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Abstract: Search-centric, sample supervised image segmentation has been demonstrated as 

a viable general approach applicable within the context of remote sensing image analysis. 

Such an approach casts the controlling parameters of image processing—generating 

segments—as a multidimensional search problem resolvable via efficient search methods. In 

this work, this general approach is analyzed in the context of connected component 

segmentation. A specific formulation of connected component labeling, based on quasi-flat 

zones, allows for the addition of arbitrary segment attributes to contribute to the nature of 

the output. This is in addition to core tunable parameters controlling the basic nature of 

connected components. Additional tunable constituents may also be introduced into such a 

framework, allowing flexibility in the definition of connected component connectivity, either 

directly via defining connectivity differently or via additional processes such as data 

mapping functions. The relative merits of these two additional constituents, namely the 

addition of tunable attributes and data mapping functions, are contrasted in a general remote 

sensing image analysis setting. Interestingly, tunable attributes in such a context, conjectured 

to be safely useful in general settings, were found detrimental under cross-validated 

conditions. This is in addition to this constituent’s requiring substantially greater computing 

time. Casting connectivity definitions as a searchable component, here via the utilization of 

data mapping functions, proved more beneficial and robust in this context. The results 

suggest that further investigations into such a general framework could benefit more from 

focusing on the aspects of data mapping and modifiable connectivity as opposed to the utility 

of thresholding various geometric and spectral attributes. 
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1. Introduction 

Research into operational remote sensing image analysis methodologies continues to enjoy attention 

in response to real-world requirements within the private and public sectors. This is evident in the variety 

of journals, conferences, and workshops within the context of remote sensing methodology, with a 

concomitant increase in niche interdisciplinary sub-disciplines. Two examples, dealing mainly with 

optical data, are Geographic Object-Based Image Analysis (GEOBIA) [1] and mathematical imaging 

within remote sensing [2]. This contribution falls within the context of these two sub-disciplines. 

A new variant of sample supervised segment generation is analyzed, recently presented as a 

conference contribution [3]. Sample supervised segment generation denotes a general search-centric 

methodological framework for generating quality image segments based on the provision of a selection 

of exemplar segments [4–7]. Segments generated via such an approach may be used in further processes 

to progress to a final information product. A connected component (quasi-flat zone) segmentation 

algorithm, specifically an attribute-enhanced variant of Constrained Connectivity (CC) [8–11], is 

embedded into such a sample supervised segment generation framework. The modular and extendable 

nature of the segmentation algorithm allows for the definition of arbitrary attribute criteria to assist in 

shaping the nature of the generated segments. Such tunable attribute criteria are cast as an additional 

parameter constituent within the sample supervised segment generation framework. Additionally, data 

transformation or mapping functions [6] may be added as a constituent in such a framework. Utilizing 

mapping functions falls within the context of defining connected components more elaborately, also 

considered for connected component segmentation algorithms via additional processing (pre-

filtering/post-filtering) [12,13], via analyzing scene-wide statistics [14,15], and via the notion of 

hyperconnections [16–18]. Adding mapping functions into such a framework results in three distinct, 

interdependent parameter constituents that need consideration. 

The contribution of this work is two-fold. Firstly, the feasibility of the proposed framework is 

analyzed to demonstrate that it constitutes a valid optimization problem, having interacting constituents 

and being searchable via metaheuristics. The presented method may be cast as four separate variants, 

using various constituent combinations. Secondly and primarily, the relative merits of the two added 

constituents are contrasted, namely that of additional mapping functions and that of tunable attribute 

criteria. It is demonstrated in a selection of remote sensing image analysis problems, under various metric 

conditions and also under cross-validated conditions, that utilizing geometric and attribute criteria to 

shape the nature of the generated segments may be detrimental. This suggests more careful consideration 

in the utilization of attributes in the context of such a framework. 

This paper is structured as follows. Section 2 presents an overview and review of background 

principles related to the segmentation approach used, as well as some aspects of a sample supervised 

segment generation framework. In Section 3, the investigated method and its variants are detailed. The 
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data used are described in Section 4. In Section 5, the method is experimentally evaluated and its variants 

are contrasted. Concluding comments and prospects for future work are given in Section 6. 

2. Background and Related Work 

2.1. Graph-Based Connected Component Segmentation 

Graph-based connected component segmentation defines a family of image-processing methods 

stemming from work within the broader context of mathematical morphology. See [19] for a general 

overview of mathematical morphology and [20] for an overview of segmentation concepts and 

approaches. Developments and applications within remote sensing mirror the advancements of basic 

research within mathematical morphology. Classic mathematical morphology tools (erosion, dilation, 

and reconstruction filtering) [19] found successful applications within remote sensing, e.g., [21,22]. 

A major development in the proliferation of applications of mathematical morphology tools in remote 

sensing is the notion of a flat zone. A flat zone defines a specific level in a hierarchical image partitioning 

based on grey-level intensities [20,23,24]. Various successful methods and applications have been 

presented based on this notion, e.g., [2,25–28]. This development was elaborated upon with the notion 

of a quasi-flat zone, which relaxes the restrictive definition of a flat zone by introducing a certain level 

of dissimilarity tolerance between pixels (parameter controlled) [8,9,20,29]. Quasi-flat zones form the 

basis of flexible segmentation algorithms, suited to remote sensing image analysis problems. Resultant 

segmentation algorithms have attractive properties, including ease of extensibility and inherent 

modularity [16,29], computational and memory efficiency [9,30,31] (especially in hierarchical 

formulations), uniqueness (same segmentation on repeated runs, some formulations [8]), and 

mathematically rigorous formulations. Efficient data structures and computational efficiencies are major 

considerations in such approaches. Comparative and practical analyses with other commonly used 

segmentation algorithms within remote sensing are needed, e.g., [32]. 

2.2. Constrained Connectivity 

Constrained Connectivity (CC) is an image partitioning or simplification (segmentation) method 

based on the identification of quasi-flat zone connected components [8,10,11,13,29]. Spectral difference 

or grey-level difference is defined as a connectivity relation, denoted by α (alpha) and called the local 

range (parameter). Other constraints may be introduced. This notion was originally developed to address 

the chaining effect of the single linkage clustering method [8]. Quasi-flat zone approaches may be 

considered an alternative or extension of the mathematical morphology approaches applied in remote 

sensingthat considers image local extrema in processing, e.g., [23,33,34]. The algorithm is hierarchical, 

with a fully calculated hierarchy known as an alpha tree. Within an alpha tree, all constraints (parameter 

combinations) are calculated and stored in a tree data structure [9,31], with connected components 

efficiently computed via Tarjan’s union-find algorithm [9,31] (or others). 

