,0} =Pr{rankKB) <k —m'}. (8) concatenated schemedorders of magnitude lower than that

of the LRFC.
Note thatB is am” x (k—m') = (k+ 6 —m') x (k=m')  The analysis provided in this section is also valid if the
random matrix having rows in excess W.I.t. Fh_e number off Rec is replaced by a Raptor coflén order to calculate the
columns. We can thus replace (8) in (1), obtaining the boungdgrformance of such a concatenated code one has to replace
5 1 in (10) the termPr{F|m’ < k,§} by the probability of
¢~ < Pr{F|m,m’ <k,0} < q_—1q " ©) decoding failure of {the|> Raptor cgde. Also in this case, the

ilure probability of the concatenated scheme is reduged b
actor P(e) with respect to that of the Raptor code.

n

Observing that the the bounds in (1) are independent from
size of the matrix (i.e., they depend only on the overhe&d), {2
conditioning onm’ can be removed from (9), leaving
1 V. NUMERICAL RESULTS
gt <PH{F|m’ < k,8} < —1q75- Fig. 6 shows the probability of decoding failufe, as a
4= function of the overhead, obtained via Monte Carlo simula-
The failure probability can be written as a function®tnd tjons. The results refer to a concatenation ofla, 10) RS
€ as code with a LRFC oveF 4, for a channel erasure probability
Pi(6,€) = Pr{F|m' <k,é}Pr{m’ <k} (10) e = 0.1. The results are compared with the bounds of (11). As
+Pr{F|m' > k,0} Pr{m’ > k} expected, the simulation results tightly match the bouFRits.

wherePr{F|m’ > k, 5} = 0 (since at least symbols output 7 shows the simulation results for a concatenated code using

by the MDS code encoder have been collected) Brjdn’ < a (11,10) parity c;heck code OVd.FQ’ ?”d a channel with an
erasure probability = 0.1. Also in this case, the results are
k} = P(e). It results that

remarkably close to the bounds.
—5— L The performance of the concatenated scheme in a system
P(e)g~ " < Py(5,e) < P J 11y Thep _ . y
(€)a < Ps(5,6) (€) —11 (11) with a large receivers population has been performed. The

From an inspection of (1) and (11), one can note how tiwimber of receivers is denoted hy. We considered the
bounds on the failure probability of the concatenated sehe@rasure channels from the transmitter to the differentvece
are scaled down by a factd?(e), which is a monotonically t© be independent, albeit with an identical erasure prdiyabi
Increasing function ofe. It follows that, when the channel 5As observed in [6], short Raptor codes oW’y show performance close

conditions arebad (i.e., largee) P(e) — 1, and the bounds (5 those of LRFCs constructed over the same field, down to ratekow

error rates. We therefore expect that the results attainedh® proposed
4The casd < n is not considered since it is equivalent to shortening theoncatenation could be closely approached by replacingdhebinary LRFC
linear block code. with a non-binary Raptor code.
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LRFC
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1

o

Fig. 4. Py(5,¢€) vs. overhead for a concatenated code built usiigla10)  Fig. 6. Py(9,¢) vs. overhead for a the concatenation ofla, 10) RS and
SPC code oveF;, for different values of. Upper bounds are represented by RFC overF1¢ ande = 0.1. Upper and lower bounds are represented by
solid lines and lower bounds are represented by dashed lines solid and dashed lines, respectively. The marketrsiénote simulations.

10

Fig. 7. Py (9, ¢) vs. overhead symbols for a the concatenation ¢f1 10)
PC code and a LRFC ovél, ande = 0.1. Upper bounds are represented
y solid lines and lower bounds are represented by dashesl. lithe points

marked with o’ denote actual simulations.

Fig. 5. P(d,€) vs. overhead for a concatenated code built usirig5a 10)
RS overF¢ for different values o&. Upper bounds are represented by soli
lines and lower bounds are represented by dashed lines.

e. Furthermore, we assumed that the receivers send an & transmitter has se#t+ A symbols is hence

knowledgement to the transmitter whenever they succégsful -1

decode the source block. Ideal (error- and delay-free)-feed P. = Z S(A,m)+

back channels have been considered. After retrieving all th m=0

acknowledgments, the transmitter stops encoding addition k4o

symbols from the source block. We denote next Aythe + S(A;m) Pp(6 =m — k,e).
number of symbols transmitted by the sender, in excess with m=k

respect tdc. We refer toA as the transmission overhead. Wheithe probability that at least one receiver is not able to deco
k + A symbols have been transmitted, the probability thatthe source block is thus
specific receiver gathers exactly symbols is

