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Abstract—The performance and the decoding complexity of a
novel coding scheme based on the concatenation of maximum
distance separable (MDS) codes and linear random fountain
codes are investigated. Differently from Raptor codes (which are
based on a serial concatenation of a high-rate outer block code
and an inner Luby-transform code), the proposed coding scheme
can be seen as a parallel concatenation of a MDS code and a
linear random fountain code, both operating on the same finite
field. Upper and lower bounds on the decoding failure probability
under maximum-likelihood (ML) decoding are developed. It is
shown how, for example, the concatenation of a(15, 10) Reed-
Solomon (RS) code and a linear random fountain code over
a finite field of order 16, F16, brings to a decoding failure
probability 4 orders of magnitude lower than the one of a
linear random fountain code for the same receiver overhead
in a channel with a erasure probability of ǫ = 5 · 10−2. It is
illustrated how the performance of the novel scheme approaches
that of an idealized fountain code for higher-order fields and
moderate erasure probabilities. An efficient decoding algorithm
is developed for the case of a (generalized) RS code.

Index Terms—Fountain codes, maximum distance separable
codes, maximum likelihood decoding, erasure correction.

I. I NTRODUCTION

EFFICIENT reliable multicasting/broadcasting techniques
have been investigated during the past thirty years [1] and

especially during the past decade [2]–[10]. Perhaps, the most
successful approach to reliable multicast deals with the so-
called fountain codes [2]. Consider the case where a sender
(or source) needs to deliver a source block (e.g., a file) to
a set ofN receivers. Consider furthermore the case where
receivers are affected by packet losses. In this scenario, the
usage of an Automatic Retransmission Query (ARQ) protocol
can result in large inefficiencies, since receivers may loose
different packets, and hence a large number of retransmissions
would crowd the downlink channel. When a fountain code is
used, the source block is split in a set ofk source packets,
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which we will denote as source symbols. The sender computes
linear combinations (also referred to as fountain coded packets,
or output symbols) of thek source packets and broadcasts
them through the communication medium. After receivingk
fountain coded packets, the receivers can try to recover the
source packets. In case of decoding failure, they will try again
to decode after receiving additional packets. The efficiency
of a fountain code deals with the amount of packets that
a receiver needs to collect for recovering the source block.
An idealized fountain code would allow the recovery with
a failure probabilityPf = 0 from any set ofk received
packets. Actual fountain decoders need in general to receive
a larger amount of packets,m = k + δ, for succeeding
in the recovery. Commonly,δ is referred to as (receiver)
overheadof the fountain code, and is used to measure its
efficiency. The first class of practical fountain codes are Luby-
transform (LT) codes [3]. Among them, random LT codes
or linear random fountain codes (LRFCs) [4], [5] deserve a
particular attention due to their excellent performance and to
the relatively simple performance model. Under maximum-
likelihood (ML) decoding, the failure probability of a binary
LRFC [4], [5] can be accurately modeled asPf ∼ 2−δ for
δ ≥ 2. It can be proved thatPf is actually always upper
bounded by2−δ [4], [5], [11]. In [6], [9] it was shown that this
expression is still accurate for fountain codes based on sparse
matrices (e.g., Raptor codes [4]) under ML decoding. In [6],
the performance achievable by performing linear combinations
of packets on finite fields of order larger than2 (Fq, q > 2)
was analyzed. For a LRFC overFq, the failure probability
under ML decoding is bounded as [6]

q−δ−1 ≤ Pf (δ, q) <
1

q − 1
q−δ (1)

where both bounds are tight already forq = 2, and become
tighter for increasingq. The improvement in efficiency ob-
tained by fountain codes operating on fields of order larger
than 2 has been analyzed in [6], [10] and has led to recent
standardization activities [12]. In [6], [10] it was also shown
that non-binary Raptor and LT codes can in fact tightly
approach the bounds (1) down to moderate error rates under
ML decoding. Thus, (1) can be successfully used to model the
performance of common classes of fountain codes. The result
is remarkable considering that for Raptor codes, under belief
propagation (BP) decoding, both the encoding and decoding
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costs1 are O(log(1/ε)) [4, Theorem 5], beingε = δ/k the
overhead (normalized tok) needed to recover the source sym-
bols with a high probability. For a LRFC the encoding cost is
O(k) and the decoding cost isO(k2), and thus it does not scale
favorably with the source block size. However, BP decoding
is scarcely used in practical Raptor decoder implementations
[13] due its poor performance with source block lengths of
practical interest (k up to few thousands symbols). Efficient
ML decoding algorithms based on Gaussian elimination (GE)
are usually adopted [13]–[18], for which the decoding cost is
O(k2), though the fraction of symbols that are recovered with
quadratic cost can be kept remarkably small. Similarly, in the
short source block length regime, the application of LRFCs
under GE decoding is usually considered practical [6], [10].

