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Abstract 

 

Rapid urbanization processes and an increase of natural disasters such as 

earthquakes cause a high level of seismic risk. The occurrence of an earthquake in 

such densely populated regions would have catastrophically impacts on millions of 

people. Thereby, the largest risk emerged from buildings due to collapsed and falling 

remains. To mitigate this, the knowledge of how vulnerable certain urban areas are is 

mandatory. Therefore, to assess seismic urban vulnerability, detailed information of the 

building inventory itself is required. Already many studies focused on the assessment 

of seismic vulnerability of single buildings with remotely sensed data. The assessment 

of seismic building vulnerability requires therefore VHR remote sensing data, which are 

correlated with high costs and computation time when applying the assessment on 

large areas.  

 

In this work seismic vulnerability of homogeneous urban structures with VHR remote 

sensing and DSM data of a large urban area are assessed to tackle this problem. This 

analysis was carried out for the Turkish megacity Istanbul, a very earthquake prone 

region. Therefore, optical remote sensing data, in particular RapidEye data, and 

elevation data from the TanDEM-X mission were applied. The utilization of these data 

necessitates initially some preprocessing (i.e. atmospheric correction, mosaicing) and 

preparation steps (i.e., nDSM calculation). To cope with the large urban extent, an 

object-based image analysis procedure to derive homogeneous urban areas by scale 

optimization is applied. In the next steps homogeneous urban areas are characterized 

by means of multisource remotely sensed data. Subsequently, feasible features by 

considering in situ information of seismic vulnerability are identified. Finally the seismic 

vulnerability of homogeneous urban areas is estimated by three approaches of 

statistical learning, due to varying a priori knowledge. The estimation of seismic 

vulnerability is grounded on Support Vector Machines, particularly on Support Vector 

Regression (SVR), an ensemble of One-Class Support Vector Machines (𝜈-OC-SVM), 

and Soft-Margin Support Vector Machines (C-SVM).  

 

The procedure could gain viable estimation results of seismic vulnerability. Such as for 

the application of the SVR approach for Istanbul‟s district Zeytinburnu, the best model 

comprises a mean percentage error of less than 11% and a correlation coefficient of 
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0.75. The classification approaches aimed to identify different building types which are 

related with a certain degree of seismic vulnerability. The implementation of 𝜈-OC-SVM 

ensembles could only obtain moderate accuracies for the best model (𝜅 < 0.47). As 

opposed to the applied C-SVM approach, where for the best model an excellent 

accuracy of 𝜅 > 0.8 could be achieved. Therefore, this study features the potential of 

multi-source remote sensing data for assessing seismic vulnerability of urban structure 

types.  

  



Acknowledgement 

6 

Acknowledgement 

 

At this point I would like to thank everyone who has contributed to the success of this 

thesis.  

 

First of all, my special thanks go to Christian Geiß for his outstanding supervision, 

patience, and his time to answer all my questions.  

 

I would like to thank Dr. Dirk Tiede from the University of Salzburg (Z_GIS) for his 

valuable advice and the takeover of this thesis.  

 

In addition, I am very grateful to Dr. Hannes Taubenböck for his comprehensive 

support. 

 

Furthermore, I would like to thank Rolf Richter and Aliaksei Makarau for their advice 

regarding the atmospheric correction and testing the optical data with the not yet 

available new algorithm for VHR images. As well, thank you to Patrick Leinenkugel for 

his support with ATCOR.  

 

My personal thanks are addressed to Birgit Jilge, Gerhard Jilge, and Matthias 

Würsching for their continuing encouragement - in many ways - during my studies and 

especially during my thesis.  

  



List of Figures 

7 

List of Figures 

 

 

Chapter 1: Introduction 

 
Figure 1 Workflow of the entire procedure.        18 
 

Chapter 2: Foundations 

 
Figure 2 Development of urban population.        19 
 
Figure 3 Different urban structure types.        21 
 
Figure 4:  Seismic activity along the tectonic plate boundaries.     24 
 
Figure 5:  Worlds urban agglomerations 2014.       24 
 

Chapter 3: Study Area and Data Basis 

 
Figure 6:  Location of the study area Istanbul (Turkey).      31 
 
Figure 7:  Historical earthquakes in the 20

th
 century along the     34 

 North Anatolian fault. 
 
Figure 8:  Digital surface model for the study area.       36 
 
Figure 9:  Extents of RapidEye scenes.         38 
 
Figure 10:  Multi-temporal Landsat Classification extracted to the GUF.     40 
 
Figure 11:  Spatial distribution of expected building damage grades     42 
  in Zeytinburnu. 
 
Figure 12:  Aggregated reference data set.        43 
 
Figure 13:  Subset of a RapidEye scene before (left) and after      45 
 atmospheric correction (right). 
 
Figure 14:  Snippet of an atmospheric corrected RapidEye scene      46 
 before (left) and after histogram stretching (right). 
 
Figure 15:  Subset of the mosaic with blended and blurred (feathering)     47 
  seam (right) and without (left). 
 
 
 
 



List of Figures 

8 

Chapter 4: Extraction of Building Height Information 

 
Figure 16:  Characteristics of Digital Surface Model, Digital Terrain     48 
 Model and normalized Digital Surface Model. 
 
Figure 17:  Flowchart of the derivation of bare earth pixels (BE) and     50 
 non-ground objects (OBJ). 
 
Figure 18:  Empirical determination of 𝑑𝑚𝑎𝑥  for the largest identifiable     52 
 non-ground object. 
 
Figure 19:  Idealized procedure for the identification of initial OBJ pixels.    54 
 
Figure 20:  Separation procedure (left) of bare earth pixels (blue) and     55 
 building objects (red) for a snippet of the study area (right). 
 
Figure 21:  Applied data sets for the extraction of building heights.     57 
 

Chapter 5: Delineation of Urban Structure Types 

 
Figure 22:  Flowchart of the multi-scale segmentation process.      64 
 
Figure 23:  Determination of initial segmenation scale.       66 
 
Figure 24:  Objective function for determining the optimal       69 
 segmenation scale. 
 
Figure 25:  Optimized function for determining the optimal       72 
 multi-scale segmenation.  
 
Figure 26:  Fundamental processing steps for the generation of      73 
 a multi-scale segmentation. 
 

Chapter 6: Characterization of Seismic Vulnerability Features 

 
Figure 27:  Snippets of the utilized segmentation scales.      76 
 
Figure 28:  Identified construction phase for the        85 
 optimized segmentation. 
 
Figure 29:  Feature subsets from quantitative and qualitative      88 
 feature selection methods. 
 
Figure 30:  Feature sets using CFS for applied classification       89 
 methods SVR (a), C-SVM (b), and OC-SVM (c).  
 
Figure 31:  Feature sets using Relief-F feature selection.      90 
 
 
 
 
 



List of Figures 

9 

Chapter 7: Identification of vulnerable Urban Areas 

 
Figure 32:  Categorization of classification methods.       92 
 
Figure 33:  Optimal separating hyperplane for two classes.      94 
  
Figure 34:  Idealized procedure for generation of a nonlinear       95 
 decision function by SVM.  
 
Figure 35:  Soft margin loss setting for a linear SVM.       96 
 
Figure 36:  𝜈-OC-SVM approach, where the hyperplane is used to      99 
 separate with a maximum margin all target data from the origin.  
 
Figure 37:  Sample data for SVR.       104 
 
Figure 38:  Sample data for OC-SVM.       106 
 
Figure 39:  Sample data for C-SVM.       108 
 

Chapter 8: Results and Discussion 

 
Figure 40:  Functions of the mean absolute percentage errors (MAPE)   111 
 for different training set sizes of the applied feature sets withSVR. 
 
Figure 41:  Estimated damage grades for Zeytinburnu using SVR on    113 
 different feature sets. 
 
Figure 42:  Functions of the 𝜅-statistics of the combined 𝜈-OC-SVM    114 
 results for different feature sets. 
 
Figure 43:  Classification of urban structures of Istanbul with an    116 
 ensemble of 𝜈-OC-SVM for the highest obtainable  
 accuracy combined with the year of construction. 
 
Figure 44:  Classification of urban structures of Istanbul using     117 
 an ensemble of 𝜈-OC-SVM for different feature sets. 
 
Figure 45:  Functions of the 𝜅-statistics for different training set    118 
 sizes of the applied feature sets for C-SVM. 
 
Figure 46:  Classification of urban structures of Istanbul with C-SVM    120 
 for the highest obtainable accuracy combined with the  
 year of construction. 
 
Figure 47:  Estimated class label with respect to seismic     121 
 vulnerability using C-SVM on different feature sets. 
 

 

  



List of Tables 

10 

List of Tables 

 

 

Chapter 2: Foundations 

 
Table 1:  Linkage between risk and vulnerability.       25 
 

Chapter 3: Study Area and Data Basis 

 
Table 2:  Historical earth-quakes in the 20

th
 century along       34 

 the North Anatolian fault.  
 
Table 3:  Specifications of RapidEye.        37 
 
Table 4:  Characteristics of the applied multispectral data sets.     38 
 

Chapter 6: Characterization of Seismic Vulnerability Features 

 
Table 5:  Calculated features derived from remotely sensed       83 
 data on the optimized segmentation scale, h=80, and h=12. 
 