Pp(N, A ) =1—(1—P)" (13)
_[(k+A m k4 A—m Observe thaf’g (N, A, ¢) can be easily bounded by means of
§(Am) = ( m >(1 —e)"e ' (12) (11). Following this approach, we compare the performance

of the proposed concatenation to that of LRFCs and to that of
The probability of decoding failure at the receiver giveatth idealized fountain codes. We assume a system Witk 104
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to block erasure correcting codes stems from the posgibilit
of adapting code rate and block length to the transmission
needs (e.g., channel conditions) in a flexible manner. In the
following, we derive tight upper bounds on the block error
probability for the codes proposed in the paper, for the gne
case where the block codg is not MDS.

In order to characterize the block error probability of aeod
under ML decoding we first seek for the weight-enumerator
function (WEF) of the code. The coding scheme proposed in
this work is a parallel concatenation of a linear block code a
a LRFC, which for a finite rate setting is a random generator
matrix code. Let us denote &(C’,k,l, q) the ensemble of
codes obtained by a parallel-concatenation dhak) linear

block code overF,, C’, with all possible realizations of a
w0} : . - . . ) LRFC, wherek is the number of source symbolss the total
A number of output symbols angis the finite field order. The
Fig. 8. Pg vs. overhead at the transmitter in a system with= 10000 rate for the codes in the ep;emble 1S, ther?fwe' k/1. We
receivers aﬁd — 0.01. Results are shown for different fountain codes: LRF(f.jenOte asA;(X) the conditional output-weight enumerator
in Fa, LRFC inF 16, concatenation of a (11,10) SPC code with a LRFC codfunction (C-OWEF) averaged over the ensentbl€’, &, [, q)
in F2, and a concatenation of(a5, 10) RS code and a LRFC code oMBts. conditioned to the input source block having weight

10°F
Idealized FC
10°F

Concatenation,

Fig

l
A (X) = Z A XY
receivers and a channel with an erasure probability0.01. w=1
The performance of LRFC codes ovuer andF¢ is depicted where A, ., is the average number of codewords of Hamming
in Fig. 8 together with that of two concatenated schemes: weight w produced by Hamming weight-inputs. For the
concatenation of &11, 10) SPC code with a LRFC code overensemble of parallel-concatenated codes the average CFOWE
F3, and a concatenation of @5, 10) RS code and a LRFC can be written as

code ovell'i6. It can be seen how the concatenated scheme in AC (X)Az(k,h.,q) (X)
I, outperforms the binary LRFC. To achiev®; = 10~* the Ai(X) = — - ,
concatenated scheme needs odly= 20 overhead symbols (z)

whereas the LRFC requires a transmission overh®ae 27. where A¢' (X) is the C-OWEF of the linear block code,
In the case of a field ordds6, the concatenated code shows and Af’(’“”“ﬂ (X) is the average C-OWEF of the ensemble
performance very close to that of an idealized fountain code’(k, h, q), being £ (k, h,q) the ensemble of linear block
codes oveif, with k& x h generator matribxG"”, with b = [ —n.
VI. CONCLUSIONS AssumingA¢’ (X') knowrP, the derivation ofA4; ,, reduces to

A novel coding scheme has been introduced. The schethe calculation ofd” ™9 (x).
consists of a parallel concatenation of a MDS block code We denote bwlm,fk"h’q) the average number of codewords
with a LRFC code, both constructed over the same field. ThéHamming weightv produced by Hamming weighitinputs
performance of the concatenated coding scheme has been &vathe ensembleZ (k, h, ¢) which is given by:
lyzed through derivation of tight bounds on the probabidify L (khg) VAN e
decoding failure as a function of the receiver overheada#t h Aiw = (l) (w)Pi (1—pi) )
been shown how under ML decoding the concatenated scheme .
performs as well as LRFC codes in channels characterized@e_repi(q) the probability for eg_ch of thé out_put Sy”?bo's
high erasure probabilities, whereas it provides failurebpr h Ving a non-zero value c.ond|t|oned to. r_\avmg an” input of
bilities lower than those of LRFC codes by several orders Ellammlng we|ghtz. Assumllr?g the coefficients oG™ are
magnitude at moderate/low erasure probabilities. An effici picked with uniform probability ovef,, we have that
decoding algorithm has been introduced for the case in which pi = q;ql , 1#0
the generator matrix of the MDS block code is in Vander- pi=0 ,i=0.
monde form. Finally, the complexity of the proposed decgdin
algorithm has been analyzed, showing remarkable comple>%
savings at moderate/low erasure probability regimes.