In this paper, we introduce and analyze a further improve-
ment of the approach proposed in [6], [10] to design fountain
codes with good performance for short block lengths. More
specifically, a (n, k) maximum distance separable (MDS)
code is introduced in parallel concatenation with the LRFC.
By doing that, the firstn output symbols are the codeword
symbols of the MDS code.2 We will assume that the MDS
linear block code is constructed on the same fieldFq as the
fountain code. A related rate-less construction was proposed
in [19], where a mother non-binary low-density parity-check
code was modified by replicating the codeword symbols (prior
multiplication by a non-zero field element) and thus by (arbi-
trarily) lowering the code rate. In our work, the mother codeis
a MDS code, while additional redundant symbols are produced
by a linear random fountain encoder. For the proposed scheme,
we illustrate how the performance of LRFCs in terms of
probability of decoding failure can be remarkably improved
thanks to the concatenation, especially for low to moderate
packet loss probabilities. Tight bounds on the decoding failure
probability vs. overhead are derived under the assumption
of ML decoding. The accuracy of the bounds is confirmed
through simulations. An efficient ML decoding algorithm is
presented for the case where a (generalized) Reed-Solomon
(RS) is used in the concatenation. An analysis for the general
case where the MDS code is replaced by any arbitrary linear
block code, in a finite rate regime, is provided in the Appendix.

The paper is organized as follows. In Section II the proposed
concatenated scheme is introduced. Section III provides an
efficient ML decoding algorithm. In Section IV the perfor-
mance is analyzed and tight bounds on the decoding failure
probability are derived, while numerical results are presented
in Section V. Conclusions follow in Section VI.

II. CONCATENATION OF BLOCK CODES WITH L INEAR

RANDOM FOUNTAIN CODES

We define the source blocku = (u1, u2, . . . , uk) as a
vector of source symbols belonging to a finite field of order
q, i.e.,u ∈ F

k
q . In the proposed approach, the source block is

first encoded via a(n, k) linear block codeC′ over Fq with

1The cost is defined as the number of arithmetic field operations divided
by the number of source symbols,k.

2This represents a crucial difference with Raptor codes, forwhich the output
of the precode is further encoded by a LT Code. Hence the firstn output
symbols of a Raptor encoder do not coincide with the output ofthe precode.

generator matrixG′. The encoded block is hence given by
c′ = uG′ = (c′1, c

′
2, . . . , c

′
n). Additional redundancy symbols

can be obtained by computing linear random combinations of
the k source symbols as

ci = c′′i−n =

k∑

j=1

gj,iuj , i = n+ 1, . . . , l (2)

where the coefficientsgj,i in (2) are picked fromFq with a
uniform probability.

The encoded sequence is thusc = (c′|c′′). The generator
matrix of the concatenated code has the form

G =








g1,1 g1,2 . . . g1,n
g2,1 g2,2 . . . g2,n

...
...

. . .
...

gk,1 gk,2 . . . gk,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

G′

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1,n+1 g1,n+2 . . . g1,l
g2,n+1 g2,n+2 . . . g2,l

...
...

. . .
...

gk,n+1 gk,n+2 . . . gk,l








︸ ︷︷ ︸

G′′

(3)

whereG′′ is the generator matrix of the LRFC. Note that,
being the LRFC rate-less, the numberl of columns ofG can
grow indefinitely. The encoder can be seen hence as a parallel
concatenation of the linear block codeC′ and of a LRFC (Fig.
1) and the encoded sequence can be written asc = uG =
(c1, c2, . . . , cl). The proposed construction allows generating
infinitely many redundancy symbols. Thus, the encoder may
be seen as a modified fountain encoder, whose firstn output
symbols(c1, c2, . . . , cn) correspond to the codeword output
by the encoder ofC′, whereas the followingl−n symbols are
the output of the LRFC encoder.

