Optimizing Solar Thermal Power Plants: Influences on Parabolic Mirror Shape Accuracy

Simon Schneider

DLR (German Aerospace Center), Institute of Solar Research, Cologne

Knowledge for Tomorrow

ANSYS Conference & 33. CADFEM Users' Meeting Bremen, 25th June 2015

Parabolic Trough Solar Collector Concentrating Solar Power (CSP)

- Parabolic mirrors concentrate sunlight on absorber, where a heat transfer fluid is heated up to 400°C
- Collector tracks the sun over the day
- Heat is used in heat exchanger to directly generate electricity or stored in thermal storage
- Pioneers of technology:
 - USA
 - Spain
 - Morocco
 - South Africa

Concentrating Solar Power Technology

Parabolic Trough

Linear Fresnel

Dish-Stirling

Solar Tower

Andasol, Andalusia, Spain (since 2008) 150 MW_{el}, 600 000 mirrors, 1.5 mill m² solar field, 8 h Thermal Storage

Andasol 2 Andasol 3 (already built) Andasol 1 Power Block & Storage Syste 3 km 1.5 km

Parabolic Trough Solar Power Plant

Parabolic Trough Solar Collector (Euro Trough)

Total beam width RP3 mirror, standard quality

	σ in mrad	$a_i\sigma^2$ in mrad
Mirror Shape*	2.5	25
Beam Spread	0.2	0.04
Mirror Support*	1.6	10.24
Absorber Position	2	4
Collector Torsion (Loads)	1	1
Module Alignment	2	4
Tracking Accuracy	2	4
Sun	3.5	12.25
Total	7.8	60.53

Combination of standard deviations to total beam width:

$$\sigma_{\text{total}}^2 = \sum_i a_i \cdot \sigma_i^2$$

Motivation & Aim of study Improving Mirror Shape Accuracy

Causes of mirror deformations

- Mechanical stress
- Dead load (depending on collector angle and type and stiffness of support structure)
- Reaction forces from mirror mounting elements
- Additional forces due to mounting inaccuracies

Possible outcome & Research goals

- Influences on mirror shape in collector are better understood
- Performance prediction (influence on annual yield), e.g. influence of deformation due to collector orientation when tracked over the day
- Production tolerances for optical components of solar collectors updated
- Structural improvements, e.g. six instead of four mirror mounting points

Quality Parameter: Slope Deviation

displacements scaled 150x

Quality Parameter: Slope Deviation

$$SDx = \sqrt{\sum_{k=1}^{n} \left(sdx_{(k)}^{2} \cdot \frac{a_{k}}{A_{total}} \right)}$$

goal: $< 2 \text{ mrad} \approx 0.1^{\circ}$

Finite Element Model (Euro Trough Solar Collector)

Side view of mirror mounting:

Mirror (Float Glass) Mounting Pad (Steatit Ceramic with Silicone Adhesive) Bracket (Structural Steel) Cantilever Arm (Structural Steel)

- Component-wise acceleration for simulation of dead load in different collector positions
- Rotational and translational joints as well as contact modification for simulation of mounting inaccuracies

Limitations

- No screws or other connecting elements included yet
- Torque-Box not included yet

Simulation: Assembly of mirror on support structure

Reality

- 1. Pads glued to rear site of mirror in factory
- 2. Delivery to construction site
- 3. On-site assembly of mirrors on support structure

Simulation in ANSYS

- 1. Deactivate contact between pad and bracket
- 2. Rotate pad until surfaces coplanar
- 3. Activate contact between pad and bracket
- 4. Perform displacement and rotation of bracket
- 5. Activate gravitational acceleration

Automatic workflow for evaluating mirror shape

ANSYS-Automation via...

- ... Mechanical APDL \rightarrow faster evaluation (for simpler models or optimization processes)
- ... Workbench Journal \rightarrow supports workbench functionality

Model validation (mirrors in laboratory setup)

Validation of FE-Model already done for laboratory setup Internal material stress measured and subtracted from measured case

Influence of collector orientation

Influence of collector orientation on mirror shape

Dead load + mounting inaccuracies

Two brackets with deviations, collector in zenith position

Summary and Further Steps

Slope Deviation (RP3 Inner Mirror)

Dead load Dead load + 10 mrad angular deviation of Z-brackets Dead load + 10 mrad angular deviation of pads Dead load + 2 mm positional deviation of Z-brackets

Different values for parameter result in different slope deviation

Use optimization algorithm to find parameter that have lead to measured mirror shape

Conclusion & Outlook

- Finite-Element-Analysis with different loads and boundary conditions
 → useful method for predicting mirror shape deformation
- Impact of loads on resulting slopes of the parabolic mirrors
 - \rightarrow Focus quality affected; less energy on absorber
 - ightarrow Impact on electricity production & annual yield
- Performance prediction for solar power plant (Influence on annual yield)
- Deriving design criteria and tolerances for concentrating collectors
 - optimizing mirror shape
 - specifying tolerances for assembly
 - increased competitiveness of CSP technology

Supported by:

F fi a

Knowledge for Tomorrow

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Thank you for your attention

The financial support for this work by the German Federal Ministry for Economic Affairs and Energy is gratefully acknowledged.

References

[1] Meiser, S.; Kleine-Büning, C.; Uhlig, R.; Lüpfert, E.; Schiricke, B.; Pitz-Paal, R. (2013), "Finite Element Modeling of Parabolic Trough Mirror Shape in Different Mirror Angles", J. Sol. Energy Eng., 135(3):031006-031006-6

[2] Meiser, S.; Schneider, S.; Lüpfert, E.; Schiricke, B.; Pitz-Paal, R. (2015); Evaluation and assessment of gravity load on mirror shape of parabolic trough solar collectors", 7th International Conference on Applied Energy, Abu Dhabi, United Arab Emirates

