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1 Introduction

Within the last decades one had witnessed a rapid development of new technologies for

nautical applications in order to support constantly increasing marine traffic and to improve

the safety of navigation in overcrowded routes. Here the process of the vessel navigation is

supported by a variety of independent sources of navigational information (sensors or sensor

systems), where the Global Navigation Satellite Systems (GNSS), in particular the Global Po-

sitioning System (GPS) is often adopted as key component for provision of absolute position,

velocity and precise time information (PVT). However, the GNSS is usually not integrated with

other on-board already existing sensor systems (e.g. speed log, gyro compass, etc.). Therefore,

with the variety of independent sources of navigational information available, the process of

navigation can be formulated as a real-time decision making process that requires an extreme

focus and constant attention from the navigator. In spite of all the efforts to improve the quality

and reliability of separate sensors, 43% of the total number of accidents in the Baltic Sea dur-

ing 2012 were actually caused by human elements such as mistakes in the planning process or

skill-based errors, such as slip and lapse (HELCOM 2014).

In order to reduce the complexity of the sensor data assimilation (fusion), decision making

process and to improve the overall safety of berth-to-berth navigation, the International Mar-

itime Organization (IMO) had developed within the context of the e-Navigation (e stand for

electronically enhancement) initiative a Maritime Integrated Navigation System (INS) base-

line architecture concept. Here the recognized vulnerability of pure GNSS solution to harsh

RF signal environments introduces concerns to the provision of on-board reliable navigational

data required in maritime safety-critical applications (SCA). A critical action line of the INS

strategic implementation plan (SIP) aims to improve the reliability and resilience of on-board



Positioning, Navigation and Timing (PNT) information through both the enhancement of ex-

isting sensors and via the augmentation with external sensors, i.e. with the methods of sensor

fusion.

Here the integration of multiple sensors with independent error patterns highly improves

the overall system resilience against GNSS channel contamination and is crucial in achieving

a reliable provision of the PNT data. Therefore it could be advantageous to employ a comple-

mentary inertial or any other system that is able to backup GNSS and to provide a position with

slowly degrading level of accuracy for a specified period of time while GNSS information is

not available or is considered unreliable. The inertial navigation systems are able to overcome

the GNSS vulnerability due their complementary noise properties, inherent independence from

the surroundings. All this allows Inertial Measurement Unit (IMU) data to be integrated syner-

getically with the GNSS information so that the short term performance of the IMU and long

term stability of the GNSS can be combined optimally within the hybrid system.

Although the snapshot (GNSS-only) integrity algorithm are well known for aerospace appli-

cations, few works have been reported on applying similar techniques for other scenarios such

as ground or nautical navigation. As the integrated navigation solutions using combination of

sensors with complementary noise properties (e.g. GNSS and inertial) are becoming more and

more popular for non-aerospace applications, mainly due to appearance of relatively cheap in-

ertial sensors of tactical grade, odometer measurements and Doppler velocity measurements,

more advanced techniques for integrity monitoring in Recursive Bayesian Estimation (RBE)

methods become necessary. Although some works have been reported for aerospace applica-

tions, extremely few attention has been devoted in applying similar concepts to other SCAs

such as vessel navigation and the performance of these algorithms has not been confirmed in

real operational conditions.

The presented work tries to close this gap to introducing the discussion on performance of

the Fault Detection and Exclusion (FDE) methods for both snapshot and RBE positioning algo-

rithms in marine applications. In order to assess the performance of the proposed techniques for

hybrid navigation we employ either pure GNSS or classical hybrid inertial/GNSS system which

allow the results to be easily extrapolated to other applications such as automotive and outdoor

robotics scenarios. Furthermore, the obtained results are based on real operational conditions

including the GNSS unmodelled effects and errors in inertial sensors such as misalignment and

scale factor errors. The performance of the developed techniques is assessed in terms of the

horizontal positioning accuracy and the results are evaluated with respect to the quality of the

inertial sensors and adaptive GNSS measurement models.

