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Binary Robust Invariant Scalable Keypoints (BRISK) is one of several relatively new matching
algorithms aiming to improve well-established algorithms such as Scale-Invariant Feature Transform
(SIFT) or Speeded-Up Robust Features. A detailed evaluation of the BRISK applicability for
geometric registration of remote sensing images is performed. As the original algorithm was not
developed with a focus on remote sensing image matching, a practical processing chain for the
image registration of a newly acquired image with a reference image was developed. This chain
also includes a modified Random Sample Consensus outlier removal based on the sensor-model of
the to-be-registered image. The presented methodology is evaluated and compared to the SIFT
operator in terms of repeatability, accuracy, recall and precision. Our results show that BRISK
performs very well on remote sensing images and together with the sensor-model-based outlier
removal offers a significant improvement over existing image registration methods such as SIFT.

1. Introduction

Geometric image registration is one of the most fundamental prerequisites when working with
multiple remote sensing images. Using satellite orientation and position measurements alone
is often not sufficient to achieve the high geometric accuracies required for many applications
such as image fusion, change detection or digital elevation model (DEM) generation. Imagery
acquired using airborne cameras (e.g. HySpex (Schwind, Schneider, and Müller 2014)) and even
modern satellite platforms (e.g. Skybox (d’Angelo, Kuschk, and Reinartz 2014)) often has to
be corrected using ground control points (GCP) to obtain the desired geometric accuracy.

The two main approaches to automatically obtain GCP from reference images are intensity
(area)- and feature-based image matching (Zitová and Flusser 2003). While intensity-based
algorithms can often achieve a higher accuracy, they are usually computationally more expensive
than feature-based approaches. Another limitation of intensity-based approaches is that they
do not perform ideally if precise information about the rotation and scale of the image is not
available. In addition to that, intensity-based approaches require mostly flat surfaces to perform
optimally. Matching two scenes from different viewpoints will usually result in co-registration
inaccuracies if the scene features elevated objects, such as buildings or trees. Most state-of-
the-art feature-based matching algorithms on the other hand can handle rotation, scale and
viewpoint changes. Another important advantage is the possibility of storing the computed
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descriptors, so they can be reused later to match newly acquired scenes. Therefore, it is often
preferable to employ approaches based on point features to match remote sensing images.

While image registration and feature matching have been under research since the late 1980s
in the remote sensing community (Förstner and Gülch 1987), in recent years, many new ap-
proaches have been developed in the field of computer vision. Arguably the most widely used
methods of these are Scale-Invariant Feature Transform (SIFT, Lowe (2004)) and its derivative
Speeded-Up Robust Features (SURF, Bay, Tuytelaars, and Van Gool (2006)). Subsequently,
many authors developed further feature matching approaches, often promising similar or better
accuracy than SIFT and SURF at reduced runtime. Some of the best known of them are:
• Features from Accelerated Segment Test (FAST, Rosten and Drummond (2006))
• Fast Retina Keypoint (FREAK, Alahi, Ortiz, and Vandergheynst (2012))
• Binary Robust Invariant Scalable Keypoints (BRISK, Leutenegger, Chli, and Siegwart

(2011))
Many of these have been implemented as part of the OpenCV library (Bradski 2000), enabling
an easy comparison for selected challenging test data sets.

Amongst these algorithms, especially SIFT and SURF have been evaluated and adapted
for use in remote sensing applications. One recent application of SIFT was presented by (Ye
and Shan 2014), who registered multi-spectral images using Scale Restriction SIFT for pre-
registration followed by the feature extraction using a local self-similarity descriptor. A different
example for SURF can be seen in (Wang et al. 2015), where SURF descriptors are calculated
for interest points detected using a multi-scale Harris-Laplacian corner detector.

In our preliminary tests using OpenCV, BRISK produced the most promising results out
of all these algorithms. Consequently, we already used BRISK, followed by a sensor-model-
based RANSAC (RANdom SAmple Consensus, (Fischler and Bolles 1981)) to improve the
co-registration accuracy of two HySpex cameras (Schwind, Schneider, and Müller 2014). In
that application, BRISK performed very well, often finding tens of thousands of matches in
one scene pair. However, this was a relatively straightforward matching application, as the
two matched scenes were acquired almost simultaneously from the same view point. Another
important use case is the matching of a newly acquired input image with an older, precisely
georeferenced reference image . The resulting matches are employed as GCP for the estimation
of improved camera and sensor parameters of the input image. Finally, these parameters are
processed together with a digital elevation model to create an orthorectified image. This is a
much more challenging task, as the matched images in such a case are usually acquired at
different times, from different viewing angles and with varying spectral ranges.