CC may be defined as the partitioning of an image into α-connected (alpha) components. Two pixels 

are considered connected (α-connected) if there exists a path between them such that the grey-level 

difference of successive pixels in this path does not exceed a given value (α). The connected component 

(segment) of a given pixel p and other pixels q for a given α may be denoted as follows: 
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ߙ െ ሻ݌ሺܥܥ ൌ ሼ݌ሽ ∪ ሼ|ݍ	ܽ	݄ݐܽ݌	ܵ ൌ ሺ݌ ൌ …,ଵ݌ , ௡݌ ൌ ,ሻݍ ݊ ൐ 1, ,௜݌ሺܦ	ݐ݄ܽݐ	݄ܿݑݏ ௜ାଵሻ݌
൑ 	1	݈݈ܽ	ݎ݋݂ߙ ൑ 	݅ ൏ ݊ሽ 

(1)

D denotes a range function that calculates the difference between the spectral values of two given 

connected pixels. Note that successive segmentations of α-CC are hierarchical (increasing α values) and 

that a unique partition (identical over various runs) is generated. Various approaches [8,31] may be followed 

for computing an α-CC segmentation efficiently, with a priority queue approach followed here [8]. 

A useful additional parameter, namely the global range criterion (w), may also be introduced.  

w constrains the creation of connected components by limiting the maximum spectral difference between 

any two pixels in a connected component. Additional constraining attributes (increasing/non-increasing) 

(“Attr”) may also be further introduced via predicates evaluating the potential connected components. 

The connected component of a pixel may then be described as: 

ሺߙ, ሻݓ െ ሻ݌ሺܥܥ ൌ ሼ݌ሽ ∪ ሼݍ| ܽ ݄ݐܽ݌ ܵ ൌ ሺ݌ ൌ …,ଵ݌ , ௡݌ ൌ ,ሻݍ ݊ ൐
1, ,௜݌ሺܦ	ݐ݄ܽݐ	݄ܿݑݏ ௜ାଵሻ݌ ൑ ߙ ݎ݋݂ ݈݈ܽ 1 ൑ ݅ ൏ ݊ ሺܵሻݔܽܯ݀݊ܽ െ ሺܵሻ	݊݅ܯ ൑   ሽݓ

(2)

with a further predicate (P) able to restrict the growth defined for a given connected component (X) as: 

ܲ൫ሺݓ,ߙሻ െ ሻ൯݌ሺܥܥ ൌ ݁ݑݎݐ ݂݅ ሺܺሻݎݐݐܣ ൑ ,ݐ ݁ݏ݈݂ܽ (3) ݁ݏ݅ݓݎ݄݁ݐ݋

where t denotes a threshold value for a given attribute (e.g., segment area) and Attr a function calculating 

the value of the attribute. For example, during the computation of connected components, if a given 

potential connected component (e.g., X) satisfies the local and global range criteria ሺα,wሻ, but the 

calculated area attribute of the potential connected component exceeds a given threshold value (t), it is 

not substantiated. If the calculated area attribute is below the given threshold value, the connected 

component is substantiated (a visual example of constraining attributes is given in Section 3). 

Max(S) and Min(S) return the maximum and minimum spectral values within path S, respectively. 

Various approaches exist to handle multichannel imagery [8,35,36]. Here a constraint is simply triggered 

for the entire given image (all bands) if any of the composite bands trigger a constraint. 

Figure 1 illustrates an abstract image, with pixel values labeled with their intensity values, as well as 

shaded for easier visualization (lower value = brighter pixel). Bold lines delineate connected component 

borders. Figure 1a shows an image segmented (ߙw-CC) with (0,0)-CC, (1,1)-CC (Figure 1b), (1,2)-CC 

(Figure 1c), and (2,3)-CC (Figure 1d). Dotted lines denote an absence of a path between two pixels for 

the given constraints. 

Figure 2 shows segmentation results using αw-CC on a subset of a real image (arbitrary) to highlight 

general characteristics. Transition regions [10] are characterized by multiple single pixel connected 

components in areas where the transition between homogeneous areas spans several pixels.  

Some approaches may be applied to diminish this effect [10,12] (Figure 2c—Iterative area filtering), not 

considered here owing to experimental anomalies observed with such additional processing.  

Post-processing may simply be applied to remove single pixels (among others). A structure is delineated 

with a red polyline (example element of interest) (a), with segmentation results shown using (25,75)-CC 

(b), a pre-processed [10] image segmented with (25,75)-CC (c) to minimize the effect of transition 

regions and (50,200)-CC (d). 
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(a) (b) 

 
(c) (d) 

Figure 1. An abstract image, segmented with the ߙw-CC method illustrating its general 

characteristics, with (0,0)-CC shown in (a), (1,1)-CC in (b), (1,2)-CC in (c), and (2,3)-CC in (d). 

 
(a) (b) 

 
(c) (d) 

Figure 2. An image subset (a) segmented with (ߙw-CC) to show its common characteristics 

on real imagery, with the local and global range parameters set to 25 and 75 (b), 25 and 75 

with a region growing filter (c), and to 50 and 200 (d), respectively. The red polyline 

indicates an example element a user might be interested in. 
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2.3. Metaheuristics 

Metaheuristics constitutes a class of optimization algorithms (minimization or maximization) which 

are commonly multi-agent and stochastic in nature, and contain elements of search intensification and 

search diversification (see e.g., [37] for an overview). Many metaheuristic algorithm designs are inspired 

by naturally occurring search processes. Their main practical utility is in reducing computing costs to 

obtain optimal, or, more typically, near optimal results. Their application needs careful consideration in 

the choice of metaheuristic to be used (applicability, no free lunch theorem, search landscape 

characteristics), the handling of meta-parameters (meta-optimization, self-adaptation, empirical tuning, 

hyper-heuristics) and the nature of statistical evaluations and reporting being some examples [38–42]. 

Their utility in a certain context may be evaluated via experimentation [39], with robustness, absolute and 

relative results, standard deviation, required computing times, and search process characterization some of 

the measurable aspects. Their application in remote sensing image analysis is wide; they are employed for 

feature selection and generation, classification processes, and various image-processing tasks. 

Here a selection [43] of classic metaheuristics and simpler search algorithms is employed and 

evaluated as parameter optimizers in the investigated framework. More specifically, classic variants of 

two well-known real-valued population-based optimizers are used, namely Differential Evolution (DE) [44] 

and Particle Swarm Optimization (PSO) [45]. The “DE/rand/1/bin” [44] variant of DE is used with meta-

parameters empirically tuned (30 Agents, F = 0.75, CR = 0.3). Similarly, for PSO (30 Agents, Inertia 

Weight = 0.7, Best own weight = 1.5, Best weight = 1.5). A Hill Climber (HC) is also employed (D = 

30), along with random sampling (RND). 