  



Abbreviations 

11 

Abbreviations 

 

ATCOR  Atmospheric and Topographic Correction    

BE   Bare Earth 

CFS   Correlation-Based Feature Selection 

C-SVM  C-Support Vector Machine 

DLR   German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) 

DSM  Digital Surface Model 

DTM   Digital Terrain Model 

ENVI   Environment for Visualizing Images 

ESP   Estimation of Scale Parameter 

GIS   Geographic Information System 

GLCM   Gray-Level Co-Occurrence Matrices 

GPS   Global Positioning System 

GUF   Global Urban Footprint 

hᵢ   Initial Segmentation 

I   Moran‟s I 

IDW   Inverse Distance Weighting 

LiDAR   Light Detection and Ranging 

LUT   Look-up Table 

MAPE   Mean Absolute Percentage Error 

mPD   Mean Percentage Difference 

nDSM   Normalized Digital Surface Model 

NDVI   Normalized Differenced Vegetation Index 

NIR   Near Infrared 

𝝂-OC-SVM  nu-One-Class Support Vector Machine 



Abbreviations 

12 

OA   Overall Accuracy 

OBIA   Object-Based Image Analysis 

OBJ   non-ground  Object  

OC-SVM  One-Class Support Vector Machine 

PA   Producer‟s Accuracy 

pnDSM  Preliminary Normalized Digital Surface Model 

potOBJ  potential non-ground Object 

R    Correlation Coefficient 

RE   RapidEye 

RBF   (Gaussian) Radial Basis Function Kernel 

SAR   Synthetic Aperture Radar 

SRTM   Shuttle Radar Topography Mission 

SVM   Support Vector Machine 

SV   Support Vector 

SVDD   Support Vector Data Description 

SVR   Support Vector Regression 

v    Intrasegment Variance 

UA   User‟s Accuracy 

USGS   U.S. Geological Survey 

VHR   Very high resolution 

WEKA   Waikato Environment for Knowledge Analysis 

  



Contents 

13 

Contents 

 

Abstract ........................................................................................................................................ 4 

Acknowledgement ....................................................................................................................... 6 

List of Figures .............................................................................................................................. 7 

List of Tables ............................................................................................................................. 10 

Abbreviations ............................................................................................................................ 11 

Contents ..................................................................................................................................... 13 

1. Introduction ....................................................................................................................... 15 

1.1 Motivation .......................................................................................................................... 15 

1.2 State of the Art and Objectives ......................................................................................... 16 

2. Foundations ....................................................................................................................... 19 

2.1 Urban Areas ...................................................................................................................... 19 

2.1.1 Urban Structure Types ............................................................................................... 20 

2.2 Risk ................................................................................................................................... 22 

2.2.1 Natural Hazards – Earthquakes ................................................................................. 23 

2.2.2 Vulnerability ................................................................................................................ 25 

2.3 Seismic Building Vulnerability ........................................................................................... 26 

2.4 Remote Sensing ................................................................................................................ 27 

2.5 Remote Sensing and Seismic Building Vulnerability ........................................................ 29 

3. Study Area and Data Basis .............................................................................................. 30 

3.1 Study Area - Megacity Istanbul ......................................................................................... 30 

3.1.1 Townscape and City Structure ................................................................................... 32 

3.1.2 Seismic Activity .......................................................................................................... 33 

3.2 Data Basis ......................................................................................................................... 35 

3.2.1 Digital Surface Model from TanDEM-X ...................................................................... 35 

3.2.2 Multispectral Data from RapidEye .............................................................................. 37 

3.2.3 Ancillary Information derived from Remote Sensing Data ......................................... 39 

3.2.3.1 Global Urban Footprint (GUF) ............................................................................. 39 

3.2.3.2 Multi-temporal Landsat Classification ................................................................. 40 

3.2.4 Reference Data .......................................................................................................... 41 

3.3 Pre-Processing of Optical Data ......................................................................................... 44 

3.3.1 Atmospheric Correction .............................................................................................. 44 

3.3.2 Mosaicing ................................................................................................................... 46 

 



Contents 

14 

4. Extraction of Building Height Information ...................................................................... 48 

4.1 Morphological Filtering ...................................................................................................... 50 

4.2 Normalization of DSM ....................................................................................................... 56 

5. Delineation of Urban Structure Types ............................................................................. 59 

5.1 Segmentation Techniques ................................................................................................ 59 

5.2 Multi-scale Segmentation .................................................................................................. 61 

5.2.1 Determination of appropriate Segmentation Scale .................................................... 63 

5.2.2 Optimization Strategy ................................................................................................. 70 

6. Characterization of Seismic Vulnerability Features ...................................................... 74 

6.1 Calculation of Seismic Vulnerability Features ................................................................... 74 

6.1.1 Seismic Vulnerability Features derived from Optical Data ......................................... 77 

6.1.2 Seismic Vulnerability Features derived from nDSM ................................................... 81 

6.1.3 Seismic Vulnerability Features derived from Landsat Classification ......................... 84 

6.2 Evaluation and Selection of Seismic Vulnerability Features ............................................. 86 

7. Identification of vulnerable Urban Areas ........................................................................ 91 

7.1 Supervised Methods for Classification and Regression: Support Vector Machines ......... 91 

7.1.1 Function Estimation with Support Vector Regression ................................................ 96 

7.1.2 Targeted Classification with One-Class-SVM ............................................................ 98 

7.1.3 Multi-Class Classification with C-SVM ..................................................................... 100 

7.1.4 Measures for Accuracy Assessment ........................................................................ 101 

7.2 Seismic Vulnerability Assessment of Istanbul ................................................................. 102 

7.2.1 Estimation of Damage Grades with Support Vector Regression ............................. 103 

7.2.2 Assignment of Vulnerability Classes with 𝝂-OC-SVM .............................................. 105 

7.2.3 Assignment of Vulnerability Classes with C-SVM .................................................... 108 

8. Results and Discussion .................................................................................................. 110 

8.1 Evaluation: Estimation of Damage Grades with SVR ..................................................... 110 

8.2 Evaluation: Assignment of Vulnerability Classes with 𝝂-OC-SVM .................................. 114 

8.3 Evaluation: Assignment of Vulnerability Classes with C-SVM ........................................ 118 

9. Conclusion and Outlook ................................................................................................. 123 

Bibliography ............................................................................................................................ 126 

Appendix .................................................................................................................................. 137 

 

  



Introduction 

15 

1. Introduction 

 

1.1 Motivation  

 

Since decades an increase of extreme natural hazards and their impacts on humans 

and the environment is reported. Especially in extremely dense populated urban areas, 

such as megacities in earthquake-prone regions the risk of being affected by a seismic 

event is high as never before. Earthquakes in sparsely populated and fragmented 

regions have only impact on a lower number of inhabitants and its infrastructure 

compared to densely populated regions. The continuing growth of urban population 

and the associated increase in constructions such as infrastructures, dwellings and 

industries would threaten the lives of million people if an earthquake would occur in 

such type of urban areas. As a sideway the damages and destructions could bring the 

economy in many countries, particularly in developing countries, to a standstill. The 

behavior of different constructions varies with respect to different factors (e.g. material, 

height, shape etc.) in the case of a seismic event.  

Earthquakes are unavoidable but detailed knowledge about seismic risk can enable the 

decline of it and reduce damages and losses (BILHAM, 2009; TUCKER, 2013). Subject to 

different characteristics, areas or objects feature a differing vulnerability against 

earthquake. Therefore, numerous of properties of the building inventory have to be 

considered before making a statement about the seismic vulnerability for a specific 

level of ground shaking (ERDIK ET AL., 2003). The assessment of seismic vulnerability in 

urban areas is the aim of this study to tackle the seismic risk for an earthquake prone 

region.  

Experts prognosticated a high probability for an earthquake with a magnitude larger 7 

for the region around the Turkish megacity Istanbul (e.g., PARSONS, 2004). Such an 

earthquake would have disastrous consequences for the inhabitants, the city and the 

entire economy of Turkey. Against this background, the aim of this study is the seismic 

vulnerability assessment of such large urban areas by means of multi-source remote 

sensing data and a priori knowledge. Thereby, an assessment for single buildings is 

not usable due to cost and time. Therefore, a further challenging task is the derivation 

and identification of homogeneous urban areas, which are composed of similar 

buildings, to evaluate the entire city area.  
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1.2 State of the Art and Objectives 

 

The assessment of seismic vulnerability in urban areas is not unprecedented. In 

conventional studies high detailed in situ building-by-building analysis by structural 

engineers are used to obtain seismic building vulnerability. However, such kind of 

vulnerability assessment is not applicable and feasible with respect to the high 

spatiotemporal dynamic of urban areas among others evoked by urbanization and 

economic processes. An aggregation of such in situ information to broader spatial 

units, for instance by aggregated census data inhibits the consideration of small-scale 

hazard effects in risk models (WIELAND ET AL., 2012). Therefore, the information of 

seismic urban vulnerability is imprecise, out of date or even not available for many 

regions.  

