Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide

<u>Matthias Riegraf</u>, Günter Schiller, Rémi Costa, K. Andreas Friedrich, Arnulf Latz, Vitaliy Yurkiv

German Aerospace Center (DLR), Stuttgart, Germany 30.07.2015

Knowledge for Tomorrow

Bundesministerium für Bildung und Forschung

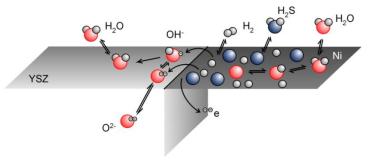
Overview

➤Motivation and aim of the work

Computational methods

≻Results

- Reaction mechanism development
- Sulfur poisoning in H_2/H_2O fuels
- Sulfur poisoning of internal methane steam reforming


Overview

Motivation and aim of the work

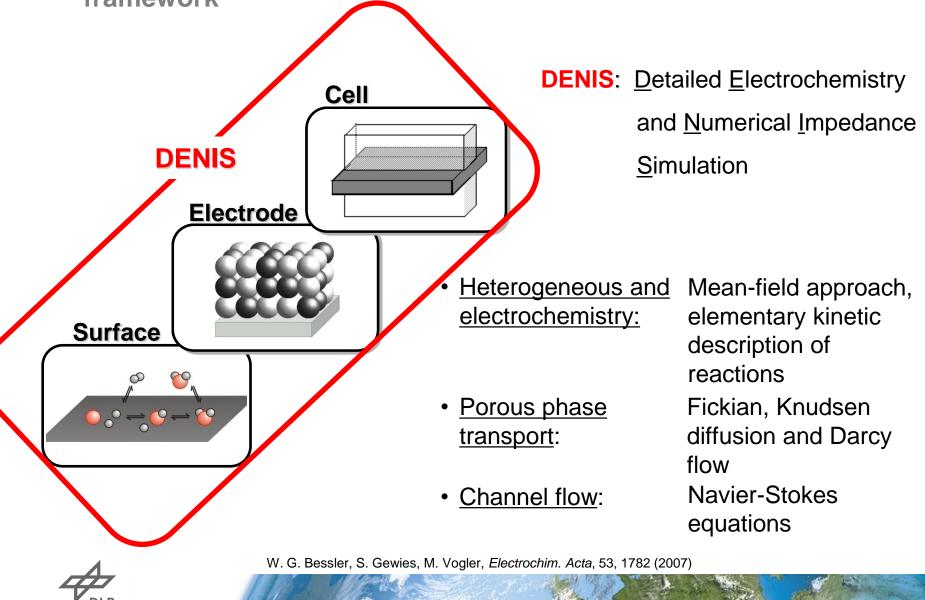
- Computational methods
- ≻Results
 - Reaction mechanism development
 - Sulfur poisoning in H_2/H_2O fuels
 - Sulfur poisoning of internal methane steam reforming

Motivation and aim of the work

- Ni/YSZ anode poisoning with H₂S
- Despite extensive experimental and theoretical investigation, still no validated mechanism for sulfur poisoning
- Identification of underlying processes with elementary kinetic modeling
- Derivation of thermodynamic and kinetic data

Goal: ➤ Building of a reaction mechanism and <u>identification of the</u> <u>elementary processes</u> leading to sulfur poisoning of Ni/YSZ anodes

Overview


Motivation and aim of the work

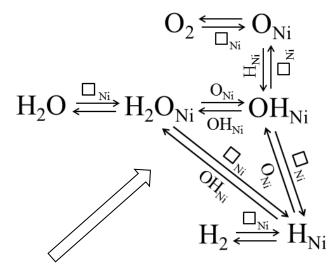
Computational methods

≻Results

- Reaction mechanism development
- Sulfur poisoning in H_2/H_2O fuels
- Sulfur poisoning of internal methane steam reforming

Computational methods: Elementary kinetic modeling framework

Overview


Motivation and aim of the work

Computational methods

≻Results

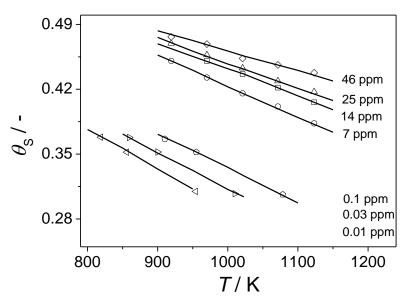
- Reaction mechanism development
- Sulfur poisoning in H_2/H_2O fuels
- Sulfur poisoning of internal methane steam reforming