The report concentrates on the analysis of least-squares residuals (LSR) and Kalman fil-

ter innovation (KFI) based FDE algorithms performance. This analysis consists of two parts,

firstly we compare the performance of a LSR with a non-inertial Extended KFI approach for

both non-weighted and weighted range error models. For this purpose of the work the GNSS

fault simulator based on Monte Carlo methods was developed which is capable of adding in
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a controlled manner faults to code raw measurements recorded previously during typical mar-

itime operational scenarios (e.g. port operation). Secondly, the performance of an Error-State

Extended tightly-coupled (TC) IMU/GNSS KFI algorithm is tested during a single run with data

collected during coastal approach operation. Here a MicroElectroMechanical system (MEMS)

gyros and fiber-optic gyroscopes (FOG) based tactical grade IMUs are used in order to assess

the impact of different IMU technology on the FDE performance.

The rest of the paper is organized as follows. In Section 2 a brief discussion is provided

on state of the art methods in integrity monitoring both in snapshot and recursive positioning

methods. The details on relevant mathematical methods are provided in Section 3 with the

description of the system setup presented in Section 4. The experimental results are shown in

Section 5 with the summary and the outlook for the future research provided in Section 6.

2 Current Research Status

The Snapshot LSR Receiver Autonomous Integrity Monitoring (RAIM) developed by the

civil aviation community (Parkinson et al. 1988) or the statistical reliability testing developed by

the geodetic community (Teunissen 1998) are the classic references for non-augmented GPS-

based LSR algorithms. All approaches make use of measurements redundancy to check, on a

measurement-by-measurement basis, the relative consistency among estimated residuals in or-

der to detect the most likely measurement fault. Most of the previously referred approaches are

based on the comparison between a test statistic depending on the estimated least-squares (LS)

residuals and a given threshold. The decision threshold is set considering a priori knowledge

of the statistical distribution of the test in the fault free case and a given false detection rate. Al-

though the classical methods mainly use snapshot techniques, some works have been reported

on introducing the FDE algorithms for RBE techniques (Petovello 2002), usually formulated in

a well-known form of the Kalman filter (KF), where it has been proven that the KF innovations

follow the same statistical distribution as the LS residuals (Wang 2008).

A constant measurement noise assumption is often violated in real world scenarios and sev-

eral approaches have been reported on increasing the robustness of the integrated solutions by

considering adaptive GNSS noise models. Although it has been widely agreed that the number

and the impact of the possible error sources is strongly related with the satellite elevation, but

the elevation angle itself is not necessarily the best indicator of the actual signal quality. Here

the CNo, which is the ratio of the received carrier (i.e. the signal) power to noise density, is

often considered as a fairly good indicator of the signal quality. The measurements with higher

CNo values are good indicators of less noisy range measurements and therefore are able to

provide a more precise positioning solution (Wieser et al. 2000).

Augmentation of the GNSS with inertial sensors in order to mitigate intentional or uninten-

tional RF signal interference has a fairly long history. The work of Lee et al. 2000 addressed
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both the issues of IM in a TC IMU/GPS system and the availability of the hybrid navigation

solution. The latter one is defined as the ability of the system to coast upon the loss of all GPS

signals while still maintaining a certain accuracy. The authors in Lee et al. 2000 used GNSS

ramp error model and the results indicated that both solution separation method and the ex-

trapolation method may not detect the satellite failures during periods of low (fewer than four)

satellite visibility. The authors conclude that innovations can be only used to detect the failures

causing a relatively fast growing errors, while the statistics for the extrapolation method which

averages the innovation vector elements over time has to be used to detect a slower error ramp.

Although the MEMS sensors have attracted an increasing attention for the pedestrian localiza-

tion (Foxlin 2005), certain automotive applications or low-cost UAV (Unmanned Aerial Vehi-

cle) design, their applicability to SCA such as maritime navigation has been till recent limited

by their relatively high noise and bias instability, causing a rapid drift of the standalone inertial

solution when neither of the alternative reference position information is available. Some re-

cent works (Moore et al. 2008) have also assessed a possibility to replace the FOG with higher

performance MEMS IMUs and have confirmed that a combined IMU/GNSS system is able to

deliver the position and the velocity information at rapid update rate while preserving a low

noise content due to smoothing performance of the inertial integration, the performance of the

hybrid system was not assessed under the presence of GNSS faults and no IM algorithms were

evaluated.

3 Mathematical Development

The algorithms employed in maritime SCA must meet stringent reliability requirements.