(n, k) Block Code

C ′

LRFC

u

c
′

c
′′

c = (c′|c′′)

Fig. 1. Fountain coding scheme seen as a parallel concatenation of a (n, k)
linear block code and a LRFC.

III. E FFICIENT DECODING

We consider a multicast setting, where a number of receivers
try to retrieve the source block from the respectively-received
output symbols. In this context, the decoder behaves as for a
conventional fountain decoder. At each receiver, the correctly-
received output symbols are forwarded to the decoder. As
soon ask output symbols are collected, a decoding attempt
is performed. If the decoding is not successful, further output
symbols are collected. Whenever an additional output symbol
is received, another decoding attempt is performed. In case
of successful decoding, the receiver acknowledges the correct
reception. The overall number of symbols collected at a
receiver is denoted bym = k+δ (recall thatδ is referred to as
the overhead). On the encoder side, as soon as a target success
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rate among the receivers is attained, encoding stops. Note that
at each receiver, them output symbols that are collected may
belong to

i) the output of theC′ encoder only,
ii) the output of the LRFC encoder only,
iii) both the outputs of theC′ encoder and the LRFC encoder.
While in the third case there is no different with respect to
a classical LRFC case, in the other two cases the structure
of the C′ generator matrix can be exploited to reduce the
decoding complexity, as we will see next. Furthermore, when
the channel erasure probability is sufficiently low, the event
i) may dominate, leading to a remarkable improvement in
the decoding failure probability. In this sense, the proposed
scheme provides the same performance of a (universal) LRFC
at high channel erasure probabilities, whereas it will enjoy a
boost in the efficiency when the channel erasure probability
is low. We denote byJ = {j1, j2, . . . , jm} the set of the
indexes on the symbols ofc that have been collected by a
specific receiver. The received vectory is hence given by

y = (y1, y2, . . . , ym) = (cj1 , cj2 , . . . , cjm)

and it can be related to the source blocku asy = uG̃. Here,
G̃ denotes thek×m matrix made by the columns ofG with
indexes inJ , i.e.,

G̃ =








g1,j1 g1,j2 . . . g1,jm
g2,j1 g2,j2 . . . g2,jm

...
...

. . .
...

gk,j1 gk,j2 . . . gk,jm








.

The recovery ofu reduces to solving the system ofm = k+δ
linear equations ink unknowns

G̃TuT = yT . (4)

The solution of (4) can be obtained (e.g., via Gaussian
elimination) if and only if rank(G̃) = k.

Assuming C′ being MDS, the system is solvable with
probability 1 if, among them received symbols, at leastk
have indexes in{1, 2, . . . , n}, i.e., if at leastm′ ≥ k symbols
produced by the linear block encoder have been received. Let
us consider the less trivial case wherem′ < k among the
m received symbols have indexes in{1, 2, . . . , n}. We can
partition G̃T as

G̃T =

(
G̃′T

G̃′′T

)

=

















g1,j1 g2,j1 . . . gk,j1
g1,j2 g2,j2 . . . gk,j2

...
...

. . .
...

g1,j
m′

g2,j
m′

. . . gk,j
m′

g1,j
m′+1

g2,j
m′+1

. . . gk,j
m′+1

g1,j
m′+2

g2,j
m′+2

. . . gk,j
m′+2

...
...

. . .
...

g1,jm g2,jm . . . gk,jm

















. (5)

The MDS property ofC′ assures that rank(G̃′) = m′, i.e., the
first m′ rows of G̃T are linearly independent. Note that the
m′′ × k matrix G̃′′T (with m′′ = m−m′) can be modeled as
a random matrix whose elements are uniformly distributed in
Fq. It follows that the matrix in (5) can be put (via column

permutations overG̃T and row permutations/combinations
over G̃′T ) in the form

ĜT =

(
I A

0 B

)

, (6)

whereI is them′ ×m′ identity matrix,0 is am′′ ×m′ all-0
matrix, andA, B have respective sizesm′ × (k − m′) and
m′′×(k−m′). Note that the lower part of̂GT given by(0|B)
is obtained by adding to each row ofG̃′′T a linear combination
of rows fromG̃′T , in a way that them′ leftmost columns of
G̃′′T are zeroed-out. It follows that the statistical propertiesof
G̃′′T are inherited by them′′ × (k−m′) submatrixB, whose
elements are hence uniformly distributed inFq. It follows that
(4) is solvable if and only ifB is full rank, i.e., if and only
if rank(B) = k −m′.