Therefore, the objective of this work was to develop an operational processing chain for the
co-registration of an input image with a reference image based on BRISK. Subsequently, the
applicability of the proposed methodology is evaluated in detail for selected test data sets,
measuring the detector performance in terms of repeatability and accuracy and the descriptor
performance in terms of precision and recall. The conducted evaluation shows that BRISK
performs favourable in the context of remote sensing image registration and provides a valuable
alternative to established matching algorithms such as SIFT.

2. Technical background and methodology

In the following subsections, the technical background, required to understand the proposed
processing chain, is provided. Namely, the BRISK algorithm and descriptor are outlined and the
working principle of the used RANSAC based outlier removal is introduced. Finally, in Section
2.3, the image registration processing chain, which makes use of these algorithms, is presented.



2.1. BRISK

Similar to other feature detectors such as SIFT, the BRISK (Leutenegger, Chli, and Siegwart
2011) algorithm can be subdivided into four main processing steps:

(1) Scale space Keypoint Detection
(2) Keypoint filtering and sub-pixel localization
(3) Orientation assignment
(4) Descriptor generation

For the keypoint detection, a pyramid scale-space is built by repeatedly down-sampling the
input image into n octaves ci and n intra-octaves di. The n octaves are created by repeatedly
half-sampling the original image. The intra-octaves di are generated similarly, except that the
first intra-octave d0 is created by down-sampling the original image by a factor of 1.5. Using
the FAST 9-16 detector (Rosten and Drummond 2006), keypoint candidates are selected in the
image pyramid.

In the next processing step, these keypoint candidates are filtered by performing a 3D non-
maxima suppression within the scale-space pyramid. The remaining keypoints are interpolated
to a sub-pixel position. First 2D maxima are estimated by fitting a 2D quadratic function
in a 3−pixel × 3−pixel region in the pyramid layer of the keypoint as well as the bordering
layers. Next, a 1D parabola is fitted to the three maxima to find the 3D maximum in the
scale-space. For performance reasons this step is executed somewhat differently for octave c0,
where FAST 5-8 is used to create the intra-octave d−1 (see (Leutenegger, Chli, and Siegwart
2011) for details).

For the orientation assignment a sampling pattern, resembling that used by the DAISY
descriptor (Tola, Lepetit, and Fua 2010), is applied. The points px of this pattern are paired
with each other and the gradients of these pairs are calculated. In this work, a point pair is
represented by the indices i and j. For the set of all long-distance pairs, L, meaning pairs with
a distance bigger than 13.67t (t is the scale of the keypoint), the gradient g(pi,pj) between the
point pair pi,pj is calculated using the formula

g(pi,pj) = (pj − pi)
I(pj , σj)− I(pi, σi)
‖pj − pi‖2 (1)

where I(px, σx) is the smoothed value around px, computed using a Gaussian filter with stan-
dard deviation σx. Next the average direction gavg of all possible long distance pairs

gavg =
(
gavgx

gavgy

)
= 1
L
·

∑
(pi,pj)∈L

g(pi,pj) (2)

is calculated, with L being the number of long distance pairs. The orientation of the keypoint
can then be calculated by α = atan2(gavgy

, gavgx
), with gavgx

and gavgy
being the average

gradient in horizontal and vertical direction, respectively.
To finally generate the descriptor, the sampling pattern is rotated by α and all pair combina-

tions with a distance smaller than 9.75t are compared to each other. This results in a descriptor
vector with a length of 512 where each element b is defined as

b =
{1, I(pαj , σj) > I(pαi , σi)

0, otherwise (3)



As this binary descriptor does not describe the absolute difference between two points, it is
invariant to monotonic grey value changes between the scenes.

2.2. Sensor-model RANSAC

RANSAC is an algorithm very commonly used in computer vision and remote sensing to remove
matching outliers and estimate the transformation model between two matched images. Usually
an affine or polynomial model is used in RANSAC to transform matches from one image to the
other. While this approach works well for relatively flat scenes, the affine or polynomial 2D image
transformation is not always a good approximation for the sensor model, and does not capture
effects due to undulating terrain and non-linear sensor perturbations. In such cases, RANSAC
would require the use of a high error threshold, which can lead to rejection of good matches and
acceptance of outliers. For the presented application, we chose to use a more accurate approach,
by using the sensor model of the input image for the RANSAC transformation model.