One of these reliability requirements is called an integrity risk (or only integrity for short)

which is defined as likelihood of an undetected navigation state error that results in Hazardously

Misleading Information (HMI). In practice, it is defined a confidence bound for the navigation

system state which confines all the state output errors with a confidence equal or higher than

1-α, where α is the integrity risk (adjusted to the target application). There is a case of loss of

integrity when the navigation system state error exceeds the confidence bound without warning

the system user. The probability of loss of integrity is also called probability of HMI. This

probability can be mapped onto the state space and, in the case of Kalman Filter (KF) based

navigation system, can be interpreted as the protection level (in physical units) of the state

uncertainty ellipsoid. The Integrity Monitoring (IM) algorithms must provide functionality

for detection of the state error and exclusion of the faulty sensor from the navigation system

state estimation (the so called FDE functionality) and optionally calculate the corresponding

protection levels.

The algorithms for positioning and hybrid navigation are usually formulated as state esti-

mation problems using a combination of the measurements from multiple sensors with com-
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plementary noise properties. A desired set of the parameters to be estimated from the noisy

measurements usually includes the pose (the object’s position, velocity and attitude) as well as

some of the sensor errors. Here one can utilize a well-established estimation strategy based

on the RBE framework, while a classical LS solution can be considered as a non-recursive

memory-less(snapshot) approach. The classical RBE cycle is performed in two steps:

Prediction The a priori probability is calculated from the last a posteriori probability using

probabilistic process model f .

Correction The a posteriori probability is calculated from the a priori probability using

probabilistic measurement model and the current measurement h.

In practice, however, the theoretical methods formulated with probability densities do not

scale up very well and can quickly become intractable even for the estimation problems of

reasonable dimensionality. Various implementations of RBE algorithms differ in the way the

probabilities are represented and transformed in the process and measurement models (Thrun

et al. 2005; Grewal et al. 2001). If the models are linear and the probabilities are Gaussian, the

linear KF is an efficient and optimal solution of the estimation problem. Unfortunately, most of

the real-world navigation systems are rather nonlinear and modifications to the linear KF have

been developed to deal with nonlinear models.

The Extended Kalman Filter (EKF) is one of the most popular nonlinear estimators and is

historically considered as a standard within the engineering community. In EKF the nonlinear

models are linearized about the current estimate using the Taylor series expansion, where the

state transition model f and observation model h are replaced by the corresponding Jacobians F

and H . The system at every time tk is represented by the state xk and an associated covariance

Pk with the rest of the filtering scheme being essentially identical to that of the classical linear

KF. Although the EKF inherits many advantages of the KF such as limited computational costs

and clear filtering structure, it still suffers from two main problems. Firstly, the performance

of the estimator strongly depends on the validity of the linearized model assumption and can

become inaccurate and lead to filter instabilities if these assumptions are violated. Secondly, the

required Jacobians can be potentially difficult or even impossible to derive if dynamical models

involves complex approximation coefficients and/or discontinuities.

The usual GNSS-based position determination involves four unknowns: receiver coordi-

nates (X, Y, Z) and the receiver clock offset δt (n = 4). For the memoryless least-squares (LS)

estimation we follow a classical approach with linearization of the measurement function at

each epoch tk around a point x0 and finding the correction factor δx̂ using (Borre et al. 2010):

δx̂ =
(
HTR−1H

)−1
HTR−1δz, (1)

and the iterative update of the initial estimates xi = xi−1+δx̂i, where δz is the misclosure vector

and R is the measurement noise covariance. If there are five or more observations z available

(i.e. m > n), the redundant measurements could be used to check the consistency among the
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full set of the measurements. This forms a fundamental principle for the fault detection using LS

method, where the measurement space with dimensionality m is separated into two subspaces:

the state space and the parity space with the dimensionality n and m − n respectively (Joerger

et al. 2010). The LSR methods are based on the detection test derived from the measurement

residual norm ‖e‖:

ê = z −Hx̂ = (I −H(HTR−1H)−1HTR−1)z. (2)

The test statistics is based on the estimated residual vector ‖ê‖2 normalized by the standard de-

viation of the measurement errors ‖ê‖2 = êTR−1ê, and R is the measurement noise covariance.
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Figure 1: Least-squares estimation residuals probability density function (left) and the normalized global
test statistics probability density function (right).