A. An Efficient Decoding Algorithm

We assume next the case where the MDS code is a(n, k)
generalized Reed-Solomon (GRS) code with transposed gen-
erator matrix in Vandermonde form

G′T =








1 β1 · · · βk−1
1

1 β2 · · · βk−1
2

...
...

. . .
...

1 βn · · · βk−1
n








, (7)

whereβi, i = 1, . . . , n, aren distinct non-zero elements of
Fq. Efficient decoding can be achieved by taking advantage
of the structure ofG′.3 In fact, a Vandermonde matrix can be
inverted with quadratic complexity [20]–[24]. This property
has been widely exploited for efficient decoding of GRS
over erasure channels [25]–[28]. In the following, we first
review an efficient method for the inversion of a Vandermonde
matrix based on the LU factorization [21]. Then, we apply the
algorithm of [21] to the decoding of the proposed concatenated
scheme.

1) Vandermonde Matrices and Their Inverse:Let us con-
sider aγ × γ Vandermonde matrix

V =








1 x1 · · · xγ−1
1

1 x2 · · · xγ−1
2

...
...

. . .
...

1 xγ · · · xγ−1
γ








wherexi, i = 1, . . . , γ, are γ distinct non-zero elements of
Fq. In the following,γ will be referred to as thedegreeof the
Vandermonde matrix.

The inverse of aV matrix can be efficiently computed
according to [21] by means of two recursions. In particular,
the inverse matrixV−1 can be obtained as

V−1 = U−1L−1

whereU is an upper triangular matrix whereasL is a lower
triangular matrix. The coefficientsli,j of L−1 are given by

li,j =

i∏

h=1,h 6=j

1

xj − xh

j ≤ i, i > 1

3In this work we consider MDS codes based on Vandermonde matrices,
but similar arguments hold for MDS codes based on Cauchy matrices.
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with l1,1 = 1 and li,j = 0 for j > i. Note that, for thej-th
column ofL−1, the elements below the main diagonal can be
computed according to the recursion

li,j =
li−1,j

xj − xi

for i = j + 1, . . . , γ, after computinglj,j . Similarly, the
coefficientsui,j of U−1 are given by

ui,j =

{
ui−1,j−1 − ui,j−1xj−1 j > i > 1
−ui,j−1xj−1 j > i, i = 1

with ui,i = 1 and ui,j = 0 for j < i. The complexity of
computingL−1 andU−1 is O(γ2).

Let us denote withJ ′ = {j1, j2, . . . , jm′} any set ofm′ ≤
n indexes of rows ofG′T . Consider the square submatrixV
of G′T composed by them′ rows (shortened to their firstm′

elements) ofG′T with indexes inJ ′,

V =









1 βj1 · · · βm′−1
j1

1 βj2 · · · βm′−1
j2

...
...

. . .
...

1 βj
m′

· · · βm′−1
j
m′









.

Note that V is always a Vandermonde matrix of degree
m′, with elementsxt−1

i = βt−1
ji

, for i, t = 1, . . . ,m′. This
observation leads to the following decoding algorithm.

2) Decoding Algorithm:Decoding can be performed with
complexityO(k2) (equivalently, with aO(k) cost) if m′ ≥ k
symbols from the MDS code have been received. In fact, this
is the complexity of inverting a Vandermonde matrix of degree
k. If m′ = 0, the decoding complexity is equivalent to that
of LRFC decoder, thus cubic ink (resulting in aO(k2) cost),
which is the complexity of applying the GE algorithm to solve
a linear system of at leastk equations ink unknowns.

Let us consider the case where0 < m′ < k symbols of the
MDS code have been collected, among them ≥ k received
symbols. We can definem′ as a fraction ofk, m′ = ξk, with
0 < ξ < 1. The matrixG̃T can be written as

G̃T =

(
V A

B C

)

whereV is a Vandermonde matrix of degreem′, whereasA,
B, C have respective sizesm′ × (k −m′), (m −m′) ×m′,
(m−m′)× (k−m′). An efficient decoding algorithm can be
derived by invertingV according to the algorithm presented in
Section III-A1. Given the matrixV−1, G̃T can be multiplied
by a full-rank matrixM, with

M =

(
V−1 0

0 I

)

,

I being a(m−m′)× (m−m′) identity matrix, leading to the
matrix depicted in Fig. 2. Accordingly, (4) is modified as

M · G̃T · uT = M · yT .