This lack of availability can be tackled by remote sensing data (cf. chapter 2.4). In 

relation to seismic vulnerability assessment in urban areas, many studies have already 

profited from the advantages from remote sensing. TAUBENBÖCK ET AL. (2009) and 

BORZI ET AL. (2011) used remote sensing data for the characterization of different 

building types and gather fragility functions from them. Another approach was carried 

out by BORFECCHIA ET AL. (2009), where in situ data for various building types where 

collected and combined with remotely sensed data to derive seismic vulnerability by 

applying a supervised classification approach for the residual building inventory. GEIß 

ET AL. (2014 a, 2014 b) used a supervised classification and regression analysis to 

assess seismic vulnerability by a combination of in situ data of seismic vulnerability 

information and derived information of urban morphology by remote sensing data.  

 

The problem on which scale the assessment should be carried out followed the idea of 

urban structure types. These are established in various applications of urban planning, 

mainly in Germany (HEIDEN ET AL., 2012). In chapter 2.1.1 it is referenced to some 

studies dealing with urban structure types.  

MÜLLER ET AL. (2006) determined that urban structures can be valuable for assessing 

seismic vulnerability of buildings, if they are composed of similar building types and 

embedded in a spatial context. WIELAND ET AL. (2012) and PITTORE & WIELAND (2013) 

implemented the idea of urban structure types with Landsat images. They used urban 

structure information as strata for the subsequent analysis of the building stock with 

VHR optical remote sensing data and ground-based omnidirectional imaging (i.e., 

world housing encyclopedia information). A combination of them enabled finally the 
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assessment of probable seismic vulnerability. Thus, their approach focused on 

delineating homogeneous urban structures and afterwards assessing seismic 

vulnerability.  

 

As opposed to WIELAND ET AL. (2012) and PITTORE & WIELAND (2013), this study 

applies a priori knowledge of seismic vulnerability for the identification of homogeneous 

urban structures by an object-based image analysis approach (PAL & PAL, 1993; 

BLASCHKE, 2010) for a set of optical VHR remote sensing data and DSM information. In 

this context the first research question related to this study emerged: 

 

How can homogeneous settlement units be delineated and 

characterized by means of VHR multispectral remote sensing data and a 

digital surface model? 

 

For the assessment of seismic vulnerabilities of urban structures different approaches 

of statistical learning (CHEN & HO, 2008; CAMPS-VALLS ET AL., 2014), under 

consideration of in situ information should be implemented to address the question:  

 

How accurate are SVM algorithms under consideration of different a 

priori knowledge for vulnerability assessment of urban structures? 

 

Consequently, this study is structured by introducing the fundamental terminology in 

chapter 2; the description of study area, data basis and relevant pre-processing steps 

such as atmospheric correction and mosaicing of the optical remote sensing data in 

chapter 3; the extraction of building height information from the DSM data by using 

morphological filters in chapter 4; followed by chapter 5, occupied with delineating 

homogeneous urban structures by image segmentation techniques with scale 

optimization; the determination and selection of seismic vulnerability features in chapter 

6; chapter 7 introduces Support Vector Machines and the applied approaches of this 

study and the utilization of them to assess seismic urban vulnerability; in chapter 8 the 

results are presented and discussed, and finally, in chapter 9 a conclusion and an 

outlook is given. The general procedure of this work is illustrated in figure 1.  
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Figure 1: Workflow of the entire procedure. 
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2. Foundations 

 

 

This chapter introduces the fundamental terminology regarding seismic vulnerability 

assessment in this study. That comprises the definition of urban areas, risk, natural 

hazards with focus on earthquakes, vulnerability, seismic vulnerability with focus on 

urban structures, and the concepts of remote sensing with respect to seismic 

vulnerability assessment in urban areas. 

 

 

2.1 Urban Areas 

 

The earth is populated by more than 7 billion humans (U.S. CENSUS BUREAU, 2014), 

whose accommodations are spread almost all over the earth in agglomerations of 

buildings, tents, or other constructions. In 2014 54% of the world‟s population live in 

cities (UN, 2014). Thereby, a rising tendency of the amount of people living in cities can 

be observed since years (cf. figure 2). The UNITED NATIONS (2003) prognosticated that 

90% of the prospective demographic growth will be concentrated on urban areas (i.e., 

cities). 

 

Figure 2: Development of urban population (Source: UN, 2014). 

This process of migration to cities is called urbanization. In geography a city is a 

densely built-up area with a clear boundary to the hinterlands and of special relevance 
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for the hinterlands. Furthermore, a city is characterized by a certain population 

structure (so-called centre/periphery divide). Cities are also of a certain size. Especially 

mega-cities (e.g., Istanbul), cities with more than 10 million inhabitants (UN, 2003; 

MERTINS, 1992), register enormous urbanization with so far unpredictable regional and 

global consequences, which are only rudimentarily explored (HEINRICHS & KABISCH, 

2006). Quantitative processes of growth whether population, infrastructure or economy 

and concurrency, complexity and overlaying distinct processes in megacities harbor 

unappreciable risk (TAUBENBÖCK, 2007) (cf. chapter 2.2). 

 

 

2.1.1 Urban Structure Types 

 

Urban areas are assembled of different urban structures types. Urban structure types 

are agglomerations of objects with similar physical (e.g., material), environmental (e.g., 

hydrology), and functional characteristics (e.g., land use) (PAULEIT & DUHME, 2000). 

Introduced in the 1990‟s in Germany, urban structure types were since then used for 

numerous applications of German cities especially in urban planning applications (e.g., 

PAULEIT, 1998; WITTIG ET AL., 1998; WICKOP ET AL., 1998; HEIDEN ET AL., 2012) and 

other countries (e.g., TANG, 2007). In addition, the idea of homogeneous urban 

structure types was inherited for a number of urban applications (e.g., BOCHOW ET AL., 

2007; NIEBERGALL ET AL., 2008; BANZHAF & HOFER, 2008; WURM ET AL., 2009; BAUD    

ET AL., 2010; HELDENS ET AL., 2012; BECHTEL & DANEKE, 2012). However, the definition 

of urban structure types varies with respect to the application. Concerning this study, 

urban structure types were used to cope with the complex urban morphology of the 

study area by grouping them to homogeneous urban areas. Figure 3 schematically 

illustrates the agglomeration of varying types of buildings to homogeneous urban areas 

regarding similar land cover and land use.  
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Figure 3: Different urban structure types. 

MÜLLER ET AL. (2006) already proposed the application of urban structure types for 

seismic vulnerability assessment, particularly for areas with a large spatial extent. 

Therefore, agglomerations of single buildings with respect to certain conditions reduce 

the amount and complexity of information and consequently the processing time and 

costs. Hence, similar buildings (e.g., one family houses, storage depots etc.) were 

combined by means of optical remote sensing data and elevation information (i.e., 

nDSM) to homogeneous urban areas due to assumed similar seismic vulnerability. As 

already mentioned in chapter 1.2, WIELAND ET AL. (2012) and PITTORE & WIELAND 

(2013) used urban structures, derived by an image segmentation approach, for seismic 

vulnerability assessment. In this study the process of grouping similar objects was 

carried out by a framework of image segmentation (i.e., multi-scale segmentation) (cf. 

chapter 5.2).  
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2.2 Risk 

 

In context of risk the term vulnerability is always present. Some definitions of 

vulnerability (cf. chapter 2.2.2) are even premised on risk. Thus, risk has to be 

expounded. Generally, risk is the probability to be tainted with certain positive or 

negative consequences, in other words chances or harm (BANSE, 1996; HOOD & 

JONES, 1996; FISCHHOFF ET AL., 1984). Hence, risk is fictive, prospective and 

associated with uncertainties (TAUBENBÖCK, 2007). BROOKS (2003) defined risk 

consequently as  

𝑅𝑖𝑠𝑘 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  ∙  𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠. 

In the context of natural hazards or disasters, risk can be seen as the probability of 

damaging consequences (e.g., losses such as death, injuries, property, interrupted 

business operations, damaged environment) originated from natural or human-induced 

hazards and vulnerability (UNPD, 2004). The United Nations (UN, 1991) define risk, 

related to natural hazards as  

𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 ∙  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

The probability is linked with probability of occurrence and intensity of a hazard, for 

instance an earthquake. Risk is an inherent, existing, or originating circumstance in a 

social system (UN/ISDR, 2013). Therefore, the environment is at no time free of risk 

(BECK, 1986). Urban growth is such a fact and is associated with a high degree of risk 

(UNPD, 2004), for instance dangerous built constructions on hillsides due to excessive 

concentrations in urban areas. Relating to earthquakes, humans in countries with a 

rapid urbanization have a higher risk to die in case of an earthquake than in countries 

with a low urban growth (UNPD, 2004). The estimation of vulnerability in a certain 

region is crucial to induce countermeasures for risk minimization of prognosticated 

hazards (ZSCHAU ET AL., 2002). Subsequently the components of risk, hazards, 

especially earthquakes (cf. chapter 2.2.1), and vulnerability (cf. chapter 2.2.2) have to 

be defined.  
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2.2.1 Natural Hazards – Earthquakes 

 

Natural Hazards are natural events allied with harms for humans and the environment. 