2.4. Empirical Discrepancy Metrics 

Empirical discrepancy metrics [46] constitute a family of measures used to evaluate the quality of 

image segmentation. They are supervised, as they need a reference or ground truth to compare generated 

results with produced results. Notions of geometry, overlapping area, boundary offsets, and content are 

commonly encoded in such metrics, either via producing a singular result or as separate results (multi-

objective frameworks). Analytical or unsupervised measures may also be considered [47]. A selection 

of empirical discrepancy metrics is employed here, namely the Reference Weighted Jaccard (RWJ) [6], 

Reference Bounded Segments Booster (RBSB) [48], and the Partial and Directed Object-Level 

Consistency Error (PD_OCE) [6,49]. They are chiefly based on the concept of area overlap, with the 

ability to measure notions of over- and under-segmentation. These metrics are summarized in Table 1 

([6,48,49]) (set theory notation), with R and S denoting a reference and generated (S) segment 

respectively. I is an iterator running through all generated segments (S) intersecting R. Their 

formulations are substantially different (some more precise, some more general), allowing for a varied 

interpretation of results and also for creating variation in search landscape characteristics (when 

employed to direct a search process). The optimal result for an evaluation is zero. 
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Table 1. The three empirical discrepancy metrics employed to measure the quality of 

generated segments against the provided reference segments. 

Metric Formulation Reference 

RWJ 1 െ෍
|ܴ ∩ ௜ܵ|
|ܴ ∪ ௜ܵ|

ൈ
|ܴ ∩ ௜ܵ|
|ܴ|

௡

௜ୀଵ

 [6] 

RBSB 
|ܴ ∪ ܵ| െ |ܴ ∩ ܵ|

|ܴ|
 [48] 

PD_OCE 1 െ෍
|ܴ ∩ ௜ܵ|
|ܴ ∪ ௜ܵ|

ൈ
| ௜ܵ|

∑ ห ௝ܵห௡
௝ୀଵ

௡

௜ୀଵ

 [6,49] 

2.5. Sample Supervised Segment Generation 

Sample supervised segment generation comprises a general image processing approach where an 

image segmentation task is cast as a search or optimization problem. A segmentation algorithm is 

defined, with its controlling aspects cast as variables or parameters forming a multidimensional search 

problem. Such an approach was initially proposed to simply tune the free parameters of a given 

segmentation algorithm for a given image analysis task [4]. Research into this general approach has been 

presented in various image analysis disciplines e.g., [4,7,50], including remote sensing [5,6,51]. 

Generally an appropriate level of a hierarchical segmentation algorithm is sought for a given image 

element type (e.g., specific buildings). In general, metaheuristics are employed as optimizers and 

empirical discrepancy metrics to drive the search process. Alternatively said, empirical discrepancy 

metrics may define the search landscape. Note that sample supervised segment generation is a specific 

implementation of the more general notion of image analysis via efficient search. See [52] for a primer. 

The method presented in Section 3 follows this general approach of sample supervised segment 

generation, where more detail may be found. 

Various aspects of such an approach have been examined, including the applicability of various 

search methods e.g., [6,51], metric behavior [53,54] and the performance of domain-specific 

segmentation algorithms in this context [6,50]. Generalizability to unseen data, sampling requirements, 

method extensions, and method integration are open topics [6,54,55]. Note that parameters may also 

define construction processes of lower-level building blocks for image analysis, with mathematical 

morphology and genetic programming well suited to such designs [56,57]. 

3. Method 

3.1. Method Details 

A variant of sample supervised segment generation is presented [3] (conference paper), incorporating 

mapping functions for data adaptation and additional attributes for constraining segment growth. Figure 3 

illustrates the architecture of the method, which is based on the general architecture of sample supervised 

segment generation [4]. The main distinguishing aspect of this variant is the three interacting parameter 

constituents handled by the given optimizer. 

Initially a selection (5–50) of samples or reference segments is provided for the method, obtainable 

by various means (manual, semi-automated, or automated). A pre-processing phase conducted 
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exclusively to save computing costs extracts image subsets centered over the reference segments.  

This may impact results in scenarios with non-unique segmentation algorithms. CC as used here 

generates unique results. The image subsets and accompanying reference segments are given as input to 

the optimization loop (see Figure 3). 

 

Figure 3. The architecture of the sample supervised segment generation method 

incorporating data mapping functions and attribute thresholding [3]. IEEE© 2013. Reprinted, 

with permission, from [3]. 

During the optimization loop phase, an optimizer (e.g., DE) traverses a parameter set over a certain 

number of iterations, which may control various image-processing functions on the image subsets.  

Three constituent parameter sets are defined in this method. Firstly, the controlling parameters of a given 

data mapping function transform or map the image subsets to a new domain. A few mapping functions 

are investigated with this method, detailed in Section 3.2. The transformed image subsets are subjected 

to the CC segmentation algorithm, with the optimizer providing the values for the local and global range 

parameters. This two-dimensional parameter set is the second constituent. The third constituent is a 

selection of segment spectral and geometric attributes, with the generated values defining attribute 

thresholds preventing segment growth within the attribute-enhanced CC framework. The image subsets 

are thus transformed and segmented, with the three-parameter constituents controlling the characteristics 

of the generated segments. 

The generated segments are evaluated (averaged) against the provided reference segments via a given 

empirical discrepancy metric. The RWJ, PD_OCE, and RBSB metrics are used here. The metric score 

is given to the optimizer as feedback of the performance of the given parameter set (all three 

constituents). The optimizer uses the information on quality to direct its search process for the next 

iteration of the optimization loop. Various termination criteria are possible for the optimization loop; 

here it is simply terminated after a certain number of iterations. 

Finally after the optimization loop terminates, the best performing parameter set is given as output. 

The entire image may subsequently be segmented with the same image processing as employed in the 

optimization loop, with the image processing operators set with the output parameter set. Note that data 
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mapping is conducted for segment generation and the byproduct is not used in further image processing. 

Also, the search process is used only during the training phase. 

Note that there exists an optimal achievable result, within all the parameter value combinations.  

This result may not be perfect, i.e., not match the provided reference segments exactly, but is as good as 

it can get. In practice an exact match is highly unlikely. Also note that a search method may fail in 

finding the optimal achievable result. Multiple optimal achievable results are also possible, e.g., multiple 

parameter sets delivering the same optimal achievable metric score. 

The three parameter constituents of the method are evaluated for their relative usefulness in a general 

setting. The presented method may function in four distinct ways. Firstly, the method may simply 

optimize the two parameters of CC, without any extra data mapping of attribute thresholding processes. 

This variant is simply called CC. Secondly, additional constraining attributes may be introduced, with 

this variant called CC + Attr (Attributes). Alternatively, CC may function with an additional mapping 

function, called CC + Map (Mapping function). As depicted in Figure 3, the full method entails tuning 

all three constituents, called CC + Attr + Map. Figure 4 illustrates an example of an 11-dimensional 

parameter set traversed by an optimizer in the full formulation of the method (CC + Attr + Map). 

Constituents are detailed in the next sections. 

 

Figure 4. An example of an 11-dimensional parameter set traversed by the CC + Map + Attr 

full method variant. Example parameters within each constituent are written vertically. 