Finally, from the average C-OWEFA4;(X), the average
EF A(X) can be computed as

AX) =) A X"
APPENDIX w
PERFORMANCE IN THEFINITE RATE SETTING 8In general, the derivation of the C-OWE{—f/(X) for a code is not trivial,

Fountain codes are often used in a finite rate setting as cYA€ss the cod€” (or its dual code) has small dimension [30].
Note that when; = 0 the encoder input is given by the all-zero word.

Vention_al erasure correcting codes [13], .[29]- In thi$ €3Nt Thys, the encoder output is zero with probabilitglue to the linearity of the
the main advantage in the use of fountain codes with respegde ensembleZ(k, h, q).
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being A,, the average number of codewords of HamminBerlekamp random coding bound, which means that for low
weightw, A, =, Aiw. rates our scheme performs almost as a random code.

The average WEF of the concatenated ensemble can be used
now to derive tight upper bounds on the expected block erro
probability for the codes of the ensemble. liebe a linear
block code belonging to the ensemi#éC’, k, 1, ¢). The block
error probability averaged over the ensemble can be uppe
bounded as [31], [32]

Eg (e hig) [P5(C,€)] < P (I k,e€)

+§ <i>€e(1 - e)zemm{L Z (Z)%J} (14)

w=1

60 T

log(Aw)

wherePés) (I, k,¢€) is the Singleton bound

l
s LY e —e
Pé )(l’ k7 6) = Z (6) ¢ (1 - 6)l ' (15) O Hamming (63,57) ¥

e=l—k+1 # Concatenation, r=1/2
Concatenation, r=1/4

As an example, consider the concatenation where the bloc o o1 02 03 o4 o; 06 07 08 09 1
code is a binary(63,57) Hamming code. Recall that the ’
C-OWEF A;(X) of a (n = 2" — 1,k = n —t) Hamming Fig. 9. log(Aw) vs. ¥ for the concatenation of a (63,57) Hamming

code [33] can be derived from code with a LRFC code iff2. The round markers represent the distance
spectrum for the Hamming code. The asterisks and squaressesp the
(1 +x)2t’1—t—1

distance spectrum of the concatenated scheme with raetes% andr = i
ot
— (=2 1+ X) (L) (14 X))

Az, X) =

t—1_
X (2t(1 —x)? 1 —aX)! respectively. The solid lines represent the average distapectrum for a
random generator matrix code (equivalent to a LRFC in a firite setting).

where A(z, X) = Y, A;(X)z'. Fig. 9 shows the average
distance spectrum of the concatenated code. The marke
represent the distance spectrum of the concatenated coc
whereas the solid lines represent the average distanceapec
for the ensemble of LRFC with rate equal to the concatenate . - Concatenation
scheme. Fig. 10 shows the upper bounds on the expecte :

block error probability of the ensemblé’s, as a function
of the channel erasure probabilityfor different coding rates.
The solid lines represent the upper bound on the block errgs 102
probability in (14), and the dashed black and dotted redsline
represent respectively the Berlekamp random coding boun
[11]

10

Concatenation
- r=0.8

PR (1, k,e)= zl: (i) (1 - e)—*

e=l—k+1

Ik i : :
l -2 -1
+ 2 : (e) 66(1 _ 6)l—e2—(l—}’c—e) 10 . 10
e=1

L. . Fig. 10. Ppg vs. erasure probabilitg for the concatenation of a (63,57)
which is an upper bound on the average block error prObﬁb”!IIamming code with a LRFC code if,. The markers represent the result of

of random codes, and the Singleton bound, which provides tiiente Carlo simulations. The solid line represents the tjsoind in [31],
block error probability of MDS codes. The markers represeﬁ’td the black dashed and red dotted lines represent thekBenterandom
. . .coding bound and the Singleton bound respectively.

the results of Monte Carlo simulations. In order to obtain
average results for the ensemble, the block error prolpabili
was averaged ovei000 different LRFC realizations. The
b_ound in (14) is very tight,. as exp_ected. Result; for three REFERENCES
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