They can occur in different types of systems (e.g., atmospheric, hydrologic, 

oceanographic, volcanologic, seismic, and neotectonic) (GLADE ET AL., 2014) and 

varying intensity, which can constitute them to extreme events or disasters. In this 

chapter the emphasis was put on natural hazards of seismic origin, in particular 

earthquakes.  

Worldwide 130 million humans are exposed by the risk of earthquakes every year 

(UNPD, 2004). Earthquakes are measurable and perceptibly sudden shocks of the 

earth surface. These shocks mostly occur due to moving processes of the tectonic 

plates, out of those the earth surface consist. Most of the earthquakes appear along 

the so-called fault lines of the plate boundaries due to collisions and subduction of the 

plates. Thereby, the intensity of ground shaking results from the magnitude itself         

(= intensity of an earthquake), distance from the fault (i.e., the more distant the lower 

the intensity of shaking), ground material and structure. Relating to the case study, 

Istanbul is located near one of these fault lines (North Anatolian Fault), thus the 

probability of an earthquake occurrence is high (i.e., high risk) in this region. The 

illustration below (figure 4) indicates the typical occurrence of earthquakes along the 

fault lines for one month (July, 2014). 
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Figure 4: Seismic activity along the tectonic plate boundaries during one month 

(Source: USGS, 2014; modified). 

Additionally, the level of seismic risk is still higher in densely populated regions, such 

as in megacities. In figure 5 an overview is given of the global spread of urban 

agglomerations. By comparing the locations of the urban agglomerations (figure 5) and 

the boundaries of the tectonic plates (figure 4), it is obvious that the majority of large 

urban agglomerations are located close to the faults. Therefore, the relevance of 

seismic vulnerability assessments in large urban areas is high. 

 

Figure 5: Worlds urban agglomerations 2014 (Source: UN, 2014). 

Turkey 
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2.2.2 Vulnerability 

 

As a key component of risk (cf. chapter 2.2), and due to the aim of this study to assess 

seismic vulnerability, this chapter focuses on the definition of vulnerability. 

Furthermore, the assessment of ranking vulnerabilities is proposed by BIRKMANN 

(2006) due to the unsolved problem of earthquake prediction (ZSCHAU ET AL., 2002).  

The term vulnerability is used in many disciplines (e.g., humanities, social sciences, 

economics, and natural sciences) and is therefore defined in many ways. In addition 

sub-disciplines of natural sciences characterize vulnerability regarding to the 

application context. TAUBENBÖCK (2007) gives an overview of the various 

interpretations of vulnerability.   

With respect to natural hazards, such as earthquakes, vulnerability is defined as “the 

condition determined by physical, social, economic, and environmental factors or 

processes, which increase the susceptibility of a community to the impact of hazards” 

(UN/ISDR, 2004, pp. 16). Thus, vulnerability means the potential degree of loss 

regarding the occurrence of a hazard. The linkage between the degree of vulnerability 

and the impact of loss (i.e., risk) is illustrated in table 1.  

 

Table 1: Linkage between risk and vulnerability. 

CHAMBERS (1989) stated that vulnerability is composed of two principal elements, 

internal and external elements. The internal element comprises the potential of 

overcoming a natural hazard, that means realizing, cope with, and to recover from a 

natural hazard. On the other hand, the external element defines the danger of the 

structure with respect to the hazard. Hence, vulnerability can be formulated as  

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  ∙ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  𝑜𝑓  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
. 

Thereby, sensitivity is the degree of danger and beside the exposure, which is the 

degree of duration of being imperiled, an external element of vulnerability            
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(BOHLE, 2001; CHAMBERS, 1989). The capacity of response (i.e., internal element) or 

coping capacity of a system is the ability to cope with the consequences of occurred 

hazards (GALLOPIN, 2006).  

Therefore, to assess seismic building vulnerability, many vulnerability related factors 

(i.e., social, physical, economic,…etc.) have to be considered, such as the region itself, 

status of the society (i.e., poor or rich), development status (e.g., developing countries, 

industrial countries) etc. For instance, a physical factor is among others composed of 

location and structure (TAUBENBÖCK, 2009). Furthermore, development factors are 

directly associated with vulnerability (UN/ISDR, 2004), for instance high technical 

standards e.g. earthquake-resistant buildings decreases the seismic vulnerability. The 

knowledge and combination of vulnerability factors enable to measure the vulnerability 

and represents consequently the potential of coping (BIRKMANN, 2006). Therefore, 

initially the factors affecting vulnerability have to be determined (cf. chapter 6). 

 

 

2.3 Seismic Building Vulnerability 

 

Seismic building vulnerability means the vulnerability in the case of a seismic event 

(i.e., earthquake) for buildings and other dwellings. Therefore, seismic building 

vulnerability is the probability of failure of certain building types with respect to the 

magnitude of an earthquake (UNDP, 1994). Dwellings are connected with the highest 

seismic risk for humans (TAUBENBÖCK ET AL., 2009). Therefore, the physical 

vulnerability characteristics of buildings are seen as a measure for possible damages 

due to ground shaking processes of certain intensities during an earthquake (ERDIK ET 

AL., 2002). These physical indicators are mostly compiled by in situ surveys, where the 

principle weakness is the building material. In IAEE & NICEE (2004, pp. 4-5) some of 

these drawbacks of building materials are summed up: 

 Heavy weight and very stiff buildings, attracting large seismic inertia forces 

 Very low tensile strength, particularly with poor mortars 

 Low shear strength, particularly with poor mortars 

 Brittle behavior in tension as well as compression 

 Weak connection between wall and wall 

 Stress concentration at corners of windows and doors 
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 Overall unsymmetry in plan and elevation of building 

 Unsymmetry due to imbalance in the size and position of opening in the walls 

 Defects in construction such as use of substandard materials, unfilled joints 

between bricks, not-plumb walls, improper bonding between walls at right 

angles, etc.  

Furthermore, information about the year of construction and building height (e.g., 

commercial, residential) affect seismic building vulnerability. The assessment of 

seismic building vulnerabilities by in situ surveys is due to time and money not 

applicable for large urban areas. Additionally, many studies did the assessment of 

seismic vulnerability only for small urban areas (e.g., districts). In this study the entire 

city of Istanbul is analyzed regarding their seismic vulnerability. To address this 

challenging task, remotely sensed data were used. 

 

 

2.4 Remote Sensing 

 

Remote sensing is the process of measuring or acquiring reflected or emitted 

electromagnetic emission of observed objects, without being directly in contact with 

them. These data are frequently acquired by satellites, aircraft or other aerial vehicles. 

Thereby, two types of remote sensing can be distinguished a) active remote sensing 

and b) passive remote sensing. Active remote sensing sensors emit and receive the 

backscattered emission of radar beams. Passive remote sensing sensors receive the 

reflected emission of an object and provide optical data. Generally optical remote 

sensing data provides spectral characteristics from objects, but are limited in weather 

conditions and can only work at daytime. Radar sensors, opposed to optical data work 

independently from weather conditions and time of day in consequence of the 

wavelength. Radar sensors receive complex information of intensity and phase of the 

backscattered radar beam. Radar data are commonly used for different applications 

such as measuring of moisture content, measurements of ice thickness, monitoring of 

deforestation, shifts of the surface in consequence of seismicity, erosion and mass 

wasting, relief maps,… etc. Furthermore, radar data provides also elevation data of the 

surface. With respect to this study a digital elevation model provided by the TanDEM-X 

mission (cf. chapter 3.2.1) (TanDEM-X is an active remote sensing sytem) was used to 
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derive building heights (cf. chapter 2.3) as expounded in chapter 4. A key advantage of 

this elevation data is the uniquely global availability from this satellite mission, and 

ensured therefore the transferability to other study areas. For a precise introduction to 

remote sensing the reader is referred to LILLESAND & KIEFER (2000); HILDEBRANDT 

(1996); JENSEN (2005); CAMPBELL (2002); MATHER (2004); RICHARDS & JIA (2006); 

SCHOWENGERDT (1997); and ALBERTZ (1991).  

In contrast to in situ data, remotely sensed data are relative cost-effectively (partially 

free of charge), area wide available, and are characterized by a high repetition rate, 

which made them very efficient for different analysis. The provided context information 

is a further advantage of remotely sensed data (MÜLLER ET AL., 2006). It should be 

added that since the launch of very high spatial resolution (VHR) satellites detailed 

information on single building scale can be obtained. Therefore, remote sensing data 

provide a great opportunity towards in situ data for up-to-date analysis in rapid growing 

and dynamically urban areas. Furthermore, remote sensing data can be used for 

detecting structures, patterns and indicators of various scales (TAUBENBÖCK, 2007). 

That enables the derivation of vulnerability related features, as it is required for this 

study. The specific utilized remote sensing data for this study are outlined in chapter 

3.2.1 and 3.2.2. 
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2.5 Remote Sensing and Seismic Building 

Vulnerability 

 

As already mentioned, remotely sensed data were used in this study for the 

assessment of seismic vulnerability in urban areas. Due to the large spatial extent of 

the study area, single buildings were aggregated (cf. chapter 5) to homogeneous urban 

areas (cf. chapter 2.1.1) by means of image segmentation and subsequently feature to 

the calculation of seismic vulnerability properties. Remote sensing data were already 

used to observe the building stock and derive vulnerability related features (e.g., 

MÜLLER ET AL., 2006; BORFECCHIA ET AL., 2010; GEIß & TAUBENBÖCK, 2013). From 

multisource remote sensing data different features related to seismic vulnerability are 

derivable, such as height related features, spectral and spatial features, and shape etc.  