For every RANSAC iteration, two random matches are selected in the input image. Using the
sensor model as defined by Müller et al. (2012), the coordinates of these matches are transformed
to the reference image. The corresponding matching coordinates in the reference images are used
in a least squares fit to estimate the boresight angles of the input image sensor. In the next step,
the sensor model together with the estimated boresight angles is applied to all the remaining
matching coordinates in the input image and the distance of the calculated coordinates to the
matching coordinates in the reference image is calculated. For each RANSAC iteration, the
number of distances below a predetermined threshold is computed, and once the iterations
end, the boresight angles which resulted in the highest such number are accepted as the final
output of RANSAC. In a subsequent processing step, these angles can be used to orthorectify
the input image and align it with the reference image. For a more detailed description of the
sensor-model-based RANSAC, please refer to Schwind, Schneider, and Müller (2014).

2.3. Image registration processing chain

Using the methods described above, implementing a processing chain for multi-sensor matching
and registration is straightforward. First, the input image is brought to the geometry of the
reference ortho image by using the approximate corner coordinates of the image for an affine
transformation. Next, the images are matched using BRISK, resulting in matching coordinates
in both images. Then, the matching coordinates of the input image are transformed back to the
coordinate of the raw input image. These matching coordinates are used as input for the sensor-
model-based RANSAC, which removes outliers from the matches and computes the boresight
angles needed to correct the geometry of the input image. The last step, which is not discussed
in detail in this paper, is to orthorectify the input image using the sensor-model and taking the
boresight angles into account.

The reference implementation of BRISK, available as part of the OpenCV library (Bradski
2000), unfortunately only supports images with 8 bits per channel. To allow the processing
of images with 16 bits per channel and to achieve a better understanding of the algorithm,
we implemented the BRISK algorithm ourselves in C++. For the matching of the BRISK
descriptors, the locality-sensitive hashing (LSH) algorithm in the publicly available Fast Library
for Approximate Nearest Neighbors (FLANN) was used, see (Muja and Lowe 2009).

As remote sensing images can usually be brought to the same scale and orientation before
processing, options to turn off the rotation and scale invariance independently were added. If
the rotation invariance is disabled, the orientation of all keypoints is assumed to be 0◦. If the
scale invariance is turned off, keypoints are still detected at different scales in the scale space



pyramid, but their position is not interpolated in 3D, only in 2D.
To avoid selecting the contrast threshold used by the FAST 9-16 detector for every new

image type, a very low default threshold of 2 is employed for all images. An even interest point
distribution is achieved by subdividing the image into a grid and selecting only the N points
with the highest contrast threshold. In this work, N = 500 points were selected for each grid cell
of 500 pixels × 500 pixels, avoiding manual selection of the contrast threshold. Of course, such
an approach has a negative impact on the runtime of the algorithm, but eliminating the need
for any kind of manual parameter selection is definitely worth this drawback, especially when
using this method in an automated production chain. Also, since the N best points can already
be selected before extracting the descriptor, the impact on the runtime is not very significant.

The RANSAC algorithm is implemented using previously developed sensor-model libraries
(Müller et al. 2012). The error threshold of RANSAC is set to two pixels and the number of
iterations to 200.

3. Evaluation

To test if BRISK followed by sensor-model-based RANSAC is applicable for the matching and
registration of multi-sensor remote sensing images, the proposed methodology was evaluated
rigorously. The examined use case is focused on the matching and registration of a newly
acquired input image with an already orthorectified reference image.

3.1. Evaluation methodology

The evaluation is subdivided in two steps: First, the detector performance is evaluated, by
computing the repeatability (Mikolajczyk et al. 2005) and accuracy of the found keypoints in
the two images. Next, the efficiency of the descriptors is investigated by calculating the recall
and precision (Mikolajczyk and Schmid 2005) of the matches.

The repeatability is defined as the ratio between number of match correspondences (repeats)
and the minimum of the keypoints found in both images. We calculate the distance error εd for
each keypoint pair, used to determine the repeats, according to the following formula:

εd = dk + drs (4)

where dk is the Euclidean distance between the keypoints and drs is the Euclidean distance
between their rotation/scale points. These rotation/scale points are located at a distance s
from the keypoint, which corresponds to the scale and an angle r which corresponds to the
rotation of the keypoint (see Figure 1). Only points with a distance error εd < 2 are included
in the calculation of the repeatability statistics.