In the situation of discrete parameter quantization (byte and short in this implementation), Figure 4 

illustrates an optimization problem with more than 3 ൈ 10ଶଷ unique parameter combinations. The nature 

of the image processing (which these parameters control) dictates the difficulty of the search problem. 

An efficient search method may only search a fraction of such a space to obtain an optimal or near 

optimal result. This is strongly dependent on the “searchability” of the resultant search surface [4]. The 

validity of the proposed method as a valid optimization problem is also investigated, with a selection of 

optimizers experimentally evaluated. Details of the mapping functions used and their attribute 

constituents are briefly given. 

3.2. Mapping Functions 

In the generic formulation of CC, basic dissimilarity is defined by the spectral difference between 

two pixels. Alternative definitions of connectivity may be considered as detailed in Section 2.2. In this 
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work an indirect approach is followed, where spectral dissimilarity is changed externally via a data 

mapping function. Adding mapping functions shows promise for increasing the optimal achievable 

segmentation quality in similar frameworks in the context of remote sensing image analysis [6].  

Some works have been proposed to reduce the influence of gradient zones based on external  

processing [8,13] in the context of CC. Three mapping functions are tested [6], briefly described below. 

Figure 5 illustrates example results by running these functions. In this work three image bands (eight-bit 

quantization) are assumed. 

 
(a) (b) (c) (d) 

Figure 5. Example output of the three used mapping functions on an arbitrary test image  

(a). Parameters were assigned random values. The red polyline denotes an example element 

of interest; (b) shows output of the SS function (note the creation of sharp gradients);(c) 

shows output from the transformation matrix, while (d) shows the output from the GT 

function. Note the non-linear stretch of the output from the GT function. 

3.2.1. Spectral Split 

Spectral Split (SS) [6] is a simplistic function able to create artificial edges in gradient zones, based 

on the tuning of two parameters. It is given by: 

݂ሺݔሻ ൌ ݔ െ ሺݔ െ ሻ݌ ൅ ݔሺ݊݃݅ݏ െ ሻ݌ ൈ ݄, ݂݅ ݔሺݏܾܽ െ ሻ݌ ൑ ݄, ሻݔሺ݂	݁ݏ݈݁ ൌ (4) ݔ

where p defines a position in the spectral domain (band specific) and h defines the magnitude of spectral 

change around the given spectral position (p); x remains unchanged if not falling within the required 

bounds (h). The function is useful in scenarios where the boundaries of elements of interest are not 

distinct or span multiple pixels. Sign extracts the sign of the number, with zero given a positive sign. 

3.2.2. Transformation Matrix 

A transformation matrix (LIN) with three image bands is used as a mapping function.  

Considering three input bands, nine parameters (a–i) define the transformation matrix. A pixel  

(n1–n3/b1–b3) is defined by the point matrix: 

൥
݊1
݊2
݊3
൩ ൌ ൥

ܽ ܾ ܿ
݀ ݁ ݂
݃ ݄ ݅

൩ ൥
ܾ1
ܾ2
ܾ3
൩ (5)

The range of the parameters is set to [−0.2, 1], allowing for the enhancement of negative band 

correlations if present and if found useful by a search process. 
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3.2.3. Genetic Transform 

A function, developed as a parameterized low-level image processing method for image  

enhancement [58], consists of four parts conducting data stretching (parameters p1–p5) and weighs their 

contribution based on additional weighting parameters (parameters p6–p10). For convenience the 

function is called Genetic Transform (GT). It is written as: 

݂ሺݔሻ ൌ
ሺ1	݃݋݈ ൅ ݁௣ଵିଵ 	ൈ ሻݔ

1݌
ൈ 7݌ ൅

ሺ1 ൅ 2ሻ௫݌ െ 1
2݌

ൈ 8݌ ൅
1

1 ൅ ሺ
ሺ1 െ ሻݔ
3݌ ሻ௣ସ

ൈ 9݌

൅
1

ሺ1ݔ ൅ 6݌ െ 1ሻ௣ହ
ൈ  10݌

(6)

As with the SS function, the GT function may assist in sharpening boundaries in image elements.  

In the case of GT, this is achieved via parameterized non-linear data stretching. 

3.3. Attributes 

Six attributes are defined for consideration as additional thresholding criteria in the presented method. 

Table 2 summarizes the used attributes and their given ranges. Area, variance, and perimeter are simple 

attributes, conjectured to add some benefit in many instances. The gray level difference histogram (CH), 

defined here with five bins (CH1–CH5), counts the number of instances of gray level differences in a 

segment falling within the given bin constraint. Here a 4-connected pixel design is considered. The bin 

ranges are given in Table 2. For example, if a segment contains only two pixels and the spectral 

difference between them is 7 (intensity difference), the second bin (CH2) will have a value of 1. The 

other bins (CH1, CH3, CH4, CH5) will have a value of zero. 

Note the intrinsic link between the gray level difference histogram bins and the local and global range 

parameters of CC. Small values of the local and global range parameters may lead to empty CH bins. 

All attributes are computed incrementally during the execution of CC (if attributes are used). 

Table 2. Implemented attributes for consideration in the context of CC segmentation, 

specifically in the CC + Attr and CC + Attr + Map method variants. 

Attribute Range Description 

Area [0..500] Segment area measured in number of pixels 

Standard Deviation [0..255] Segment spectral standard deviation 

Perimeter [0..500] Number of pixel edges forming the perimeter 

Smoothness (SMT) [0..30] Perimeter/sqrt(area) 

Compactness (CMP) [0..30] Perimeter/bounding box edge length 

Gray level difference Histogram,  

five bins (CH1–5) 

[0..500] Bins: CH1:[0..5], CH2:(5..10], 

CH3:(10..15], CH4:(15..20], CH5:(20..255] 

Number of edge weights falling within 

specified bins. Five bins are defined. 

Figure 6 illustrates the same image subset as shown in Figure 2, with the local range parameter set to 

50 and the global range parameter to 200, but with additional constraining attributes added for 

illustration. Specifically, Figure 6a shows the addition of the area attribute set to 800 in this instance. 

Compare with Figure 2d, where the local and global range parameters are the same. Figure 6b shows the 
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addition of the CH1 bin, set to 300. Intuitively the impact of the constraints may be interpreted as the 

largest segments possible (hierarchical) under a local range of 50 (or lower), still satisfying a global range 

of 200 in addition to an area criterion of 800 (Figure 6a) or a CH1 criterion of 300 in the case of Figure 6b. 

 
(a) (b) 

Figure 6. An image subset segmented with the local range parameter set to 50 and the global 

range parameter set to 200. Additional constraining attributes are introduced, specifically 

area, with a value of 800 (a) and CH1 (b) with a value of 300. 

4. Data 

Three image analysis tasks or problems were defined for evaluating the performance of the method 

variants (subset of data used in [6]). The aim was to segment structure subtypes accurately. The resulting 

segmentation, of maximal achievable quality, may be used in further processing methodologies. For each 

dataset a characteristic structure type was identified and defined as the element of interest. 