In the following some seismic building vulnerability features which are derivable from 

remote sensing data, with respect to the applied urban structures in this study, are 

expounded: 

Building shape:  

More regular structures and symmetrical building shapes (i.e., rectangular shape) have 

a lower induced risk of seismic failure than irregular shaped buildings, such as L- or   

U-shaped building forms (FEMA310, 1998).  

Building height:  

Ideally a slight seismic vulnerability is composed to tall buildings, due to the 

relationship between building height, small floor area, and sophisticated structure with 

more steel in the concrete (EXPLORATORIUM, 2014).  

Age of buildings: 

Frequently new constructed buildings have to follow certain design codes, such as the 

earthquake design code of 1997 in Istanbul, which specify that all buildings built after 

1999 have to follow the prescribed guidelines (CAKTI, 2013). 

The specific features related to seismic vulnerability derived from the remote sensing 

data (cf. chapter 3.2.1 and 3.2.2) are outlined in chapter 6.  
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3. Study Area and Data Basis 

 

 

This chapter outlines the study area Istanbul with its characteristics regarding the 

townscape and city structure, as well as its seismic activity while focusing on its 

seismic vulnerability. The rapid urbanization, which simultaneously induced a 

constantly changing and unorganized city structure within a few years, its geological 

setting along the north Anatolian fault, and the presumption of a major earthquake in 

the next years makes Istanbul to a relevant study area with respect to the assessment 

of seismic vulnerability. In addition, this chapter contains the data basis and relevant 

preprocessing steps for the assessment of seismic vulnerability of homogeneous urban 

areas. 

 

 

3.1 Study Area - Megacity Istanbul 

 

Since centuries the Bosporus built an important trade route for the entire trading 

operations between the Mediterranean Sea and the Black Sea. Simultaneously, this 

water connection between the two seas even forms the border between Europe and 

Asia. In consequence to the trading at about 660 BC, Greek settlers have built along 

the European seashore the first colony which was named Constantinople until 

renaming to Istanbul in 1930. Nowadays it is still an important international trade route 

particularly for the transportation of oil from the Black Sea.  

The association of the Eastern and Western Roman Empire let Constantinople arose to 

the capital city in 330 AD. Since then the number of inhabitants increased constantly. In 

1923 Constantinople lost the status of a capital city which was committed to Ankara. 

However, Istanbul kept its importance and the population numbers are steadily 

increasing. This is reflected in today‟s population of 14.16 million citizens (effective 

2013) and depicts Istanbul as Turkey‟s largest city (TURKSTAT, 2014). 

 

The province of Istanbul is located in the Marmara region in the northwestern Turkey. 

Istanbul expands along the eastern (Asian section) and western (European section) 

seashores of the Bosporus and is bounded by the Sea of Marmara in the south and the 
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Black Sea and woodlands in the north. An overview on the location of the study is 

given in figure 6.  

 

Figure 6: Location of the study area Istanbul (Turkey). 

Already in the last century the number of inhabitants of Istanbul increased by an order 

of magnitude over less of decades. The population growth, mainly in the 1950s results 

from the domestic migration from other cities as well as from rural areas particularly as 

a consequence of the growing economy and industry (especially due to the textile 

industry, automobile industry, and tourism- and electronics industry (JINN.TV, 2012)), 

and therefore better employment- and income opportunities came up. This process of 

urbanization let Istanbul arose as a mega city (cf. chapter 2.1). Thereby, 18.47 % of the 

Turkish populations (76.67 million) live in Istanbul. In addition to the registered citizens 

of Istanbul, numerous illegal or unregistered people live in the city (cf. chapter 3.1.1). 

The amount of them can only be estimated and it is expected that the migration will 

persist (by estimated 400,000 per anno (JINN.TV, 2012)). The estimation of Istanbul‟s 

illegal living townsfolk runs into difficulties due to the hardly acquisition of 

Gecekondular (cf. chapter 3.1.1).  

This enormous urbanization within the last decades changes the townscape and city 

structure of Istanbul which is described in chapter 3.1.1, and impacts the seismic 

vulnerability of the city (c.f. chapter 3.1.2). 
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3.1.1 Townscape and City Structure 

 

The massive migration strained urban development and urban planning and lead to a 

complex and erratic city structure of Istanbul (CIRACI & KUNDAK, 2000). Triggered by 

the rapid urbanization, the townscape is greatly influenced by newly constructed 

buildings, but also illegal constructions, expansion of suburbs and illegal deforestation. 

Additionally, in Istanbul exist, as typical for the entire Turkey, so-called Gecekondu 

(literally translated “at night placed”) settlements and constructions. Gecekondular are 

squatter settlements without any permission, which have been built since the mid 

1940s as improvised houses and shacks. Gecekondular do not only exist in peripheral 

areas, they also filled gap sites and do already exist as interurban socially deprived 

area (slum) (e.g., Tarlabaşı). The reason that the constructions were not immediately 

demolished, rely on a consuetudinary law from the Ottoman era. That implies that 

houses and shacks which were built overnight can not be demolished. Nowadays, the 

construction of Gecekondular is an on-going process, generally taking place in the 

marginal areas and extends the urban area of Istanbul by new districts. Today, Istanbul 

is divided in 39 districts with varying functions: residential areas, business and industry 

areas, suburbs, and mixed areas. They also differs in building types and building 

height, which are indicators for the afore-mentioned characterization of urban structure 

types (cf. chapter 2.1.1) and the subsequent characterization of seismic vulnerability 

features (cf. chapter 6).  

Besides, many existing buildings were expanded without permission by new stories 

and extensions which leads to a changed static and therefore with conceivable 

consequences regarding the vulnerability in the case of a seismic event (JINN.TV, 

2012). In addition, already authorized building projects had been modified, and 

extended even within its construction phase (JINN.TV, 2012). JINN.TV (2012) reveals 

that around 60-70% of Istanbul‟s buildings raised without any regulatory supervision or 

investigation of its statics and with structural minimum standards. Hence, it is assumed 

that most of the buildings are not shake-resistant, although a law for earthquake 

engineering (since 1999) was issued. Despite of that, in 2008 197.000 of about 

1,164,000 buildings were built after 1999, this means that 17% of Istanbul‟s buildings 

were built between 1999 and 2008 (CAKTI, 2013).  

Furthermore, the continuous increasing population development entails a densely built-

up area, particularly vertical extensions (due to rising land prices and barely possible 

areal extent) and modernizing the city centers (JINN.TV, 2012). So Istanbul lost more 
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and more its typically traditional shaped oriental city structure and suppresses the 

traditional Turkish lifestyle, especially in the districts Levent and Maslak (GIRGERT, 

2008). Beyond that, the insufficient and overloaded infrastructure will be further 

strained.  

Related to the city structure the urban spatial structure of Istanbul depicts a new form 

regarding the migration (BERRY & KIM, 1993). CARACI & KUNDAK (2000) give a 

comprehensive overview of Istanbul‟s transformation since the 1950s from a 

monocentric to a polycentric city structure and its indicators. Resulting from the 

massive migration and affiliated construction boom of residential and commercial 

buildings, Istanbul was subject to underlying a permanently transformation with respect 

to its townscape. The different built-up structures lead to a varying seismic vulnerability 

in the case of a seismic activity as outlined in the subsequent chapter.  

 

 

3.1.2 Seismic Activity  

 

The dimension and rapidness of growth and change in urban areas lead to quickly 

outdated sources of information, ineffective control mechanisms of planning and 

therefore, a resulting unstructured and uncontrolled high-risk urbanization 

(TAUBENBÖCK, 2007). Due to an increased area of impervious surfaces, reduced open 

spaces, and buildings without any consideration of earthquake engineering, the region 

has lost much of its resilience (cf. chapter 2.2.2) against earthquakes, floods and other 

natural hazards (TERME, 2013). However, this study focuses on the seismic 

vulnerability, while Istanbul‟s vulnerability regarding other natural hazards should not 

be further discussed here.  

 

Concerning the location, close to the North Anatolian fault, Istanbul is significantly 

exposed to earthquakes, because almost all earthquakes in Turkey and neighboring 

countries are related to tectonic movements (ERDIK ET AL., 1999). In the eastern 

Mediterranean the North Anatolian fault is a region with one of the most seismic events 

(ERDIK ET AL., 2002). Moreover, previous earthquakes along the fault (cf. figure 7) 

incline a westbound regime and give a possible forecast of the location (near Istanbul) 

of the next earthquake. According to PARSONS (2004), a 35-70% probability for the 

occurrence of an earthquake with a magnitude larger than 7 along the North Anatolian 
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fault within the next 30 years is expected. This fact and the spatial position of previous 

earthquakes along the North Anatolian fault in the 20th century can be obtained from 

figure 7. 

 

Table 2: Historical earth-

quakes in the 20
th
 century 

along the north Anatolian 

fault.  

 

Figure 7: Historical earthquakes in the 20
th
 century along the North    

Anatolian fault (Source: FRANCO & ALARCON, 2009).   