The geometric accuracy of the matched points is determined by fitting the sensor model
against all matches and calculating the root mean squared error (RMSE) for these matches.

The precision and recall values computed to evaluate the performance of the descriptors are
defined as the ratio between the true positives to all possible positives and the ratio between
the true positives to the match correspondences, respectively.

The evaluation was performed for both BRISK and SIFT. The SIFT algorithm is widely used
due to its good performance across a wide area of applications, and it provides a good baseline
for the BRISK algorithm. The used SIFT program was implemented in C and has been used
operationally for about 5 years within DLR, meaning it should by now have a similar or better
degree of optimization than the used BRISK implementation. The detection strategy used for
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Figure 1. εd is computed by calculating the distance dk of the keypoints (KP) and the distance drs of their rotation/scale
points (RS). The location of each RS point is derived from the scale s and rotation r of the corresponding keypoint.

Table 1. Evaluation of the BRISK and SIFT detector

# Repeats Repeatability Runtime (s)
BRISK SIFT BRISK SIFT BRISK SIFT

Data set 1 18070 14403 0.25 0.24 132 427
Data set 2 2483 4258 0.07 0.04 36 634
Data set 3 592 873 0.01 0.02 90 354

SIFT is identical to the strategy used for BRISK (see Section 2.3), meaning a very low detection
threshold and the same grid-based approach was used.

3.2. Data sets

Three data sets were selected for the evaluation. The data sets are challenging examples; a
classical pyramidal correlation approach tested previously for these scenes has problems finding
suitable matches. The input images were acquired using ALOS-AVNIR-2 and the reference im-
ages are based on a Landsat ETM+ reference mosaic. For the AVNIR-2 scenes an average of the
four bands was used as input for the matching, while for the Landsat scenes the panchromatic
channel was used. The dimensions of the input images are 7100 pixels × 8000 pixels but after
bringing them to the reference image geometry for matching, their dimensions change to ap-
proximately 10,000 pixels × 10,000 pixels. The data sets were chosen with a focus on landcover
diversity: Data set 1 features a desert area with almost no man-made structures and Data set
2 contains three islands with mostly agricultural areas. The final Data set 3 represents a very
difficult test case, as it mostly consists of rain forest and the input scene features significant
cloud cover. The used input and reference images can be seen in Figure 2.

3.3. Results

The repeatability evaluation results, including the runtime for feature detection and descriptor
extraction are given in Table 1. In all three test cases SIFT produces more repeats than BRISK,
but the repeatability is higher when using BRISK for Data sets 1 and 2. Only for Data set 3,
where both detectors have a very low repeatability, the repeatability of SIFT is higher than
that of BRISK. The runtime of SIFT is at least three times as high as the time required by
BRISK in all three test cases.

Table 2 shows the achieved accuracies of the BRISK and SIFT matches for the three test
data sets. In all test cases, where matches remain after RANSAC, subpixel accuracy is achieved.
For Data sets 1 and 2 SIFT achieved better accuracy than BRISK; however the differences are
minimal.



Table 2. Accuracy of the BRISK and SIFT matches in pixels

BRISK SIFT
RMSE(x) RMSE(y) RMSE(x) RMSE(y)

Data set 1 0.77 0.80 0.72 0.71
Data set 2 0.87 0.67 0.66 0.57
Data set 3 0.97 0.64 - -

Table 3. Descriptor Evaluation

# Inliers # Outliers Recall Precision
BRISK SIFT BRISK SIFT BRISK SIFT BRISK SIFT

Data set 1 w/o RANSAC 5525 771 33 3617 0.31 0.05 0.99 0.18
Data set 1 after RANSAC 4804 709 0 0 0.27 0.05 1.00 1.00
Data set 2 w/o RANSAC 475 173 22 825 0.19 0.04 0.96 0.17
Data set 2 after RANSAC 424 158 0 0 0.17 0.04 1.00 1.00
Data set 3 w/o RANSAC 15 6 32 593 0.03 0.01 0.32 0.01
Data set 3 after RANSAC 11 0 0 0 0.02 0.00 1.00 0.00

The results of the descriptor evaluation are shown in Table 3. While the number of matches
decreased with an increase in the complexity of the data sets, it is notable that BRISK produced
significantly more correct matches in all cases. In terms of recall, BRISK outperformed SIFT
in all three cases by a factor higher than 4. Concerning the precision, the results also favour
BRISK. For Data set 1 and 2, the precision is already close to 1 even without removing any
outliers and for Data set 3 where it is much lower at 0.319 it is still a lot better than the
precision of 0.01 achieved by SIFT.