Figure 7 illustrates subsets of the data and enlargements over elements of interest. Site 1, titled 

Bokolmanyo, depicts a refugee camp with easily identifiable tents as the elements of interest. In practice 

this problem could be approached with a simple single-layer segmentation and classification method. 

Site 2 (Jowhaar) and Site 3 (Hagadera) depict more difficult image analysis problems. The Jowhaar 

problem entails segmenting metal-roofed structures, with variation in roof geometry and reflectance angles 

ensuring a more challenging problem. Similarly the Hagadera problem entails segmenting metal-roofed 

structures, but with much larger variations in reflectance and geometry. A range of problem difficulties 

is thus presented, with a comparative analysis of segment quality the focus, rather than the final 

segmentation accuracies. 

For each problem a number of reference elements were digitized and used as input to the presented 

method variants. Table 3 details some metadata of the three datasets used. All imagery consists of three 

bands, fully preprocessed and standardized to 8-bit quantization. The number of reference segments used 

is also given. Two-fold cross-validation is performed in experimentation, thus a random selection of half 

of the reference segments is used to drive the search process. The training and testing sets are constantly 

changed between experimental runs. Preliminary experimentation with varying sampling sizes was 

conducted to find stable results under cross-validated conditions. At least 20 runs per experiment are 

also advocated (detailed in the next section). This coupled with two-fold cross-validation in each run 
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ensures a measure of generalizability in results. Note that study area size is not an important consideration. 

Subset images are generated, centered on the provided reference segments (e.g., Figures 2,5,6). 

 
(a) 

 
(b) 

 
(c) 

Figure 7. The three image analysis tasks defined for evaluating the method variants, namely, 

thematically correctly segmenting tents in the Bokolmanyo problem (a) and metal-roofed 

structures in the Jowhaar (b) and Hagadera (c) problems. 

Table 3. The datasets, with accompanying metadata, used for evaluating the method variants 

(adapted from [6]). 

Test Site Target Elements Sensor Spatial Resolution Reference Segments Channels Date Captured 

Bokolmanyo 1 Tents GeoEye-1 0.5 m 28 1, 2, 3 24/8/2011 

Jowhaar 1 Structures GeoEye-1 0.5 m 40 1, 2, 3 26/02/2011 

Hagadera 2 Structures WorldView-2 0.5 m 38 4, 6, 3 07/10/2010 

1 GeoEye, Inc.© 2011, provided by e-GEOS S.p.A., under GSC-DA, all rights reserved.; 2 DigitalGlobe, Inc.© 

2010, provided by EUSI under EC/ESA/GSC-DA, all rights reserved. 

5. Experimental Evaluation 

The presented method is firstly analyzed to verify that it constitutes a multidimensional search 

problem with parameter interdependencies measured among all constitute components (Section 5.1).  

A range of common metaheuristics is then tested on the method, evaluating the merits of using more 

complex search methods compared with simpler search strategies (Section 5.2). Finally an extensive 

relative comparison is conducted (Section 5.3) on the four method variants under a variety of metric and 
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problem conditions. The merits of the variants are highlighted via measuring computing costs and 

generating a statistical ranking under cross-validated conditions. 

5.1. Parameter Interdependencies 

The parameters of the CC + Attr + Map method variant, specifically using the GT function for 

mapping, are profiled for interdependencies using a statistical parameter interdependency test.  

Without interdependencies among constituents, such a multidimensional problem may be decomposed 

into smaller, independently solvable problems. The test, able to profile the frequency of parameter 

interdependencies [59], is briefly described. 
A given parameter x୧ is affected by another x୨ if a change in the ordering of solution finesses is 

observed by independently varying values for x୧ and x୨ in arbitrary full parameter sets (a, b). Formally, 

x୧ is affected by x୨ if 

݂ሺܽሻ ൑ ݂ሺܾሻ & ݂ሺܽ′ ሻ ൐ ݂ሺܾ′ ሻ ݄ݐ݅ݓ

ܽ ൌ ሺ… , ,݅_ݔ … , ,݆_ݔ … ሻ	

ܾ ൌ ሺ… , ,′݅_ݔ … , ,݆_ݔ … ሻ	

ܽ′ ൌ ሺ… , ,݅_ݔ … , ,′݆_ݔ … ሻ	

ܾ′ ൌ ሺ… , ,′݅_ݔ … , ,′݆_ݔ … ሻ 

(7)

where the function f is the RWJ measure in this implementation. 

This test may be repeated multiple times to generate an indication of the frequency of parameter 

interaction. A table may be generated, with the parameters labeled in the first column denoted as being 

affected by the parameters listed in the first row, if a value above zero is generated. 

The parameter interdependency test is repeated 100 times for each parameter pair, using the  

CC + Attr + Map method variant for all three problems. The RWJ metric was used to judge a change in 

segment quality. Note that the metric can measure notions of over- and under-segmentation. Tables 4–6 

report the number of affected cases for all parameters over the allocated 100 runs. For each problem 

having differing characteristics, both the parameters of the CC algorithm are shown with a random 

selection of parameters investigated for the GT mapping function and attribute thresholds. A method 

constituent (vertically listed “Mapping function”, “CC parameters” and “Attributes”) will be considered 

unaffected by another constituent (horizontally listed) if all values within the given sub-division are zero. 

In all three problems, all parameter constituents are affected by all other constituents. The degree of 

interaction ranges from frequent, e.g., in the case of CC parameters and attribute thresholds affected by 

mapping function parameters, to very infrequent, such as in the case of the CC parameters affected by 

attribute thresholds. Generally, the investigated mapping function parameter affects other parameters 

most frequently. Interaction is present in all cases. This validates the presented method as a singular 

optimization problem. Note that the magnitude of the variation in solution quality is not recorded in 

these tests. Relative solution qualities are investigated in Section 5.3. Interestingly, note that the global 

range parameter is commonly affected more by the local range parameter (than vice versa), even though 

modifying the local range parameter beyond the value of the global range parameter has no effect [10]. 
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Table 4. Interdependency test of the method constituents for the Bokolmanyo problem.  

Note that all constituents affect one another. The mapping function affects all parameters 

most frequently. 

Bokolmanyo 
Mapping Function CC Attributes 

GT1 GT2 GT10 Local Global Area Std CH2 

Mapping 

function 

GT1  15 19 2 0 3 0 2 

GT2 36  29 3 0 2 3 2 

GT10 38 12  4 0 2 1 3 

CC 
Local 6 13 11  1 2 0 1 

Global 31 15 24 12  6 0 2 

Attributes 

Area 19 28 22 2 1  0 3 

Std 21 25 32 1 1 11  2 

CH2 13 11 9 1 0 1 0  

Table 5. Interdependency test of the method constituents for the Jowhaar problem. 