The complexity of multiplying them′ × m′ matrix V−1

with the matrixA, leading to them′ × (k −m′) matrix A′,
is O(m′2(k − m′)), which is the complexity of performing
standard matrix multiplications.

Referring to Fig. 2, thei-th row of the matrixB (for
i = 1, . . . ,m−m′) can be zeroed-out by adding to it a linear
combination of them′ rows of (I|A′). The complexity of
zeroing-outB is O((m −m′)m′(k −m′)), and the resulting
system matrix is depicted in Fig. 3. In fact,B is a random
matrix with entries uniformly distributed inFq. Due to the
linear combinations performed to zero-out the matrixB,
the matrix C results in in a new matrixC′. Thus, a GE
step is performed on the matrixC′ in order to recover the
k − m′ symbols involved in the lower part of the system
of equations with complexityO((k − m′)3). Finally, back-
substitution is applied in order to recover them′ symbols
involved in the upper part of the system of equations with
complexityO(m′(k −m′)).

I

B

A
′

k −m′m′

m
′

m
−

m
′

k
+
δ

C

Fig. 2. Matrix of the system of equations in (5) after the multiplication with
M.

I

0

A
′

k −m′m′

m
′

m
−
m

′

k
+
δ

C
′

Fig. 3. Matrix of the system of equations in (5) withB = 0.

Sincem′ is a fraction ofk, the complexity of the proposed
algorithm isO(k3) (i.e., O(k2) cost). However, the constant
hidden by theO-notation becomes smaller asm′ approaches
k (in the limit case wherem′ = k, the decoding complexity
is actually quadratic ink).
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IV. PERFORMANCEANALYSIS

Based on the bounds (1), tight upper and lower bounds for
the decoding failure probability of the fountain coding scheme
can be derived in case of a memory-less erasure channel. The
decoding failure probabilityPf = Pr{F}, whereF denotes
the decoding failure event is defined as the probability thatthe
source blocku cannot be recovered out of a set of received
symbols. We focus on the case where the linear block code
used in concatenation with the LRFC is maximum distance
separable (MDS). When binary codes will be used, we assume
(k + 1, k) single parity-check (SPC) codes. When operating
on higher order finite fields, we consider GRS codes.

Suppose now that an encoded sequencec composed ofl ≥
n symbols is transmitted over an erasure channel with erasure
probability of ǫ.4 The probability that at leastk symbols out
of the n symbols produced by the linear block code encoder
are received is given by

Q(ǫ) =

n∑

i=k

(
n

i

)

(1− ǫ)iǫn−i.

Hence, with a probabilityP (ǫ) = 1−Q(ǫ) the receiver would
need to collect symbols encoded by the LRFC encoder to
recover the source block. Assuming that the receiver collects
m = k + δ symbols, out of which onlym′ < k have been
produced by the linear block encoder, the conditional decoding
failure probability can be expressed as

Pr{F |m′,m′ < k, δ} = Pr{rank(B) < k −m′}. (8)

Note thatB is am′′ × (k −m′) = (k + δ −m′)× (k −m′)
random matrix havingδ rows in excess w.r.t. the number of
columns. We can thus replace (8) in (1), obtaining the bounds

q−δ−1 ≤ Pr{F |m′,m′ < k, δ} <
1

q − 1
q−δ. (9)

Observing that the the bounds in (1) are independent from the
size of the matrix (i.e., they depend only on the overhead), the
conditioning onm′ can be removed from (9), leaving

q−δ−1 ≤ Pr{F |m′ < k, δ} <
1

q − 1
q−δ.