Reaction mechanism development

- H₂ oxidation mechanism validated in previous modeling studies [1,2]
- Assumed to be unaffected by the presence of sulfur

S formation/oxidation at Ni surface: $H_2S_g + \Box_{Ni} \Longrightarrow H_2S_{Ni}$ $H_2S_{Ni} + \Box_{Ni} \Longrightarrow HS_{Ni} + H_{Ni}$ $HS_{Ni} + \Box_{Ni} \Longrightarrow H_{Ni} + S_{Ni}$ $S_{Ni} + O_{Ni} \Longrightarrow SO_{Ni} + \Box_{Ni}$ $SO_{Ni} + O_{Ni} \Longrightarrow SO_{2,Ni} + \Box_{Ni}$ $SO_{2,Ni} \Longrightarrow SO_{2,g} + \Box_{Ni}$

- Extension of original reaction mechanism
- Present work: Derivation of thermodynamic and kinetic data



1. Vogler et al., J. Electrochem. Soc., 156, (2009), B663; 2. Bessler et al., Phys. Chem. Chem. Phys., 12, (2010), 13888

Reaction mechanism development: Data derivation

Thermodynamic and kinetic data from literature:

- Derivation from DFT calculations [1-3]
- Entropy of S_{Ni} is constant: $s(S_{Ni}) = 52 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}[3,4]$
- Enthalpy of sulfur h(S_{Ni}) is dependent on surface coverage [2–5]

Chemical experiments [6]

H₂/H₂S system on Ni surface

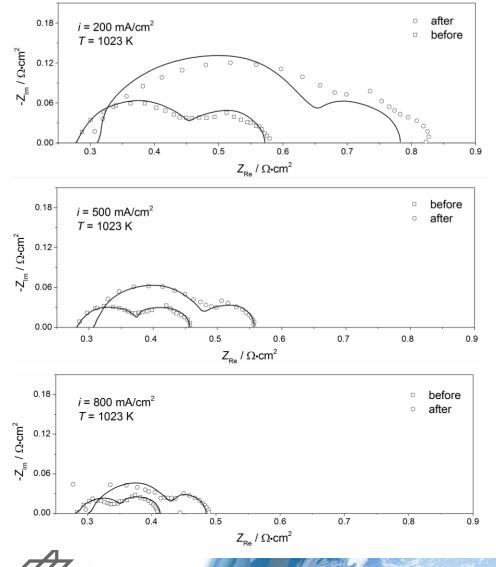
Validation of chemical mechanism

Alfonso, Surface Science, 602, (2008) 2758; 2. Galea, Journal of Catalysis, 263, (2009), 380
 Monder et al., ECS Transactions, 57, (2013), 2449; 4. McCarty et al., J.Chem.Phys. 72, (1980), 12;
 Wang et al., Electrochemistry Communications, 9, (2007), 2212; 6. Alstrup et al., Applied Catalysis, 1, (1981), 303