A considerable number of studies and organizations focused on the evaluated 

probability of an earthquake in Istanbul, and evaluated case scenarios, and the 

consequences for the population, the city, and the whole Turkish economy (e.g., ERDIK 

ET AL., 2004; UNITED NATIONS, 2007; FRANCO & ALARCON, 2009; ERDIK & DURUKAL, 

2008; CAKTI, 2013). The high hazard potential (contiguity to the North Anatolian fault), 

the seismic vulnerability of infrastructure (e.g., buildings, bridges, supply lines), and the 

society cause a high seismic risk for the megacity (LÜHR ET AL., 2011). Despite of the 

high seismic risk for Istanbul, free spaces (i.e., possible evacuation areas) were 

obstructed. Also earthquake engineering related measures, anti-seismic building stock 

and infrastructure would minimize the damages for the city and its population (c.f. 

chapter 3.1.1). An earthquake in or close to Istanbul would provoke disastrous 

dimensions.  

 

However, the seismic vulnerability is varying spatially over the municipal area due to 

different building types. This study focuses on the delineation of urban structure types 

and characterization of seismic vulnerability features by means of remotely sensed 

data. The applied remote sensing data and ancillary information derived from remote 

sensing data are introduced in the following chapter (cf. chapter 3.2). 

Date of 
historical 

earthquake 
Magnitude 

26.12.1939 7.8 

20.12.1942 7.3 

26.11.1943 7.6 

01.02.1944 7.4 

26.05.1957 7.1 

22.07.1967 7.3 

17.08.1999 7.6 
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3.2 Data Basis 

 

This chapter introduces the utilized data sets and relevant preprocessing steps for this 

study.  

By means of remote sensing the crucial characteristics of land cover and objects such 

as buildings with affiliated building height can be determined for the assessment of 

seismic vulnerability. This saves time-consuming and expensive fieldwork. For the 

assessment of seismic vulnerability of Istanbul‟s urban areas multi-sensor data, for 

various purposes were deployed.  

 

 

3.2.1 Digital Surface Model from TanDEM-X 

 

For the derivation of a normalized DSM (nDSM), which provides information about 

building heights, radar measurements were used. In contrast to optical systems (cf. 

chapter 2.4), which receive spectral information from objects on the surface (passive 

remote sensing), radar systems (active remote sensing) emit and receive radar 

backscatters which contain information about the ground topography and terrain by 

considering the time difference for emitting and receiving the radar beams. These 

measurements allow the generation of digital surface models (ASTRIUM, 2011). 

 

In particular, DSM data from the TanDEM-X-mission were used. This mission is 

operated by the DLR since 2010 and based on two radar satellites, TerraSAR-X and 

TanDEM-X. These are scanning the earth in a formation flight with different viewing 

angles. TerraSAR-X and TanDEM-X are globally collecting very high resolution 

synthetic aperture radar (SAR) data (ESCH ET AL., 2012). The data are used for the 

creation of a digital surface model (DSM) with a high vertical resolution of up to 2 m 

and a horizontal resolution of 12 meters for the entire globe. The concepts and 

operating principles of the TanDEM-X mission is specified in KRIEGER ET AL., 2005, 

MOREIRA ET AL., 2004, ZINK ET AL., 2008 and ESCH ET AL., 2012. The TanDEM-X 

mission is the only one, since SRTM (Shuttle Radar Topography Mission), providing 

DSM data on a global scale with this high resolution (WEBER ET AL., 2006). Whereas 

SRTM data are only available with a resolution between 30 and 90 meters and only 

between 60°N and 56°S.  
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The appropriate intermediate DSM with a spatial resolution of ~11 m was used for the 

calculation of a nDSM, outlined in chapter 4, to derive the height of constructions. The 

applied DSM is composed of four tiles from the TanDEM-X Intermediate Digital 

Elevation Model (N40E028, N40E029, N41E028, and N41E029). Figure 8 illustrates 

the DSM data. 

 

Figure 8: Digital surface model for the study area. 
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3.2.2 Multispectral Data from RapidEye 

 

In contrast to radar data, multispectral remote sensing data provides information about 

the spectral characteristics of ground objects (cf. chapter 2.4). There exist a variety of 

different multispectral sensors with specific characteristics with respect to spectral and 

geometric resolution.  

As explained in chapter 2.1.1 urban structure types are homogeneous urban areas 

containing aggregated single buildings of similar characteristics which were generated 

by a image segmentation procedure (cf. chapter 5). Hence, it is necessary that the 

spatial resolution of the multispectral data facilitates the detection of single buildings for 

the subsequent categorization of homogeneous urban structure types.  

Accordingly, to cover the entire study area 6 RapidEye scenes with a spatial resolution 

of 5 meters (resp. 6.5 meters, dependent on the level), all acquired in 2009 were used. 

The product specifications of the commercial RapidEye data are illustrated in table 3.  

RapidEye 

Number of satellites 5 

Launch date August 29
th
, 2008 

Sensor type Multi-spectral push broom imager 

Operator RapidEye AG,   
Black Bridge (renamed in November 2013) 

Orbit Altitude 630 km, sun-synchronous orbit 

Repetition rate Daily (off-nadir), 5.5 days (nadir) 

Swath width 77 km 

Ground sampling distance (nadir) 6.5 m 

Pixel size (orthorectified) 5 m  

Spectral resolution Blue: 440 - 510 nm 
Green:        520 – 590 nm 
Red: 630 – 685 nm 
Red Edge: 690 – 730 nm 
Near-Infrared: 760 – 850 nm 

 

Table 3: Specifications of RapidEye. 

During the further procedure the scenes were atmospheric corrected (cf. chapter 3.3.1) 

and a mosaic was generated (cf. chapter 3.3.2). The scene specific characteristics and 

the extent of the scenes are represented in table 4 and figure 9.  
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RE-Scene  553 556 606 609 610 613 

Date of 
Acquisition 

April 25, 
2009 

June 3, 
2009 

June 24, 
2009 

June 24, 
2009 

August 22, 
2009 

August 22, 
2009 

Satellite 
platform 

RE-2 RE-3 RE-5 RE-5 RE-2 RE-2 

Product 
Type/ Level 

2A 

Upper Left 
(lat/long) 

41.18702 / 

28.42495 

41.17852 / 

28.99701 

41.17321 / 

29.28294 

40.95718 / 

29.27548 

40.96246 / 

28.99048 

41.18313 / 

28.71101 

Table 4: Characteristics of the applied multispectral data sets. 

 

Figure 9: Extents of RapidEye scenes. 

RapidEye disseminates data sets in different product types (levels), which define the 

already implemented processing steps on the scenes. The used scenes were allocated 

as Level 2A-data. Level 2A-data are radiometric and geometric corrected, resampled 

(from 6.5 to 5 m), and a coarse orthorectification is done. Nevertheless, the data were 

further geometric corrected for the process of mosaicing, as explained in chapter 3.3.2. 
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3.2.3 Ancillary Information derived from Remote Sensing 

Data 

 

Earth observation data offers a vast number of area-wide information with a constant 

repetition rate and varying resolution and can be used as ancillary thematic geo-

information for various studies. The subsequent two sub-chapters introduce two utilized 

products derived from remotely sensed data, the global urban footprint, a multi-

temporal Landsat classification.  

 

 

3.2.3.1 Global Urban Footprint (GUF) 

 

The extent of the global urban footprint (GUF) for the region around Istanbul (illustrated 

in figure 6 and 9), constitutes the margin of the study area. The GUF is the result of a 

global analysis of urban areas by analyzing the texture information from SAR data 

(data from the TanDEM-X mission), followed by a pixel-based classification were the 

speckle intensity were examined to generate a binary mask, pointing out urban and 

non-urban areas (ESCH ET AL., 2012). The methodology of deriving urban footprints 

from SAR data is explicitly presented in ESCH ET AL. (2010), TAUBENBÖCK ET AL. (2011), 

and ESCH ET AL. (2012).  

“The urban footprint mask primarily represents the location and distribution of man-

made structures with a vertical component (strong scattering due to double bounce)” 

(ESCH ET AL., 2012, pp. 8).  This does not contain only buildings - the GUF also 

comprises other constructions such as bridges located in a heterogeneous 

neighborhood (ESCH ET AL., 2012). The accuracy of the GUF-mask was tested on 

respectively 1500 random points on Ikonos and Quickbird images for 12 test sites 

(including Istanbul). A mean overall accuracy of 88.5% and a kappa value of 0.77 were 

found (ESCH ET AL., 2012). In Istanbul the quality of the GUF data set attained 95.8% in 

the accuracy assessment what represents the highest quality class (ESCH ET AL., 

2010). 

 

For this study the GUF was subject to some geometrical corrections with morphological 

operators such as growing and shrinking of the derived and classified GUF polygons, 

to obtain a generalized and homogeneous urban footprint mask. Furthermore, a 
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manual revision and refinement along the coast enhanced the accuracy of the applied 

GUF. Additionally, the GUF is used as thematic information for the procedure of 

segmenting the urban areas of Istanbul (cf. chapter 5) and builds therefore the extent 

of the study area. 