Jowhaar 
Mapping Function CC Attributes 

GT3 GT4 GT9 Local Global Perim Smooth CH1 

Mapping 

function 

GT3  33 20 3 0 1 0 1 

GT4 8  9 4 0 0 1 0 

GT9 19 34  4 2 1 1 1 

CC 
Local 13 16 11  7 0 2 0 

Global 17 18 20 12  10 0 4 

Attributes 

Perm 20 24 18 2 3  1 6 

Smooth 8 3 2 1 0 0  0 

CH1 12 14 16 2 0 5 1  

Table 6. Interdependency test of the method constituents for the Hagadera problem. 

Hagadera 
Mapping Function CC Attributes 

GT6 GT7 GT8 Local Global CH3 CH4 CH5 

Mapping 

function 

GT6  27 15 3 3 3 1 3 

GT7 29  25 5 1 4 1 2 

GT8 23 33  7 4 1 0 1 

CC 
Local 10 7 9  4 3 1 4 

Global 27 13 20 6  4 0 0 

Attributes 

CH3 6 3 3 0 0  1 4 

CH4 4 3 2 0 0 0  0 

CH5 3 2 0 0 0 1 0  

For illustrative purposes, Figure 8 shows exhaustive fitness calculations (RWJ metric) for arbitrary 

two-dimensional slices of the parameter space (also called the search surface). Figure 8a shows the 

interaction of the local range parameter of the CC algorithm interacting with the B1 parameter of the 

spectral split mapping function. Note two local optima. All other parameters were given initial random 

values and were kept constant during the generation of the search surface. Figure 8b illustrates similarly, 

with a simpler interaction (single optimal) between thresholds of the CH1 attribute and the local range 
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parameter of CC. Note that these figures are illustrative of parameter interactions and may be vastly 

different (more complex/less complex) under different external parameter conditions. 

5.2. Search Surface Complexity 

In Section 5.1, it was shown that parameter interactions exist in the presented method.  

Some interactions are frequent in the case of selected constituents. Here we investigate the applicability [39] 

of a range of search methods to traverse the search surfaces of the four method variants. Intuitively the 

CC variant of the method, with a relatively simple interaction between the local and global range 

parameters, would not be a difficult search problem. Simple parameter tuning would be feasible in such 

a scenario using the CC variant of the method, or a simple grid search or random parameter search. 

(a) (b) 

Figure 8. Two-dimensional parameter plots, or search surfaces, demonstrating parameter 

interactions between method constituents: (a) illustrates the interaction of the alpha 

parameter from the CC constituent and that of a mapping function parameter, while (b) 

shows the interaction of alpha with the CH1 attribute. 

The four method variants are run on the Bokolmanyo problem (GT mapping), conjectured to exhibit 

the simplest search surfaces. Four search methods, namely random search (RND), HillClimber (HC), 

standard particle swarm optimization (PSO), and a standard variant of Differential Evolution (DE) are 

investigated (Section 2.3). The RWJ metric is used to judge segment quality. The search process is 

granted 2000 iterations. Thus, although the tested search methods have vastly different mechanisms 

(single or population-based, stochastic or deterministic), they are evaluated based on an equal computing 

budget. Each experiment is repeated 20 times. Averages over the 20 runs are quoted, with the standard 

deviations also given. The CC method variant has a two-dimensional parameter domain, the CC + Attr 

variant 12 dimensions, CC + Map also 12 and the CC + Attr + Map method variant 22. Cross-validation 

was not performed, as search method progress and feasibility were evaluated. 

Table 7 lists the optimal achieved metric scores (RWJ) given 2000 search method iterations.  

The shaded cells indicate the search methods achieving the best scores for each method variant. Various 

ties in optimal results among the search methods are noted. Firstly, on examining the CC method variant, 
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as expected, no benefit is seen from using more complex search methods. Note that even on this simple 

search surface, the HC method could not find the global optimal routinely. Similarly, adding attribute 

thresholding as additional parameters (CC + Attr) gave similar results across the different search 

methods. Again, HC performed worse than the other methods. In these two method variants, RND, PSO, 

and DE routinely generated the optimal results. Note that initialization of the parameters in the search 

processes was random (as opposed to, for example, distributed hypercube sampling). Interestingly, none 

of the search methods was able to find optimal values on the edge of the search domain when attributes 

were introduced (owing to random initialization). 

Table 7. Performance of the four search methods on the four method variants. In the simpler 

CC method variants (CC and CC + Attr), no benefit is noted from using more advanced 

search methods. In the case of the higher dimensional method variants (CC + Map and CC 

+ Attr + Map), using an advanced search method becomes necessary. 

 CC CC + Attr CC + Map CC + Attr + Map 

RND 0.429 ± 0.000 0.448 ± 0.000 0.186 ± 0.012 0.193 ± 0.015 

HC 0.442 ± 0.009 0.535 ± 0.144 0.507 ± 0.083 0.538 ± 0.159 

PSO 0.429 ± 0.000 0.448 ± 0.000 0.167 ± 0.012 0.163 ± 0.008 

DE 0.429 ± 0.000 0.448 ± 0.000 0.161 ± 0.003 0.163 ± 0.003 

Considering the CC + Map and CC + Attr + Map variants of the method, the more complex search 

methods (PSO, DE) performed substantially better (statistically significantly different, Student’s t-test 

with a 95% confidence interval) than the RND and especially the HC search method. A difference in 

0.030 in the case of the RWJ metric when results approach their optimum is in a practical sense very 

noticeable. This suggests that under the higher dimensional problem conditions, with more complexities 

introduced by a mapping function, stochastic population-based search strategies (or others) are needed. 

Note the slight decrease in standard deviation in the most complex method variants. Also, as generally 

documented [60], the generic variant of DE performed slightly better than the generic variant of PSO. 

Further results are presented exclusively with the DE method. 

Figure 9 shows the search progress profiles over the allocated 2000 iterations (averaged over 20 runs) 

for the CC (Figure 9a), CC + Attr (Figure 9b), CC + Map (Figure 9c), and CC + Attr + Map (Figure 9d) 

method variants. Note that in the simpler method variants (CC and CC + Attr), the optimal results are achieved 

within 100 method iterations. The more complex method variants (CC + Map and CC + Attr + Map) need 

substantially more search iterations to achieve optimal or near-optimal results. Figure 9c,d also shows 

that under the more complex problem formulations, PSO and DE provide better results relatively early 

on in the search process, suggesting their use even under constrained processing conditions. These plots 

reveal that method termination may be suggested at around 1000 iterations in these method formulations, 

or an alternative termination condition may be encoded based on derivatives observed between 500 and 

1000 iterations. 
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(a) (b) 

 

(c) (d) 

Figure 9. Search method profiles for the four method variants, namely CC (a), CC + Attr (b), 

CC + Map (c), and CC + Attr + Map (d). Note the increased performance of DE and PSO 

when considering the CC + Map and CC + Attr + Map method variants. 

5.3. Method Variant Performances 

The four presented method variants are evaluated, relative to one another, based on maximal achieved 

metric scores under cross-validated conditions. Profiling such relative performances in general may give 

an indication of the merits of the constituents in such a framework. Computing times are also contrasted, 

as well as convergence behavior, which are important considerations to reduce method processing times. 