This statistics is observable whereas the positioning error of the LS solution is not. In the

fault-free case (the individual residuals follow N (0, 1), see Fig.1 (left), the value follows a

central Chi-Square distribution with m − n degrees of freedom and expectation equal to zero

(see Fig. 1 (right)). Here the classical LS detection method is based on the hypothesis testing

which compares the test statistics with the given threshold. The weighted LS RAIM statisticsis

defined as follows ts =
√
‖ê‖2 (Walter et al. 1995).

Under the assumption of fault-free case, the test threshold Th for a given probability of false

alarm (Pfa) and redundancy (or equivalently, degrees of freedom) is found by inverting the

incomplete gamma function (Walter et al. 1995). A common procedure consists of fixing Pfa

according to the application requirements and letting the threshold vary with the measurement

redundancy. A typical value for Pfa in maritime applications is 0.1% (Ryan 2002). The

hypothesis test is given by the following condition:

Global-Hypothesis-Test =

{
H0 if ts ≤ Th,
H1 if ts > Th.

(3)
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This test can be seen as a global one as it checks the consistency of full measurement set. The

threshold determines whether the null-hypothesis of the global test is accepted or rejected. If it

is rejected, an inconsistency in the tested measurements is assumed and the fault source should

be identified and further excluded using, e.g, the local test (Kuusniemi 2005; Petovello 2002).

This test assesses the standardized residuals defined as follows:

ri =

∣∣∣∣∣ êi√
Ui,i

∣∣∣∣∣ , i = [1, . . . , n], (4)

where U is the covariance matrix for residuals U = R−H(HTR−1H)−1HT .

In order to detect a fault, each standardized residual ri is tested using the quantile of a

normal distribution equal to the Pfa. In the local test, the residual under test is excluded if the

respective standardized residual exceeds the test threshold. Similarly to the global test, the local

test assumes the residuals to followN (0, 1). The local hypothesis test is given by the following

condition:

Local-Hypothesis-Test =

{
H0,i if ri ≤ Q(1−Pfa/2)

H1,i if ri > Q(1−Pfa/2)

(5)

where Qp is the quantile of the probability p of the standard normal distribution. Only the

measurement with a large ri is tested against the H0,i, as a measurement fault affects multiple

standardized residuals. The measurement i is selected as a candidate to be excluded if and only

if both the following conditions are fulfilled:{
rk ≥ ri, ∀i
rk > Q(1−Pfa/2)

(6)

The approach for RBE algorithm (in our case represented by EKF) is rather similar to the

one for the snapshot algorithm. The predicted residual vector (some times called innovation

vector) is given as follows:

dk = zk − h(xk), (7)

where h(xk) is a non-linear function relating the states to the observations. The innovation vec-

tor can be considered as an indication of the amount of information introduced in the system by

the actual measurements and the respective normalized norm can be used again as the measure-

ment quality indicator. For a fault-free situation, this norm follows a central Chi-Squared distri-

bution with m degrees of freedom with the global test statistics given by tsKF =

√
d̂k

T
S−1
k d̂k.

Here Sk is the innovation vector covariance matrix defined as Sk = HkP
−
k H

T
k +Rk. The global

test and the local tests are performed following the same procedure as for the LS methods de-

scribed before. Again it is assumed, under fault-free conditions, the innovations to be zero mean

Gaussians.

The FDE scheme implemented in this work consists of a two-step procedure based on the
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Figure 2: Two-step FDE test procedure scheme: LS residuals (left) and KF innovations (right).

global and local test as shown in Fig. 2. Firstly, the global test, as described before, checks the

consistency among the full set of measurements. In the case some inconsistency is detected, the

scheme performs a local test. The local test is recursively applied whenever a fault is detected

until no more faults are found (Kuusniemi 2005). According to (Diesel et al. 1995) the innova-

tion property makes it possible to detect very slow satellite drifts by estimating the mean of the

residuals over a long time interval, where in order to avoid contamination of the KF estimated

state, the measurements and residuals are stored in buffers for periods up to 30 minutes.