Concerning the performance of the outlier removal, it can be seen in Table 3 that the sensor-
model-based RANSAC successfully removes the outliers in all test cases. Only in one case,
namely for the matches produced by SIFT for Data set 3, it fails to find any of the valid
matches. In this case however there were only six possible inliers out of 599 matches, making
the outlier removal very challenging.

For visual interpretation, the matches remaining after outlier removal are displayed in Figure
2. As can be seen, for Data set 1 (Figures 2(a), 2(d)) and Data set 2 (Figures 2(b), 2(e)) the
number and distribution of matches over the entire scene is satisfying. For Data set 3 (Figures
2(c), 2(f)) on the other hand there are only 11 matches distributed over the lower half of the
input image. While this is not optimal for the geometric correction, it could be expected as
this data set represents a borderline case for matching, which is also why for SIFT no matches
remain after outlier removal (see Table 3).

4. Discussion and conclusions

Concerning the results of the detector evaluation, it is not easy to say which of the two tested
detectors performed better. For the first data set both methods have very similar repeatability
scores. For Data set 2 BRISK performed somewhat better, but for Data set 3 SIFT achieved a
better score. The very low absolute repeatability can be explained by the fact that a very low
detection threshold was used (see Section 2.3). It would be possible to significantly improve the
repeatability by fine-tuning the detection threshold based on the contrast of the input scenes.



(a) DS1 Input image (b) DS2 Input image (c) DS3 Input image

(d) DS1 Reference image (e) DS2 Reference image (f) DS3 Reference image

Figure 2. Test Data sets containing BRISK (×) and SIFT (+) matches remaining after outlier removal

As the contrast of remote sensing data varies strongly, reliable, automatic processing is not
possible when using a fixed threshold.

For the descriptor tests, the results are less ambiguous. Even though SIFT produced a higher
number of repeats for two of the Data sets (Data sets 2 and 3) and even a higher repeatability in
one case (Data set 3), it generated much less correct matches than BRISK. The ratio of inliers
versus outliers is also much better for the BRISK matches. Together with the computed recall
and precision values, which clearly favour BRISK, the results show that the BRISK descriptor
performs much better than the SIFT descriptor for the matching of the tested remote sensing
images. This is all the more true if the runtime is also considered, as BRISK is at least three
times faster in all test cases. Only the results achieved in the accuracy evaluation favour SIFT
somewhat, if only marginally. In any, case both SIFT and BRISK achieve subpixel accuracy for
the tested data sets.

It was also shown that the robust outlier removal using a sensor-model-based RANSAC
complements the presented BRISK-based processing chain very well. In all test cases most of
the inliers were found while all of the outliers were removed.

After evaluating the presented processing chain, it can be concluded that the detector stage
of BRISK performs similar to that of SIFT if the repeatability is compared. Concerning the
accuracy, SIFT performs marginally better than BRISK. If the runtime of the detection is taken



into consideration however, the BRISK detector is clearly in advantage. This also applies to the
descriptor comparison, where BRISK performed better than SIFT in every evaluated metric.
By using it in the proposed processing chain which makes use of all the geometric knowledge
available, BRISK offers a significant improvement compared to other well-established matching
algorithms such as SIFT.

Considering the somewhat better accuracy of the SIFT detector, it might be worth investigat-
ing a combination of the SIFT detector with the BRISK descriptor in the future. Ideally, when
using such a combination, the BRISK descriptor should be adapted to be able to compute it
in the SIFT scale space to avoid the overhead of computing two different scale spaces. Another
possible improvement could be a different strategy for the descriptor matching. The currently
used LSH algorithm does not make use of the fact that the approximate relative distribution
of the matches is already known. If, for example, the matching algorithm would only compare
descriptors in a selected area instead of all descriptors, the number of correct matches would
likely be increased.
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Zitová, B., and J. Flusser. 2003. “Image registration methods: a survey.” Image and vision computing
21 (11): 977–1000.