The failure probability can be written as a function ofδ and
ǫ as

Pf (δ, ǫ) = Pr{F |m′ < k, δ}Pr{m′ < k}
+Pr{F |m′ ≥ k, δ}Pr{m′ ≥ k}

(10)

wherePr{F |m′ ≥ k, δ} = 0 (since at leastk symbols output
by the MDS code encoder have been collected) andPr{m′ <
k} = P (ǫ). It results that

P (ǫ)q−δ−1 ≤ Pf (δ, ǫ) < P (ǫ)
1

q − 1
q−δ. (11)

From an inspection of (1) and (11), one can note how the
bounds on the failure probability of the concatenated scheme
are scaled down by a factorP (ǫ), which is a monotonically
increasing function ofǫ. It follows that, when the channel
conditions arebad (i.e., largeǫ) P (ǫ) → 1, and the bounds

4The casel < n is not considered since it is equivalent to shortening the
linear block code.

in (11) tend to coincide with the bounds in (1). When the
channel conditions aregood (i.e., smallǫ), most of the time
m′ ≥ k symbols produced by the linear block encoder are
received, leading to a decoding success (recall the assumption
of MDS code). In these conditions,P (ǫ) ≪ 1, and according
to the bounds in (11) the failure probability may decrease
by several orders of magnitude. Since the probability of
decoding failure of the concatenated scheme is a function of
the erasure probability, the scheme is not universal anymore.
More specifically, at low channel erasure probabilities the
proposed scheme will outperform universal (random) LRFCs,
whereas for large erasure probabilities it will perform as a
universal LRFC. Fig. 4 shows the probability of decoding
failure as a function of the number of overhead symbols for
a concatenated code built using a(11, 10) SPC code overF2.
It can be observed how, for lower erasure probabilities, the
gain in performance of the concatenated code with respect toa
LRFC increases. Forǫ = 0.01 the decoding failure probability
is more than2 orders of magnitude lower than that of a LRFC.
Fig. 5 shows the probability of decoding failure vs. the number
of overhead symbols for the concatenation of a(15, 10) RS
and a LRFC overF16. The performance of the concatenated
code is compared with that of the LRFC built on the same field
for different erasure probabilities. In this case the decrease in
terms of probability of decoding failure is even more evident
than the one of the binary case. For a channel with an erasure
probabilityǫ = 0.05, the probability of decoding failure of the
concatenated scheme is4 orders of magnitude lower than that
of the LRFC.

The analysis provided in this section is also valid if the
LRFC is replaced by a Raptor code.5 In order to calculate the
performance of such a concatenated code one has to replace
in (10) the termPr{F |m′ < k, δ} by the probability of
decoding failure of the Raptor code. Also in this case, the
failure probability of the concatenated scheme is reduced by
a factorP (ǫ) with respect to that of the Raptor code.

V. NUMERICAL RESULTS

Fig. 6 shows the probability of decoding failurePf , as a
function of the overheadδ, obtained via Monte Carlo simula-
tions. The results refer to a concatenation of a(15, 10) RS
code with a LRFC overF16, for a channel erasure probability
ǫ = 0.1. The results are compared with the bounds of (11). As
expected, the simulation results tightly match the bounds.Fig.
7 shows the simulation results for a concatenated code using
a (11, 10) parity check code overF2, and a channel with an
erasure probabilityǫ = 0.1. Also in this case, the results are
remarkably close to the bounds.

The performance of the concatenated scheme in a system
with a large receivers population has been performed. The
number of receivers is denoted byN . We considered the
erasure channels from the transmitter to the different receivers
to be independent, albeit with an identical erasure probability

5As observed in [6], short Raptor codes overFq show performance close
to those of LRFCs constructed over the same field, down to moderate-low
error rates. We therefore expect that the results attained by the proposed
concatenation could be closely approached by replacing thenon-binary LRFC
with a non-binary Raptor code.
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Fig. 5. Pf (δ, ǫ) vs. overhead for a concatenated code built using a(15, 10)
RS overF16 for different values ofǫ. Upper bounds are represented by solid
lines and lower bounds are represented by dashed lines.

ǫ. Furthermore, we assumed that the receivers send an ac-
knowledgement to the transmitter whenever they successfully
decode the source block. Ideal (error- and delay-free) feed-
back channels have been considered. After retrieving all the
acknowledgments, the transmitter stops encoding additional
symbols from the source block. We denote next by∆ the
number of symbols transmitted by the sender, in excess with
respect tok. We refer to∆ as the transmission overhead. When
k + ∆ symbols have been transmitted, the probability that a
specific receiver gathers exactlym symbols is

S (∆,m) =

(
k +∆

m

)

(1− ǫ)mǫk+∆−m. (12)