 

 

3.2.3.2 Multi-temporal Landsat Classification  

 

As mentioned in chapter 2.5, detailed information about the year of construction of 

buildings is a crucial physical parameter for seismic vulnerability assessment. This 

information can be derived by the long-term Landsat mission. Landsat satellites are 

providing constantly data since 1972 with a medium geometric resolution of a minimum 

of 30 m (multispectral) to 15 m (panchromatic), which can be used for temporal 

analysis. For instance, changes in the morphology of built-up areas can be analyzed. 

For this study, an already existing time-series classification of Landsat imagery from 

1975, 1987 and 2000 was used for the estimation of the overall period of construction 

of the urban structure types. The temporal classification carried out by TAUBENBÖCK   

ET AL. (2009), based on a spectral classification method, covering for each time frame 

the detected urban areas. TAUBENBÖCK ET AL. (2009) quote the accuracy of the entire 

classification to 90%. In figure 10 the detected urban areas in 1975, 1987 and 2000 are 

shown. How the information of the Landsat classification for this study is applied in 

practice is expounded in chapter 6.1.3, 8.2, and 8.3.  

 

Figure 10: Multi-temporal Landsat Classification extracted to the GUF.  
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3.2.4 Reference Data 

 

In TAUBENBÖCK ET AL. (2009) the damage grade on single buildings in the case of a 

seismic event for the district Zeytinburnu was examined. In their study they combined 

physical parameters derived from remote sensing data (e.g., height, roof type, age) and 

information gained by civil engineering (e.g., material). The spatial distribution of 

detected probable damage grades reveals commercial areas dominated by large 

factories as highly vulnerable areas, residential buildings of medium height as medium 

vulnerable and very high residential buildings as low vulnerable areas (TAUBENBÖCK   

ET AL., 2009). This relation was used as foundation for the assessment of seismic 

vulnerability for the entire city. Consequently this dataset is used as reference data. 

The single buildings were aggregated and represent the training data set for the 

regression technique Support Vector Regression (cf. chapter 7.2.1). In figure 11 the 

spatial distribution of probable damage grades of single buildings in Zeytinburnu 

explored by TAUBENBÖCK ET AL. (2009) is shown.  
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Figure 11: Spatial distribution of expected building damage grades in Zeytinburnu 

(Source: TAUBENBÖCK ET AL., 2009). 

The determination of building material by civil engineering requires an indispensable in 

situ inventory which is not feasible for the large areal extent of the megacity. Thus, the 

assessment of single buildings by in situ surveys is not applicable for such large spatial 

extent. Additionally the assessment of seismic vulnerability of single buildings using 

information derived from remotely sensed data for the entire study area is especially 

due to processing time and resources not feasible. However, as previously mentioned 

in chapter 2.1.1 similar building types (e.g., building extent, building height) and its 

usage (e.g., commercial, residential) are aggregated to urban structures with similar 
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properties in respect of seismic vulnerability. Therefore, the single buildings of 

Zeytinburnu were aggregated to the final optimized multi-scale segmentation (cf. 

chapter 5.5.2) which is illustrated in figure 12.  

 

Figure 12: Aggregated reference data set. 

Before the multi-scale segmentation was produced, some fundamental preprocessing 

steps on the optical data, outlined in the subsequent chapters (cf. chapter 3.3.1 and 

3.3.2), followed by the derivation of building height information (cf. chapter 4) has to be 

done. 
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3.3 Pre-Processing of Optical Data 

 

In this chapter the essential preprocessing steps on the optical data are outlined. This 

includes the atmospheric correction of the single RapidEye scenes, followed by 

stretching the histograms and co-registration for the subsequent process of mosaicing. 

The mosaiced scenes were then, beside the building height information (cf. chapter 4), 

used for the delineation of homogeneous urban areas (cf. chapter 5) and the 

determination of seismic vulnerability features (cf. chapter 6). Therefore, the 

preprocessing depicts a crucial step for the further analysis. 

 

 

3.3.1 Atmospheric Correction 

 

The acquisition of remote sensing imagery, especially with passive sensors (cf. chapter 

2.4) is influenced by electromagnetic interaction caused by the atmosphere. Beside the 

effects of haze, clouds and water vapor the reflected spectra is exposed by scattering, 

absorption and reflection effects on aerosols (i.e., air particle). Additionally, variations 

of the viewing angle and diverse solar illumination angles lead to inconsistent 

reflectances, particularly at off-nadir records (MATHER, 2004). As a consequence, the 

reflected or emitted emission reaching the sensor differs from the spectral composition 

of an object on the earth surface. Furthermore, scattering and absorption processes 

also lower the intensity of the received reflections (NEUBERT & MEINEL, 2005).  

An atmospheric correction is essential when more than a single image is subject to 

analyzes a region. In this study several features related to seismic vulnerability have to 

be derived from the optical remote sensing data for the entire city of Istanbul. With 

respect to the characterization of seismic vulnerability features (cf. chapter 6), uniform 

values of reflections were required.  Besides, uniform reflection values can enhance 

the transferability of the classification algorithm. In this study the software package 

ATCOR (Atmospheric and Topographic Correction) (RICHTER, 1996) was used for 

atmospheric correction of the deployed RapidEye scenes (cf. chapter 3.2.2). ATCOR 

based on the MODTRAN-4 code (Moderate resolution atmospheric transmission) for 

transmitting electromagnetic radiation (BERK ET AL., 2003). The software provides, for 

multispectral remote sensing data, two general tools for atmospheric correction, 

ATCOR-2 and ATCOR-3. ATCOR-2 is basically used for flat terrain, whereas   
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ATCOR-3 is used for steep terrain, considering a DSM of similar resolution to the 

optical data. ATCOR-3 calculates slope, aspect, skyview  factor, and topographic 

shadow (RICHTER & SCHLÄPFER, 2014) to compensate lightning effects from shading, 

tanning, terrain, and adjacency radiation (NEUBERT & MEINEL, 2005). Despite the 

availability of a DSM of ~11 m, the ATCOR-3 tool could not be used due to artefacts 

(especially in water surfaces) in the intermediate DSM. (RICHTER, 2014). Nevertheless, 

the focus in this study lay on urban areas which were mostly located in flat and 

moderate terrain, therefore ATCOR-2 could also attained valuable results. The 

atmospheric correction, applied with ATCOR-2, based on a uniquely sensor-specific 

calculated look-up table (LUT). Additionally, in the atmospheric correction the 

acquisition date (for different seasons), time (for different altitudes of the sun), altitude 

of the sensor, viewing angle, type of aerosol (was set to urban), and the mean visibility 

(is calculated automatically) was adjusted. With respect to these atmospheric- and 

scene-related parameters the atmospheric correction was carried out for all RapidEye 

scenes. The images are comprised by surface reflectances after the atmospheric 

correction (RICHTER & SCHLÄPFER, 2014). In figure 13 a RapidEye scene before and 

after the atmospheric correction is shown and illustrates the reduction of haze.  

 

Figure 13: Subset of a RapidEye scene before (left) and after atmospheric correction (right). 
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3.3.2 Mosaicing 

 

The histograms of the atmospheric corrected RapidEye scenes (cf. chapter 3.3.1) were 

stretched. The stretching of an image is applied to achieve an expanded range of grey-

scale values for the entire image. More grey tones in an image enable a more precise 

analysis of objects. In addition, with respect to the subsequent process of mosaicing, it 

aims to represent similar objects (e.g., buildings) in different RapidEye scenes as equal 

(similar spectral properties) as possible. The histogram stretching for all RapidEye 

scenes was carried out with the software package ENVI 4.8 (Environment for 

Visualizing Images). At this, the range of reflectance values was specified to unsigned 

8 bit, which depicts a range of 0-255 digital numbers. For stretching data values into a 

certain range linear and non-linear stretching methods can be applied. Linear 

stretching methods use arithmetical even functions for expand the data values over the 

defined range. In contrast to that, non-linear stretching methods are based on uneven 

operations such as logarithmic functions, and are deployed for stretching the 

atmospheric corrected images. However, in the literature there is no a priori suggestion 

for the selection of an ideal stretching method, it rather depends on the image itself. 

Hence, several methods and settings were tested. In general a linear stretching by a 

scene specific standard deviation was implemented. This method gained more contrast 

(SCHOWENGERDT, 2006), especially in extremely bright regions (e.g., streets). This 

change is shown in figure 14.  

 

Figure 14: Snippet of an atmospheric corrected RapidEye scene  

before (left) and after histogram stretching (right). 
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Despite that the scenes were already georeferenced, but acquired from different 

platforms with varying orbital constellations. The scenes had shown a slight shift in 

latitude and longitude. Hence, the scenes were corrected in their position with respect 

to the neighboring scenes. Subsequently, the corrected RapidEye scenes were 

combined to a single composite image. This process is named mosaicing. Thereby, the 

difficulty is to avoid the visibility of the seam line between two scenes. Typically a cut-

line along a natural border (e.g., streets, rivers etc.), covered by both images which 

should be combined, is used as seam. However, this necessitated major overlaps than 

only some pixels. Nevertheless, the RapidEye scenes had merely some pixels overlap, 

and as such a cut-line was not allocatable (cf. figure 9). Hence, the seam was blended 

and blurred (so called feathering) along the edges during the process of mosaicing of 

all RapidEye scenes in ENVI (EXELIS, 2014). The effects of the applied feathering 

technique can be seen in figure 15, which displays the seam for a subset of two 

mosaiced scenes. Due to the fact that the scenes were acquired between April (spring) 

and August (summer) (cf. chapter 3.2.2) the phenological state was differing and made 

it impossible to avoid hard seams. However, for the purpose of analyzing urban areas 

this can be largely neglected.  