For each problem (Bokolmanyo, Jowhaar, Hagadera), the four method variants are run using all three 

detailed empirical discrepancy metrics. Each experiment is repeated 20 times, with averages and 

standard deviations reported. For each site a random mapping function was selected (SS, LIN, or GT). 

In addition, the best results obtained during the 20 runs are also reported. Thus for each method variant, 

nine differentiated segmentation tasks (problem type, metric characteristic) are evaluated with over 50 

million individual segment evaluations conducted. 
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Tables 8–10 list the achieved metric scores for the problems under different metric and method variant 

conditions. Note that method variants may be contrasted based on a given metric and not via different 

metric values. On examining Table 8, depicting the Bokolmanyo problem, it is clear that the more 

elaborate method variants employing a mapping function (LIN in this case) and a mapping function plus 

attributes generated superior results compared with the CC and CC + Attr variants. Interestingly, under 

cross-validated conditions, the addition of constraining attributes (CC + Attr) created an overfitting scenario, 

resulting in worse performances compared with not employing constraining attributes. 

The performances of CC + LIN and CC + Attr + LIN are similar, with the given metric dictating the 

superior method. Under the RBSB metric condition the CC + LIN method variant displays extremely 

sporadic results. This suggests that the search surfaces generated under this condition contain numerous 

discontinuities, creating difficulties for the DE search method. This may be due to the formulation, or 

nature, of RBSB. It is reference segment centric. In contrast, considering the CC + Attr method variant, 

the RBSB metric proved robust and similar to the CC variant in terms of optimal results. 

Table 8. Method performance on the Bokolmanyo problem. Note the improved results with 

the CC + LIN and CC + Attr + LIN method variants under all metric conditions. 

  CC CC + Attr CC + LIN CC + Attr + LIN 

RWJ 
Avg 0.465 ± 0.000 0.520 ± 0.035 0.239 ± 0.020 0.235 ± 0.026 

Min 0.465 0.476 0.211 0.200 

RBSB 
Avg 0.299 ± 0.000 0.308 ± 0.009 0.262 ± 0.235 0.185 ± 0.034 

Min 0.299 0.301 0.136 0.144 

PD_OCE 
Avg 0.538 ± 0.009 0.556 ± 0.030 0.233 ± 0.016 0.244 ± 0.026 

Min 0.526 0.514 0.199 0.205 

The Jowhaar problem (Table 9) displays a slightly different general trend. Under all metric conditions 

the mapping function method variant (CC + SS) proved superior to both the attribute (CC + Attr) and 

combined mapping function and attribute (CC + Attr + SS) method variants. Under cross-validated 

conditions, no benefit was seen from employing attributes, commonly leading to worse results. Note that 

generally the absolute results were poorer compared with the easier Bokolmanyo problem. 

Table 9. Method performance on the Jowhaar problem. The method variant employing a 

data mapping function (CC + SS) performed the best under all metric conditions. 

  CC CC + Attr CC + SS CC + Attr + SS 

RWJ 
Avg 0.551 ± 0.003 0.784 ± 0.001 0.411 ± 0.009 0.757 ± 0.013 

Min 0.548 0.783 0.392 0.739 

RBSB 
Avg 0.622 ± 0.000 0.652 ± 0.003 0.418 ± 0.058 0.616 ± 0.023 

Min 0.622 0.649 0.348 0.581 

PD_OCE 
Avg 0.684 ± 0.002 0.825 ± 0.006 0.549 ± 0.032 0.807 ± 0.021 

Min 0.683 0.816 0.506 0.769 

The Hagadera problem (Table 10), considered the most difficult problem, exhibits curious results not 

corroborating trends observed in the previous two problems. Under different metric conditions, the three 

method variants (CC + Attr, CC + GT, and CC + Attr + GT) all achieved the top performance. CC + GT 
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was superior under the RWJ metric condition, CC + Attr under the RBSB condition, and CC + Attr + 

GT under the PD_OCE condition. 

Table 10. Method performances on the Hagadera problem. The top performing method 

variant is metric dependent. 

  CC CC + Attr CC + GT CC + Attr + GT 

RWJ 
Avg 0.614 ± 0.000 0.631 ± 0.008 0.492 ± 0.013 0.509 ± 0.012 
Min 0.614 0.619 0.468 0.494 

RBSB 
Avg 0.737 ± 0.000 0.511 ± 0.014 1.633 ± 1.061 0.522 ± 0.045 
Min 0.737 0.486 0.526 0.460 

PD_OCE 
Avg 0.705 ± 0.001 0.684 ± 0.005 0.617 ± 0.023 0.616 ± 0.028 
Min 0.704 0.678 0.579 0.553 

Figure 10 shows some optimal results obtained for various problem runs depicted in Tables 8–10. 

Each sub-figure shows a given reference segment, delineated with a red polyline. Resulting segments 

for the best performing parameter sets are shown with white polylines. The RWJ metric scores for the 

specific segment are also quoted. The given metric scores are specific to the red delineated reference 

segments shown (randomly chosen) and not the averaged and cross-validated results generated during 

experimentation. Figure 10a–c shows local optimal results for the CC method variant. Figure 10d–f 

presents the results under the CC + Attr method variant, Figure 10g–i for the CC + Map method variant 

and Figure 10j–l for the CC + Attr + Map variant. Note the same results generated for the Jowhaar 

problem under CC and CC + Attr method conditions (Figure 10b,e), with constraining attributes not 

affecting segment quality over the given reference segment. 

Generally, based on observing Tables 8–10, the introduction of mapping functions provides more 

robust improvements under more conditions compared with adding attributes. In some cases a 

combination of attributes and a mapping function proved most useful. Table 11 lists the average 

computing times needed for 2000 method evaluations, contrasting the performances of the CC + Map 

and CC + Attr method variants. Computing attributes requires substantially more computing time (Intel® 

Xeon® E5-2643 3.5 GHz processor with single-core processing). Attribute calculations were done 

incrementally in the CC framework, which is more efficient than calculating attributes independently 

for each new level of the local range parameter. The optimal achieved parameter values are also reported. 

Similar to related work [6], near optimal parameter value combinations exist owing to segmentation 

algorithm and mapping function characteristics. 

Following on from Table 11, Figure 11 shows the averaged fitness profiles for the various problems and 

corresponding metrics, prior to cross-validation. Specifically, note the slightly slower start of mapping 

function method variants compared with attribute variants; however, they ultimately lead to better results 

(and in the first two problems start off better). In terms of search method progression, some variation exists 

based on the difficulty of the problem. Generally all variants converged more slowly in the Hagadera problem 

(“difficult”) compared with the Bokolmanyo problem. Note the variations in optimal results compared with 

cross-validated values (Tables 8–10), specifically considering the RBSB metric with its compact 

formulation. The figure also highlights the fact that the more complex method variants obtain superior results 

relatively quickly in the search processes—useful information if method execution times need to be short. 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

Figure 10. Exemplar optimal segmentation results focused on a random reference segment. 