The probability of decoding failure at the receiver given that
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Fig. 6. Pf (δ, ǫ) vs. overhead for a the concatenation of a(15, 10) RS and
LRFC overF16 and ǫ = 0.1. Upper and lower bounds are represented by
solid and dashed lines, respectively. The markers ’◦’ denote simulations.
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Fig. 7. Pf (δ, ǫ) vs. overhead symbols for a the concatenation of a(11, 10)
SPC code and a LRFC overF2 and ǫ = 0.1. Upper bounds are represented
by solid lines and lower bounds are represented by dashed lines. The points
marked with ’◦’ denote actual simulations.

the transmitter has sentk +∆ symbols is hence

Pe =

k−1∑

m=0

S (∆,m)+

+
k+∆∑

m=k

S (∆,m)Pf (δ = m− k, ǫ).

The probability that at least one receiver is not able to decode
the source block is thus

PE(N,∆, ǫ) = 1− (1 − Pe)
N (13)

Observe thatPE(N,∆, ǫ) can be easily bounded by means of
(11). Following this approach, we compare the performance
of the proposed concatenation to that of LRFCs and to that of
idealized fountain codes. We assume a system withN = 104
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receivers andǫ = 0.01. Results are shown for different fountain codes: LRFC
in F2, LRFC inF16, concatenation of a (11,10) SPC code with a LRFC code
in F2, and a concatenation of a(15, 10) RS code and a LRFC code overF16.

receivers and a channel with an erasure probabilityǫ = 0.01.
The performance of LRFC codes overF2 andF16 is depicted
in Fig. 8 together with that of two concatenated schemes: A
concatenation of a(11, 10) SPC code with a LRFC code over
F2, and a concatenation of a(15, 10) RS code and a LRFC
code overF16. It can be seen how the concatenated scheme in
F2 outperforms the binary LRFC. To achievePE = 10−4 the
concatenated scheme needs only∆ = 20 overhead symbols
whereas the LRFC requires a transmission overhead∆ = 27.
In the case of a field order16, the concatenated code shows a
performance very close to that of an idealized fountain code.

VI. CONCLUSIONS

A novel coding scheme has been introduced. The scheme
consists of a parallel concatenation of a MDS block code
with a LRFC code, both constructed over the same field. The
performance of the concatenated coding scheme has been ana-
lyzed through derivation of tight bounds on the probabilityof
decoding failure as a function of the receiver overhead. It has
been shown how under ML decoding the concatenated scheme
performs as well as LRFC codes in channels characterized by
high erasure probabilities, whereas it provides failure proba-
bilities lower than those of LRFC codes by several orders of
magnitude at moderate/low erasure probabilities. An efficient
decoding algorithm has been introduced for the case in which
the generator matrix of the MDS block code is in Vander-
monde form. Finally, the complexity of the proposed decoding
algorithm has been analyzed, showing remarkable complexity
savings at moderate/low erasure probability regimes.

APPENDIX

PERFORMANCE IN THEFINITE RATE SETTING

Fountain codes are often used in a finite rate setting as con-
ventional erasure correcting codes [13], [29]. In this context,
the main advantage in the use of fountain codes with respect

to block erasure correcting codes stems from the possibility
of adapting code rate and block length to the transmission
needs (e.g., channel conditions) in a flexible manner. In the
following, we derive tight upper bounds on the block error
probability for the codes proposed in the paper, for the general
case where the block codeC′ is not MDS.

In order to characterize the block error probability of a code
under ML decoding we first seek for the weight-enumerator
function (WEF) of the code. The coding scheme proposed in
this work is a parallel concatenation of a linear block code and
a LRFC, which for a finite rate setting is a random generator
matrix code. Let us denote asC (C′, k, l, q) the ensemble of
codes obtained by a parallel-concatenation of a(n, k) linear
block code overFq, C′, with all possible realizations of a
LRFC, wherek is the number of source symbols,l is the total
number of output symbols andq is the finite field order. The
rate for the codes in the ensemble is, therefore,r = k/l. We
denote asAi(X) the conditional output-weight enumerator
function (C-OWEF) averaged over the ensembleC (C′, k, l, q)
conditioned to the input source block having weighti,

Ai(X) =
l∑

w=1

Ai,wX
w

whereAi,w is the average number of codewords of Hamming
weight w produced by Hamming weight-i inputs. For the
ensemble of parallel-concatenated codes the average C-OWEF
can be written as