As the basis for the adaptive pseudorange measurement noise covariance model σ2 we have

adopted the following expression:

σ2 = a+ b · 10−
CNo−c

10 , (8)

with three approximation parameters a, b and c. Here the parameter a can be roughly mapped to

the receiver correlator noise baseline. In the expressions above the CNo is the measured carrier

to noise density ratio for a particular pseudorange observation. The resultant model along with

the experimental data are shown in 3.
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Figure 3: Experimental data for pseudorange noise model and model fit results. Only valid data points
were employed for the noise model extraction.

4 System Setup

In order to overcome the previously identified issues and to commit with the IMO SIP, the

DLR has developed a PNT unit concept (Ziebold et al. 2010) and an operational prototype in

order to confirm the unit performance under real operational conditions. Here the core goals

are the provision of redundancy by support of all onboard PNT relevant sensor data including

Differential GNSS (DGNSS) and future backup systems (e.g., eLoran), the design and imple-

mentation of parallel processing chains (single-sensor and multi-sensor architectures) for robust

PNT data provision and the development of the IM algorithms to evaluate the events or condi-

tions that have the potential to cause or to contribute to HMI and could compromise safety.

The experimental setup for our PNT Unit developments is described as shown in Fig. 7. The

original sensor measurements were recorded using the multipurpose research and diving vessel

Baltic Diver II (length 29 m, beam 6.7 m and draught 2.8 m, GT 146 t ) as a base platform for

the PNT unit development for nautical applications at DLR. The vessel was equipped with three

dual frequency GNSS antennas and receivers (Javad Delta), FOG and MEMS IMUs, gyrocom-

pass, Doppler speed log and echo sounder. The IALA (International Association of Marine

Aids to Navigation and Lighthouse Authorities) beacon antenna and receiver were employed

for the reception of the DGNSS code based corrections. The VHF modem was configured for

the reception of the RTK (Real-Time Kinematics) phase based corrections data from our Mar-

itime Ground Based Augmentation System (MGBAS) station located in the port of Rostock

(Minkwitz et al. 2010; Noack et al. 2009). All the relevant sensor measurements are provided
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either directly via Ethernet or via serial to Ethernet adapter to a Box PC where the observations

are processed in real-time and stored in a SQlite3 database along with the corresponding time

stamps. The described setup enables a record and replay functionality for further processing

of the original sensor data. The system consists of a highly modular hardware platform and

Real-Time software Framework (RTF) implemented in ANSI-C++.

Figure 4: The PNT unit prototype in laboratory conditions.

The data were recorded on the 01/09/2014 in a quasi-static scenario where the vessel was

moored at its home port Alter Fischereihafen on the river Warnow close to the Rostock port.

At this time there was only weak wind and little waves, so that only minor vessel motion could

be observed. The evaluation is based on data from the mid ship antenna, which is located

besides the main mast of the ship and some shadowing effects are still expected. The chosen

environment represents a typical maritime port application. The dynamic data used to test the

IMU/GNSS integrated system was collected using the same setup and vessel during a coastal

approach operation.

For the purpose of the work the GNSS fault simulator based on Monte Carlo methods was

developed which is capable of adding in a controlled manner faults both to code and Doppler

raw measurements recorded previously during typical maritime operational scenarios (e.g. port

operation). The simulator allows selecting static and dynamic faults profiles, such as stepwise

and ramp fault signatures. Stepwise faults simulate the measurements additive faults (e.g. sig-

nal multipath) and ramp faults correspond to slowly-varying accumulative errors (e.g. satellite

clock drift). The simulated fault profile, amplitude range and fault duration time is configurable

for a single satellite at the time. As the fault impact on the estimated state is strongly influenced

by the satellite geometry, the fault onset time is randomly selected within the period the satel-

lite is visible. The raw data selected for the simulation are assumed to be fault free to avoid

misdetections. In order to make the analysis statistically significant, a large number or runs was

performed to cover an extended fault amplitude range and different visible satellites. For all

runs the same raw data is used while the satellite vehicle ID, fault onset time and amplitude are

allowed to vary.
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Figure 5: Precision of the approaches with and without FDE scheme: LS with constant noise model
(top-left), LS with weighted noise model (top-right), EKF with constant noise model (bottom-left) and
EKF with weighted noise model (bottom-right).