The rows depict the CC, CC + Attr, CC + Map, and CC + Attr + Map method variants 

respectively (in order). The columns denote the three problems, Bokolmanyo, Jowhaar, and 

Hagadera (in order). (a) RWJ: 0.574; (b) RWJ: 0.524; (c) RWJ: 0.787; (d) RWJ: 0.683;  

(e) RWJ: 0.524; (f) RWJ: 0.806; (g) RWJ: 0.104; (h) RWJ: 0.506; (i) RWJ: 0.787;  

(j) RWJ: 0.063; (k) RWJ: 0.437; (l) RWJ: 0.549. 
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Table 11. Average computing times for experimental runs and resulting method parameters. 

Note the increased computing time of method variants employing attributes. 

Problem 
Method 

Variant 
Time Alpha WGlobal Area Std Perimeter Smoothness Compactness 

Bokolmanyo 
CC + 

Map 

2062.304 

± 248.996 

187.600 

± 68.646 

53.600 ± 

15.601 
NA NA NA NA NA 

 
CC + 

Attr 

3083.551 

± 237.328 

173.300 

± 66.331 

196.000 ± 

44.838 

247.500 

± 

142.417 

50.442 ± 

58.470 

369.900 ± 

196.794 

21.483 ± 

7.688 

19.803 ± 

7.439 

Jowhaar 
CC + 

Map 

2182.659 

± 193.999 

165.900 

± 82.538 

155.200 ± 

19.136 
NA NA NA NA NA 

 
CC + 

Attr 

4136.116 

± 498.270 

98.900 ± 

52.297 

203.500 ± 

43.775 

392.000 

± 85.249 

133.289 

± 60.647 

620.500 ± 

241.420 

18.379 ± 

6.910 

22.466 ± 

4.331 

Hagadera 
CC + 

Map 

2168.177 

± 226.159 

101.700 

± 65.052 

148.300 ± 

29.803 
NA NA NA NA NA 

 
CC + 

Attr 

5409.293 

± 352.444 

187.400 

± 68.704 

240.300 ± 

21.525 

342.100 

± 81.266 

162.601 

± 86.782 

574.700 ± 

271.998 

23.573 ± 

7.351 

19.940 ± 

6.113 

Finally, and most significantly, the results reported in Tables 8–10 are augmented with a Friedman 

rank test [61] to give a generalized and discrete indication of the usefulness of the method variants.  

The Friedman rank test is a simple non-parametric test ranking multiple methods (e.g., CC, CC + Map, 

etc.) over multiple problems/data sets. The rank test was run on the four method variants considering the 

various problems and metric conditions (36 in total, cross-validated). A Nemenyi post hoc test was also 

conducted to test whether critical differences exist. Figure 12 illustrates this result, with the confidence 

interval set to 95% and a critical difference of 0.349 (ranking) generated. Note that the figure shows 

results under cross-validated conditions. 

 

 

Figure 11. Cont. 
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Figure 11. Search method profiles for the different problems under different metric 

conditions. Note that for the simpler Bokolmanyo problem near-optimal results are achieved 

relatively early on in the search process. In the more complex problems, the methods need 

substantially more iterations in finding the achievable optimal parameter set. 

On examining Figure 12, the CC + Map variant of the method (using various mapping functions) 

ranked first, followed by the most complex method variant (CC + Attr + Map). Under cross-validated 

conditions, adding attributes proves detrimental. The investigated problems are not exhaustive.  

The variants are all statistically significantly different from one another. This figure reports a general 

observation under extensive evaluations (50 million segment evaluations). Under a more succinct 

selection of attributes and problems, attributes may well be more useful. The figure suggests simple data 

mapping functions should be a worthwhile consideration in method design within this general 

framework. Mapping functions may be considered (indirect means of changing connectivity type), but 

other more direct means of defining connectivity (parameterizable) may also prove useful. This is in 

addition to such a variant requiring less computing time, compared with computing additional attributes. 

 

Figure 12. Friedman rank test with a Nemenyi post hoc test conducted on results from  

Tables 8–10. Confidence interval is set to 95%. A Critical Difference (CD) of 0.349 is 

generated (ranking). All method variants deliver statistically significant different results. 

Generally speaking, the CC + Map method variant was found most useful. 
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6. Conclusions 

In this work a general method in the context of sample supervised segment generation was examined. 

Such general methods aim to generate thematically accurate image segments, easing further processing 

and increasing final classification accuracies. The method incorporates a graph-based segmentation 

method, with constraining attributes and data mapping functions providing additional flexibility in the 

nature of the generated segments. These additional constituents to the method were profiled for their 

relative utility in enhancing the quality of the generated segments. It was found that constraining 

attributes, conjectured to be useful, did not add value to segment quality. Data mapping functions proved 

more useful in this regard, generating better quality segments consistently. Other constituents could also 

be added to such a method, but other formulations of defining connectivity in such an approach could 

be most beneficial. Various other approaches to changing connectivity could be considered as opposed 

to mapping functions, including analyzing scene-wide connectivity properties, considering hypo/hyper 

connectivity definitions, and defining connectedness as part of the optimization problem. 

A few experimental considerations should be noted with such a method. Various processes in such a 

general approach may be stochastic, not only the given metaheuristic. In this particular instance the 

segmentation algorithm generates unique or repeatable results. This might not always be the case. 

Adding numerous attributes, without a priori known usefulness, should be avoided as additional search 

landscape dimensionality increases problem difficulty. Future work could profile a range of spectral and 

geometric attributes for their usefulness in various problems (land-cover element specific).  

Using various segment-sampling sizes could also provide additional insight into method generalizability 

to unseen problems. 

A method variant, incorporating attribute selection as part of the optimization problem, could also be 

considered. This would entail a combined combinatorial and real valued optimization problem.  

The utilized metrics also need careful consideration, as various metrics will have different convergence 

characteristics, as shown in this work. The nature of correlations among metric scores and the ease of 

subsequent processes or classification results are also open to research. Note that the presented method, 

inherently hierarchical, functions on a singular segmentation level and attempts to find a level appropriate 

to the given problem or elements of interest in the scene. Hierarchical aspects were not considered. 

The proposed method and results add to the discussion on supervised methods for segment generation 

in a remote sensing context. Applications such as rapid mapping or emergency response mapping may 

benefit from such approaches. Another application may be targeted land-cover element identification, 

incorporating single-class classification algorithms. User-driven image analysis approaches, found 

within the context of Geographic Object Based-Image Analysis (GEOBIA), might benefit from such sample 

supervised segment generation methods. How methods such as the one presented here, based on modular 

image segmentation, may efficiently synergize with more complete workflows [62], including classification 

processes [54,63] or larger automated image analysis methods, should be a worthwhile investigation. 
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