Reaction mechanism development: Complete mechanism for S formation and oxidation

Species, i	h_i (kJ·mol ⁻¹)	$s_i (J \cdot K^{-1} \cdot mol^{-1})$			Reaction	k^0 (or s_i^0) E^{ac}	⁺(kJ·mol-¹)
<i>Gas-phase</i> (<i>T</i> = 1023K / <i>T</i> =1073 K)					Ni surface reactions		
H_2S_{gas}	8.6 / 10.9	253.5 / 255.8	•	Compilation of	$H_{2,g} + 2\Box_{Ni} \Longrightarrow 2H_{Ni}$	$9.80 \cdot 10^{17} \text{ cm}^4 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$	0
$H_{2,gas}$	21.4 / 22.9	166.9 / 168.4		1	$H_2O_g + \Box_{N_i} \Longrightarrow H_2O_{N_i}$	1.4·10 ¹⁰ cm ² ·mol ⁻¹ ·s ⁻¹	0
$O_{2,gas}$	23.5 / 25.3	244.4 / 246.0		thermodynamic and kinetic data from	-		0
H_2O_{gas}	-241.9 / -212.8	233.7 / 235.7			$H_{Ni} + O_{Ni} \Longrightarrow OH_{Ni} + \Box_{Ni}$	$5.0 \cdot 10^{22} cm^2 \cdot mol^{-1} \cdot s^{-1}$	97.9
$SO_{2,gas}$	-261.1 / -258.4	306.9 / 309.6		various literature	$H_{Ni} + OH_{Ni} \Longrightarrow H_2O_{Ni} + \Box_{Ni}$	3.0·10 ²⁰ cm ² ·mol ⁻¹ ·s ⁻¹	42.7
Anode surface							
\Box_{Ni}	0	0		sources	$H_2O_{Ni} + O_{Ni} \Longrightarrow 20H_{Ni}$	$5.42 \cdot 10^{23} \mathrm{cm^2 \cdot mol^{-1} \cdot s^{-1}}$	209.4
O_{Ni}	-221.6	38.9			$H_2S_g + \Box_{Ni} \rightleftharpoons H_2S_{Ni}$	$s_{i}^{0}=0.5$	0
H_{Ni}	-31.8	40.7				1	_
OH_{Ni}	-192.7	106.4	•	Thermodynamic data	$H_2S_{Ni} + \Box_{Ni} \rightleftharpoons HS_{Ni} + H_{Ni}$	$1.0 \cdot 10^{22} \mathrm{cm^2 \cdot mol^{-1} \cdot s^{-1}}$	14.5
H_2O_{Ni}	-273.2	130.7		for 21 species	$HS_{Ni} + \square_{Ni} \Longleftarrow H_{Ni} + S_{Ni}$	$1.0 \cdot 10^{22} cm^2 \cdot mol^{-1} \cdot s^{-1}$	10.6
$H_2S_{N_1}$	-43.2	0		Kinetic data for 15	$SO_{Ni} + \Box_{Ni} \Longrightarrow S_{Ni} + O_{Ni}$	$1.0.10^{22} \mathrm{cm^2 \cdot mol^{-1} \cdot s^{-1}}$	
$\mathrm{HS}_{\mathrm{Ni}}$	-132.0	0			$SO_{Ni} + \Box_{Ni} \longleftarrow S_{Ni} + O_{Ni}$	1.0.10 ²² cm ² ·mol ⁻ ··s ⁻ ·	158.2
$SO_{2,Ni}$	-486.0	0	•		$SO_{Ni} + O_{Ni} \Longrightarrow SO_{2,Ni} + \square_{Ni}$	$1.0 \cdot 10^{22} cm^2 \cdot mol^{-1} \cdot s^{-1}$	61.8
SO_{Ni}	-295.0	0			$SO_{2,Ni} \Longrightarrow SO_{2,g} + \Box_{Ni}$	$1.0 \cdot 10^{10} \mathrm{s}^{-1}$	0
\mathbf{S}_{Ni}	$f(\theta_{S})$	52.0		elementary reactions	502,Ni ~ 502,g · LNi	1.0.10 8 -	0
YSZ surface					YSZ surface reactions		
$\square_{\rm YSZ}$	0	0			$H_2O_g + \Box_{YSZ} \Longrightarrow H_2O_{YSZ}$	6.595·10 ¹¹ cm ² ·mol ⁻¹ ·s ⁻¹	0
O ²⁻ _{YSZ}	-236.4	0			$H_2O_{YSZ} + O_{YSZ}^{2-} \rightleftharpoons 2OH_{YSZ}^{1-}$	1.6·10 ²⁵ cm ² ·mol ⁻¹ ·s ⁻¹	164.0
H_2O_{YSZ}	-273.0	97.9			$H_2O_{YSZ} \rightarrow O_{YSZ} \leftarrow 2OH_{YSZ}$	1.0.10 ²² cm ² ·mol ···s ·	104.0
OH ¹⁻ _{YSZ}	-282.5	67.0			$O_{OYSZ}^{\times} + \Box_{YSZ} \rightleftharpoons V_{YSZ}^{-} + O_{YSZ}^{2-}$	$1.6 \cdot 10^{22} \text{ cm}^2 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	91.0
Bulk species					Charge-transfer reaction		Ì
O_{OYSZ}^{\times}	-236.4	0			$H_{Ni} + OH_{VSZ}^{1-} \Longrightarrow \Box_{Ni} + e^- + H_2O_{YSZ}$	0.34·10 ²⁰ cm ² ·mol ⁻¹ ·s ⁻¹	181.4
$V_{YSZ}^{\cdot\cdot}$	0	0					101.4