5 Results

In order to evaluate the performance of the methods, a realistic adaptive pseudorange noise

model was extracted. The experimental data have been obtained from a reference receiver of

known position over 24 hours using broadcast ionospheric and tropospheric corrections with the

error statistics computed by analyzing the differences between the expected and the observed

ranges. The obtained data have been binned according to the associated CNo values and for

each bin a variance was estimated. Note that in this simplified approach only variance was

modeled as a function of the signal quality and the non-zero mean offset was ignored. Figure 3

shows the experimental results and the extracted model using a nonlinear least squares fit. The

points with lower CNo values have been manually excluded as having insufficient statistics

and fit was found only to the values larger than 40 dB-Hz. Moreover, the performance of the

DLL (Delay Lock Loop) correlator in the GNSS receiver to track the satellite pseudoranges

is often poor for low CNo values and the obtained values are simply not representative. The
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extracted model was used in weighted methods as described below and allows construction of

both adaptive LS and KF schemes.

Note that the experimental data show also a small noise for CNo larger than 55 dB-Hz. The

observed values are close or even smaller than the correlator base noise level and are probably

caused by the insufficient sample size for larger CNo values. Still this effect has been effec-

tively eliminated from the fit model as the parameter a is almost 60 cm which is close to the

rough theoretical calculations for the associated hardware. This also allows us not to exclude

these points manually as both LS and KF algorithms have shown relatively low sensitivity to a

small variations in variance models.

Figure 5 shows the results of the implemented FDE on accuracy of a classical LS solution

with constant (top-left) and weighted (top-right) measurement noise models with the corre-

sponding results for the EKF shown in (bottom-left) and (bottom-right) in the presence of an

artificially generated step fault of 15 meters. Clearly, the proposed FDE mechanism is able

to detect and eliminate the fault. As expected, the overall precision is improved when using an

adaptive measurement model, although a slight shift in the mean position can be seen. The latter

effect can be explained by a slight mismatch of the constant and adaptive noise models in terms

of an overall impact with respect to assumed noise dynamics as well as a particular satellite

geometry. The provided figures are generated by converting the solver solution (X, Y, Z) coor-

dinates to ENU (east-north-up) frame and centering them with respect to the RTK mean position

which corresponds to the coordinates (0,0) in Fig. 5. As we have seen in Fig.5, the adaptive

noise approach significantly improves the spread of the solution around the mean, although the

effect of a slight shift of the mean position still needs some further investigation.

The FDE exclusion rate statistics is shown in Fig. 6 both for weighted and non-weighted

LS and KF methods. In all the non-weighted approaches the σ = 2 meters was used which

is reasonably close to the average residual value of 2.3 meters extracted from reference data

employed for adaptive model calculation. Clearly, for reasonably large fault amplitudes all the

methods converge to the detection rate of 100%, although the performance for moderate fault

amplitudes is significantly different. Although the shown results confirm a superiority of the

KF-based FDE scheme over a snapshot LS approach, the provided results represent an aver-

aged behavior and the impact of the particular satellite is not clearly visible as the performance

statistics for a particular satellite could be different from the shown averaged behavior depend-

ing on the geometry and associated CNo values. Due to a short duration of the test scenario we

were not able to sample different satellite geometries and should be investigated in future.

The results from above confirm that the FDE KF-based techniques constantly outperform

the non-KF techniques when equivalent measurement noise model is used. This, however,

should come at no surprise as the KF has an explicit dynamics model (in this case a static posi-

tion model is assumed for non-inertial approach) which fits nicely to the scenario and the results

could be worse when the KF process model does not match the true dynamics. This is, fortu-

nately, not a problem for the system in mind when the inertial sensors are employed within the
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Figure 6: Fault exclusion rate in Monte-Carlo simulation. The non-weighted LS and KF approach (left)
and the weighted LS and KF methods (right). In both cases the elevation mask of 8◦ was applied and
Pfa = 0.001 was used.

prediction step. In this case the process dynamics is based not on the assumptions on expected

motion models, but rather on a true dynamics provided by a direct strapdown integration. The

inertial unit provides a true short-term stable dynamics and the FDE mechanism benefits from

this information.