Ai(X) =
AC′

i (X)A
L (k,h,q)
i (X)
(
k
i

) ,

where AC′

i (X) is the C-OWEF of the linear block code,
andA

L (k,h,q)
i (X) is the average C-OWEF of the ensemble

L (k, h, q), being L (k, h, q) the ensemble of linear block
codes overFq with k×h generator matrixG′′, with h = l−n.
AssumingAC′

i (X) known6, the derivation ofAi,w reduces to
the calculation ofAL (k,h,q)

i (X).
We denote byAL (k,h,q)

i,w the average number of codewords
of Hamming weightw produced by Hamming weight-i inputs
for the ensembleL (k, h, q) which is given by:

A
L (k,h,q)
i,w =

(
k

i

)(
h

w

)

pwi (1− pi)
h−w

,

wherepi(q) the probability for each of theh output symbols
having a non-zero value conditioned to having an input of
Hamming weight i. Assuming the coefficients ofG′′ are
picked with uniform probability overFq, we have that7

pi =
q−1
q

, i 6= 0

pi = 0 , i = 0.

Finally, from the average C-OWEF,Ai(X), the average
WEF A(X) can be computed as

A(X) =
∑

w

AwX
w

6In general, the derivation of the C-OWEFAC
′

i (X) for a code is not trivial,
unless the codeC′ (or its dual code) has small dimension [30].

7Note that wheni = 0 the encoder input is given by the all-zero word.
Thus, the encoder output is zero with probability1 due to the linearity of the
code ensembleL (k, h, q).
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being Aw the average number of codewords of Hamming
weightw, Aw =

∑

iAi,w .
The average WEF of the concatenated ensemble can be used

now to derive tight upper bounds on the expected block error
probability for the codes of the ensemble. LetC be a linear
block code belonging to the ensembleC (C′, k, l, q). The block
error probability averaged over the ensemble can be upper
bounded as [31], [32]

EC (C′,k,l,q) [PB(C, ǫ)] ≤ P
(S)
B (l, k, ǫ)

+

l−k∑

e=1

(
l

e

)

ǫe(1− ǫ)l−e min

{

1,

e∑

w=1

(
e

w

)
Aw
(
l
w

)

}

(14)

whereP (S)
B (l, k, ǫ) is the Singleton bound

P
(S)
B (l, k, ǫ) =

l∑

e=l−k+1

(
l

e

)

ǫe(1− ǫ)l−e. (15)

As an example, consider the concatenation where the block
code is a binary(63, 57) Hamming code. Recall that the
C-OWEF Ai(X) of a (n = 2t − 1, k = n − t) Hamming
code [33] can be derived from

A(x,X) =
(1 + x)2

t−1−t−1

2t
×
(

2t(1 − x)2
t−1−t(1 − xX)t

− (1− x)2
t−1

(1 +X)t + (1 + x)2
t−1

(1 +X)t
)

where A(x,X) =
∑

iAi(X)xi. Fig. 9 shows the average
distance spectrum of the concatenated code. The markers
represent the distance spectrum of the concatenated code,
whereas the solid lines represent the average distance spectrum
for the ensemble of LRFC with rate equal to the concatenated
scheme. Fig. 10 shows the upper bounds on the expected
block error probability of the ensemble,PB , as a function
of the channel erasure probabilityǫ for different coding rates.
The solid lines represent the upper bound on the block error
probability in (14), and the dashed black and dotted red lines
represent respectively the Berlekamp random coding bound
[11]

P
(B)
B (l, k, ǫ)=

l∑

e=l−k+1

(
l

e

)

ǫe(1− ǫ)l−e

+

l−k∑

e=1

(
l

e

)

ǫe(1− ǫ)l−e2−(l−k−e)

which is an upper bound on the average block error probability
of random codes, and the Singleton bound, which provides the
block error probability of MDS codes. The markers represent
the results of Monte Carlo simulations. In order to obtain
average results for the ensemble, the block error probability
was averaged over1000 different LRFC realizations. The
bound in (14) is very tight, as expected. Results for three
different rates are shown in the figure. The highest rate
corresponds to the use of the Hamming code alone, and the
other two rates arer = 0.8 and r = 0.5. While for the
Hamming code the performance lies in between the one of
random codes and the one of MDS codes, as the code rate
decreases the performance of the scheme gets closer to the

Berlekamp random coding bound, which means that for low
rates our scheme performs almost as a random code.
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