Overview

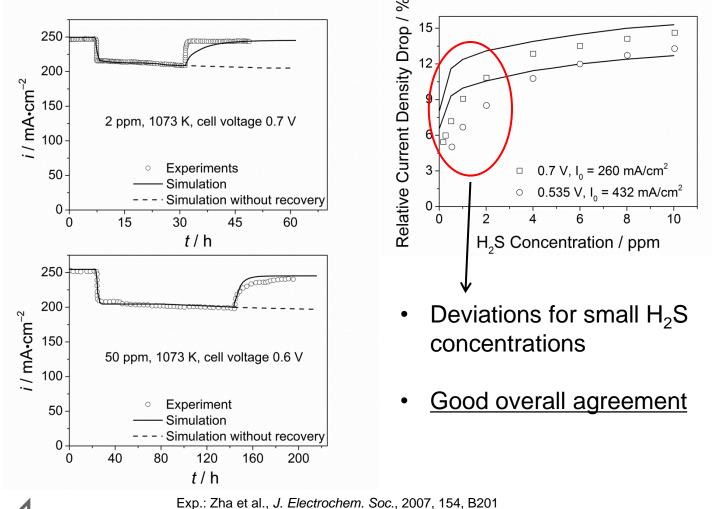

Motivation and aim of the work

Computational methods

≻Results

- Reaction mechanism development
- Sulfur poisoning in H_2/H_2O fuels
- Sulfur poisoning of internal methane steam reforming

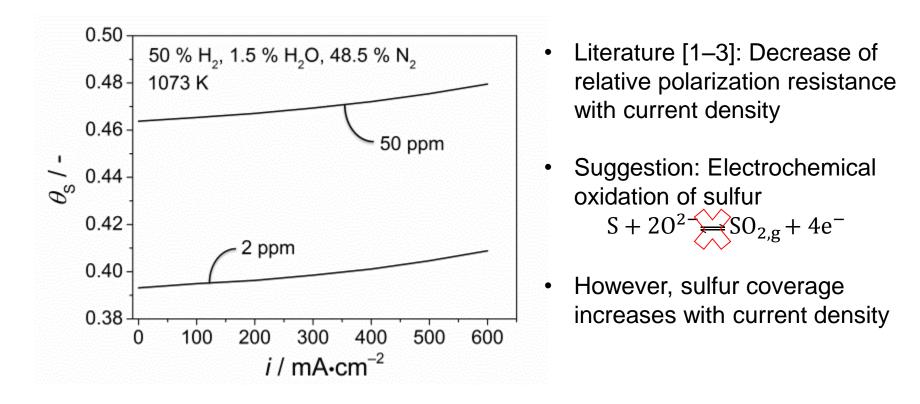
Sulfur poisoning in H₂/H₂O fuels: Impedance modeling Impedance measurements of ASC at 1023 K and different *i*



- Button cell configuration with
 - 500 µm Ni/YSZ anode
 - 10 µm YSZ electrolyte
 - 30 µm LSCF cathode
- Gas phase composition:
 50 % H₂, 1.5 % H₂O, 48.5 % N₂
 <u>1 ppm H₂S</u>
- Good agreement between simulations and experiments for systems <u>with and without</u> sulfur

Exp.: Yang et al., *Energy & Environmental Science*, 3, (2010) 1804

Sulfur poisoning in H₂/H₂O fuels: Performance drops

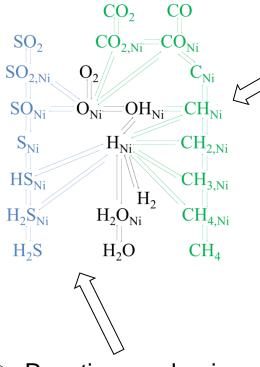

- Button cell configuration with 50 μm Ni/YSZ, 250 μm YSZ and 50 μm LSM
- Gas composition: 50 % H₂, 1.5 % H₂O, 48.5 % N₂, *T* = 1073 K

Sulfur poisoning in H₂/H₂O fuels: Sulfur coverage

- Button cell configuration with 50 μm Ni/YSZ, 250 μm YSZ and 50 μm LSM
- Gas composition: 50 % H₂, 1.5 % H₂O, 48.5 % N₂, *T* = 1073 K

1. Cheng et al., *J. Power Sources*, 172, (2007), 688; 2. Zha et al., *J.Electrochem. Soc.*, 154, (2007), B201; 3. Brightman et al., *J.Power Sources*, 196, (2011), 7182;