For the weighted noise model the fault exclusion rate is extremely noisy and converges

to 100% only for the fault amplitudes close to 30 meters. This, however, is a direct result

of the adaptive noise model which assigns increased measurement noise variance for satellite

signals with lowCNo values and could lead to the situations where even the faults of significant

amplitudes can be still considered ’within’ the measurement statistics of the satellite with bad

CNo and therefore are not excluded. Here comes an important conclusion that a direct adoption

of the weighted measurement model, although results in accuracy improvement, could also lead

to the failure of the FDE or similar mechanisms. Thus, both adaptive noise model and FDE

scheme seem to be mutually exclusive strategies: while the FDE scheme tries to check the

measurement consistency using given statistics and eliminate the observations which violate

correct measurement assumption, the weighted approach tries to adjust the statistics to fit the

observations and simply down-weighs the measurement of poor quality.

Obviously, a constant amplitude step can be hardly considered as the most representative

sensor failure approach. For example, a performance of the KF-based techniques can become

much worse for the ramp-like scenarios, where small amplitude and prolonged duration offsets

in one of the measurements, when initially undetected, could force the filter to drift significantly

from the true estimate. On the other hand, the step-like faults form a fairly representative error

model when one considers multipath effects in maritime environments (Ryan 2002).

In Fig. 7(left) we can see the average impact of the amplitudes of injected faults on the
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estimated state (position) within the non-inertial EKF. For comparison, the impact on the sys-

tem with augmented FDE functionality is also shown. Firstly, the RBE method achieves an

improved error performance compared to memory-less LS approach due to its implicit dynamic

model, which is employed within the KF to predict the future position. Consistently, the perfor-

mance of the KF with FDE is also better than the performance with FDE, where the KF approach

results in almost 2x smaller maximum position error (note that the exact gain is a trade-off of

both process and measurement noises). Moreover, the fault amplitude which corresponds to

the inflection point is also smaller for the KF method compared to the LS technique and this is

consistent with the earlier rise of the exclusion rate curve as shown in Fig. 6(left). The observed

values can be also interpreted as HMI for the system user as the represent the maximum impact

in the estimated position caused by the undetected faults in the measurements.

Finally, we evaluate the FDE performance within the TC IMU/GNSS architecture and assess

the impact of the inertial sensor quality on the final accuracy of the integrated approach. Fig.

7(right) shows the horizontal position error (HPE) in the case of fault in true data (non-simulated

fault) during the coastal approach. In order to distinguish between the effect of inertial smooth-

ing and FDE, additionally the HPE of a loosely-coupled (LC) EKF (without FDE) and the

least-square solution without FDE (referred as SPP in Fig. 7 (right)) are shown. Here the posi-

tion and velocity of the SPP serve as direct observations instead of using separate measurement

fusion in the TC architecture, and, therefore, a FDE scheme based on single satellite signals is

not applicable. One sees that the smoothing behavior of both TC and LC EKF is comparable,

but during the measurement fault, the LC solution slowly follows the wrong position from the

SPP, whereas the FDE in the TC EKF ensures that the faulty measurements are removed from

the navigation solution. A manual inspection of the faults during that 24h time span leads to the

conclusion, that all of these faulty measurements are simultaneously detected by both, the TC

EKF with FOG and MEMS IMU and the quality of the inertial sensor does not seem to play

a significant role for the algorithm performance. Clearly, an in-depth statistical analysis is still

necessary in order to confirm that also smaller GNSS faults (offsets) can be also detected using

lower cost MEMS IMU.

6 Summary and Outlook

Within this preliminary work we have successfully demonstrated an application of the FDE

mechanism for fault detection and exclusion both in snapshot and KF-based algorithms for mar-

itime applications. The proposed methods form a solid foundation for construction of more re-

liable and robust PNT unit, where state-of-the-art hybrid navigation algorithms are augmented

with integrity monitoring functionality to ensure the performance of the system during e.g.

GNSS faults. The presented work is implemented within a framework of the integrated PNT

unit with an additional integrity monitoring functionality. The FDE mechanism provides con-
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Figure 7: Effect of the injected fault amplitudes on the estimated position (left) and HPE of SPP, loosely-
and tightly-coupled (with FDE) EKFs for a scenario with inherent fault (right).

sistent improvements in terms of the horizontal accuracy both in LS and RBE methods. An

interesting behavior of the proposed FDE mechanism has been noticed for the methods with

CNo-dependent measurement noise models, where the fault detection rate had shown worse

performance compared to that of the non-adaptive methods. The performance of the proposed

methods was evaluated using real measurements from the vessel combined with Monte-Carlo

simulation for the fault detection. Additionally we confirm that the quality of the IMU is not

critical for the FDE functionality within the TC IMU/GNSS architectures and this finding is an

important step in reducing the price of the complete PNT unit. Apparently, the quality of the in-

ertial sensor (in terms of additive noise and bias stability) is only important for bridging GNSS

outages (standalone strapdown inertial mechanization) - i.e. for contingency functionality.

Further work is planned in extending the presented concepts for the GNSS Doppler shift

measurements both in snapshot and RBE algorithms and more detailed analysis is required to

assess the impact of the faults not only on the position, but also on the rest of the estimated state,

including the velocity and the attitude (in IMU/GNSS integrated approaches). Correspondingly

the proposed techniques have to be verified for hybrid IMU/GNSS and Doppler Velocity Log

navigation systems and the performance of the associated FDE algorithms has to be confirmed

for complex sensor fusion scenarios. Moreover, while implementing the proposed schemes a

special attention has to be paid to a challenging problem of the memory effects in RBE schemes

as the typical implementations based on Kalman filtering are, in principle, infinite memory

filters. Clearly, the associated upper error bounds in estimated position, velocity and attitude

have to be taken into account for the analysis to be complete. Finally, robust methods have to

be developed for the decision matrix functionality, where the system switches between different

channels (algorithms with different sensor combinations) using the available FDE results and

corresponding channel integrity information.
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Minkwitz, David, Stephan Schlüter, and Jamila Beckheinrich (2010). “Integrity Assessment of a Maritime Carrier
Phase Based GNSS Augmentation System”. In: ION GNSS 2010. Institute of Navigation. Portland, USA.

Moore, Terry, Chris Hill, Andy Norris, Chris Hide, David Park, and Nick Ward (2008). “The Potential Impact of
GNSS/INS Integration on Maritime Navigation”. In: The Journal of Navigation 61, 221237.

Noack, Thoralf, Evelin Engler, Anja Klisch, and David Minkwitz (2009). “Integrity concepts for future maritime
Ground Based Augmentation Systems”. In: Proceedings of the 2nd GNSS Vulnerabilities and Solutions Con-

ference. Baska, Croatia.
Parkinson, Bradford W. and Penina Axelrad (1988). “Autonomous GPS Integrity Monitoring Using the Pseudor-

ange Residual”. In: Navigation: Journal of The Institute of Navigation 35.2, pp. 255–274.
Petovello, Mark G. (2002). “Real-Time Integration of a Tactical-Grade IMU and GPS for High-Accuracy Position-

ing and Navigation”. PhD thesis. Calgary, Alberta: University of Calgary.
Ryan, Samuel J. (2002). “Augmentation of DGPS for Marine Navigation”. PhD thesis. Calgary, Alberta, Canada:

Department of Geomatics Engineering, University of Calgary.
Teunissen, P.J.G. (1998). “GPS for Geodesy”. In: Springer. Chap. Quality control and GPS.
Thrun, Sebastian, Wolfram Burgard, and Dieter Fox (2005). Probabilistic Robotics (Intelligent Robotics and Au-

tonomous Agents). The MIT Press. ISBN: 0262201623.
Walter, Todd, Todd Walter, and Per Enge (1995). Weighted RAIM for Precision Approach.
Wang, Jian-Guo (2008). “Test Statistics in Kalman Filtering”. In: Journal of Global Positioning Systems 7.1,

pp. 81–90.
Wieser, A. and F. Brunner (2000). “An extended weight model for GPS phase observations”. In: Earth Planet

Space 52, pp. 777–782.
Ziebold, Ralf, Zhen Dai, Thoralf Noack, and Evelin Engler (2010). “Concept for an integrated PNT-unit for mar-

itime applications”. In: Satellite Navigation Technologies and European Workshop on GNSS Signals and Sig-

nal Processing (NAVITEC), 2010 5th ESA Workshop on, pp. 1–8.

16


	Introduction
	Current Research Status
	Mathematical Development
	System Setup
	Results
	Summary and Outlook
	Bibliography