Overview


Motivation and aim of the work

Computational methods

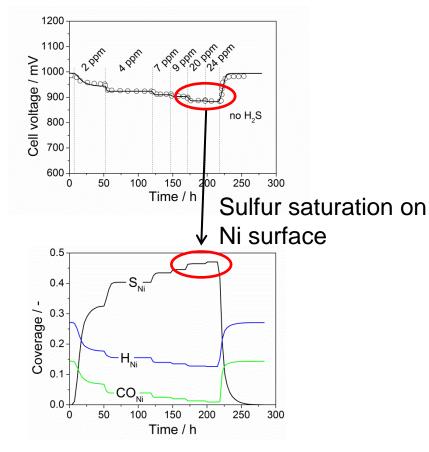
≻Results

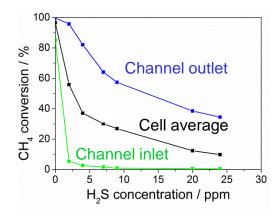
- Reaction mechanism development
- Sulfur poisoning in H_2/H_2O fuels
- Sulfur poisoning of internal methane steam reforming

Sulfur poisoning of internal methane steam reforming

 Reaction mechanism for sulfur poisoning in H₂/H₂O systems

- Elementary kinetic reaction mechanism for methane reforming on Ni/YSZ [1]
 - Global reactions:
 - Methane steam reforming $CH_4 + H_2 O \Longrightarrow 3H_2 + CO$
 - Water gas shift reaction $CO + H_2O \Longrightarrow H_2 + CO_2$
 - Methane dry reforming $CH_4 + CO_2 \rightleftharpoons 2H_2 + 2CO_2$
- 42 surface reactions, 6 gases, 14 surface species


1. Hecht et al., Appl. Cat. A, 295 (2005), 40

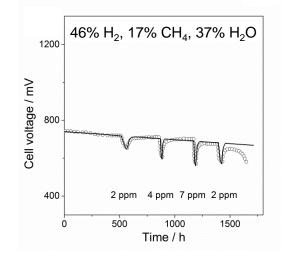


Sulfur poisoning of internal methane steam reforming

Rasmussen, Hagen [1]:

- Sulfur poisoning of methane steam reforming in ASC at $T = 850^{\circ}$ C
- Transient poisoning experiments <u>at OCV</u>

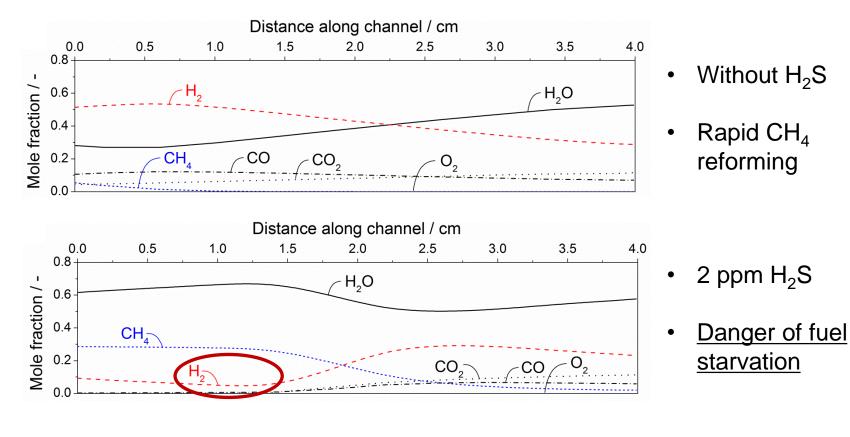

- CH₄ conversion is nearly fully blocked at channel inlet
- Still significant reforming activity at channel outlet



1. Rasmussen et al., Fuel Cells, 10, 2010, 1135

Sulfur poisoning of internal methane steam reforming

- Transient poisoning experiments <u>under current load (i = 1 A·cm⁻²)</u>
- Impedance spectroscopy measurements



 <u>Successful reproduction of</u> experiments at OCV and under polarization

1. Rasmussen et al., Fuel Cells, 10, 2010, 1135

Sulfur poisoning of internal methane steam reforming: Gas phase species distribution

Detailed analysis: Gas phase distribution along the channel T = 850 °C; $i = 1 \text{ A} \cdot \text{cm}^{-2}$; 13 % H₂, 29 % CH₄, 58 % H₂O

Overview

≻Motivation and aim of the work

Computational methods

≻Results

- Reaction mechanism development
- Sulfur poisoning in H_2/H_2O fuels
- Sulfur poisoning of internal methane steam reforming

- An elementary kinetic reaction mechanism has been developed and validated for sulfur poisoning of Ni/YSZ anodes
 - H₂/H₂O systems
 - Internal methane steam reforming
- A thermodynamic and kinetic data set has been compiled
- Sulfur coverage increases with increasing current density
- Own experiments are required for more profound investigation

Acknowledgments

- German network project: "SOFC Degradation"
- Funding by Germany Ministry of Education and Research (BMBF) via grant number 03SF0494C

Thank you for your attention!