 

Figure 15: Subset of the mosaic with blended and blurred (feathering) seam (right) 

and without (left). 

 

 

seam 
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4. Extraction of Building Height 

Information 

 

  

In chapter 3.2.1 it was mentioned that available DSM data allows to derive information 

about object heights (e.g., from buildings, trees etc.). For this study the extracted 

building height information should be considered as a feature related to seismic 

vulnerability. These information require further processing steps, which are specified in 

this chapter.  

The DSM is a model of the earth providing the elevation of the earth surface 

comprising bare earth (fallow waste ground), vegetated objects (e.g., trees), and 

artificial objects such as houses, bridges, and other man-made structures. For the 

extraction of object heights (for this study the heights of buildings were of interest) the 

derivation of a digital terrain model (DTM) from the DSM is common. A DTM is a 

topographic model of the terrain relief without elevated objects. By applying the formula  

𝑛𝐷𝑆𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀 

the terrain elevation (DTM) will be removed from the DSM to retrieve object heights 

stored in the normalized Digital Surface Model (nDSM). This calculation removes the 

elevation height (terrain) so that the objects of the nDSM stand on an elevation height 

of zero (VOZIKIS, 2004). Figure 16 graphically illustrates the characteristics of DTM, 

DSM and nDSM. 

 

 

Figure 16: Characteristics of Digital Surface Model, Digital Terrain Model and  

normalized Digital Surface Model. 



Extraction of Building Height Information 

49 

Initially, the DTM has to be extracted from the DSM data, for which several approaches 

exist. Most of them are designed for DSM data with a much higher resolution than 

TanDEM-X data which were derived from laser scanning data (LiDAR), interferomentric 

SAR data, or from stereo images (GAMBA & HOUSHMAND, 2000; WURM ET AL., 2011; 

SIRMACEK ET AL., 2012). A large share of these approaches is based on filtering 

methods (KRAUS & PFEIFFER, 1998; AXELSON, 1999; ZHANG ET AL., 2003; SITHOLE & 

VOSSELMAN, 2004; LIU, 2000). In contrast to very high resolution DSM data not each 

filtering method is compatible with a DSM resolution of 10 m as it is the case of the 

utilized TanDEM-X DSM data. In this study morphological filters were used for the 

derivation of a DTM as proposed by GEIß ET AL. (2014c). On any number of occasions 

morphological filters were used to yield a differentiation of objects (non-ground objects) 

and bare earth (ground-objects) (ZHANG ET AL., 2003; CHEN ET AL., 2007; PINGEL ET AL., 

2013).  

 

In the subsequent chapter the morphological filtering and its application to the data set 

is described, followed by the normalization of DSM data (cf. chapter 4.2) to extract 

building heights. In addition the end of the chapter deals with the limitations of 

morphological filters.   
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4.1 Morphological Filtering 

 

This chapter describes the utilization of morphological filters on a DSM data set to 

derive bare earth information for its generation of a DTM. As mentioned in the previous 

chapter (cf. chapter 4) for this study the proposed approach by GEIß ET AL. (2014c) was 

used. The approach is compounded by three main steps dedicated to GEIß ET AL. 

(2014c) as schematically illustrated in the flowchart in figure 17.  

 

Figure 17: Flowchart of the derivation of bare earth pixels (BE) and non-ground objects (OBJ). 

The application on Istanbul‟s DSM data was done using the software package 

eCognition Developer ® from Trimble which enables the development of object based 

image analysis (OBIA). However, the fundamental procedure of using morphological 

filters did not succeed the very common progress in OBIA to conduct segmentation first 

and followed by a classification. Due to the DSM resolution of ~11 m, it is possible that 

only one pixel represents a building, so the separation of non-ground objects (in this 

case „buildings‟) and ground objects (bare earth) is based on a single pixel analysis. 

Thus, the analysis grounded on image objects which are represented by single pixels 
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derived by a segmentation technique where the image is split in squared image objects 

of equal size (e.g., Chessboard Segmentation).  

 

Initially morphological opening operations on the DSM data were carried out to derive a 

DTM. Morphological opening operations enfolds a minimum and maximum filter with a 

structuring element w, which operates as sliding windows over the data set to derive 

the maximum values of the minimum elevation values z of the DSM. In mathematical 

morphology the minimum filter is known as special erosion operation with a constant z 

for w. The morphological minimum filter is described by  

 

z̅ = 𝑚𝑖𝑛(𝑥,𝑦)∈𝑤   𝑧𝑥,𝑦  

 

where 𝑧𝑥,𝑦  is the surface elevation at x and y. Correspondingly the maximum 

morphological filter, also known as dilation based on z̅  is defined as  

 

z̿ = 𝑚𝑎𝑥(𝑥,𝑦)∈𝑤   𝑧̅𝑥,𝑦 . 

 

To ensure that all non-ground objects in the opened surface z̿ can be removed, the size 

of the moving window has to be set to 

 

𝑤𝑚𝑎𝑥 = 2 × 𝑑𝑚𝑎𝑥 +  1. 

 

Thereby, 𝑤𝑚𝑎𝑥  represents the maximum size of the moving window, and 𝑑𝑚𝑎𝑥   depicts 

the “largest number of pixels between an object of interest pixel and the next ground 

pixel” (GEIß ET AL., 2104c, p. 5), or in other words that w exceeds the non-ground object 

itself. Due to the processing time and in consequence to the accuracy regarding the 

chosen kernel size, as described at the end of this chapter, the DSM data set was split 

into 14 tiles on which the entire procedure was implemented. Hence, 𝑤𝑚𝑎𝑥  was chosen 

empirical for the largest identifiable building respectively for each tile, as graphical 

illustrated in figure 18. 

 

 

 

 



Extraction of Building Height Information 

52 

 

 

 

 

Figure 18: Empirical determination of 𝑑𝑚𝑎𝑥  for the largest identifiable non-ground object. 

Thus the minimum and maximum morphological filtering opening operations for each 

tile of the DSM data set was calculable. During each iteration a preliminary nDSM 

(pnDSM) is computed by subtracting the surface obtained by the maximum 

morphological filter from the DSM data. On the basis of this, ground objects (bare 

earth) could be identified if the pnDSM values were smaller than a certain height 

threshold 𝜃. In regard the height threshold 𝜃 has to be chosen as the minimum height 

that a building can have. For this study it was assumed that buildings have a minimum 

size of 2.6 m. Therefore, pnDSM values lower 𝜃 = 26 dm were assigned to the bare 

earth class, so that small objects such as cars or bushes were removed.  

In the subsequent step the morphological kernel size k was set to a minimum of 3, so 

that the morphological opening filters (𝑤𝑚𝑖𝑛 ) could comprise an area of ~900 m² of the 

study area to analysis the remaining pixels regarding their belonging to the class     

non-ground objects (pnDSM > 𝜃). For that purpose a pnDSM was generated again, 

this time using the maximum filter composed of the initial morphological kernel size. 

Additionally a region growing procedure was implemented to identify non-ground 

objects (OBJ). This procedure focuses to identify border pixels of buildings which could 

not covered by the minimum window size 𝑤𝑚𝑖𝑛  and were therefore not included in the 

pnDSM. For the detection of these pixels a Lee-Sigma edge detection filtering (LEE, 

1983) was integrated in the procedure. This filter uses “sigma probability of a Gaussian 

distribution to smooth variations in the image by averaging only those neighborhood 

pixels which have intensities within a fixed range of standard deviations o the center 

pixel” (GEIß ET AL., 2014c). The filter was used to extract bright edges by subtracting 

z̅𝑤𝑚𝑖𝑛
 from z̿𝑤𝑚𝑖𝑛

. These edges generally represent border pixels of building which 

were not considered by 𝑤𝑚𝑖𝑛 . After that a contrast segmentation was applied to 

separate bright and dark pixels for their subsequent classification of bright pixels as 

OBJ. In the next steps the procedure was repeated with a constantly increasing 

𝒅𝒎𝒂𝒙 
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morphological kernel size k until 𝑤𝑚𝑎𝑥  was reached. The linear ascent of the sliding 

window size 𝑤𝑘  is defined by 

 

𝑤𝑘 = 2 × 𝑘 + 1 

 

with k = 1, 2,…, 𝑑𝑚𝑎𝑥 . In this way different sized objects could be analyzed by the 

iteratively process of increasing the window size for filtering the surface. While this 

process the pnDSM was frequently calculated with respect to k from which the pixels 

were assigned as OBJ if they were greater than 𝜃 and a similarity constraint towards 

already classified OBJ is fulfilled. The similarity constraint is used for analyzing a 

potential OBJ pixel potOBJ, to identify if it is part of a building or not. A pixel represents 

a potOBJ if an adjacent pixel depicts an OBJ pixel and shares a boundary with this 

OBJ pixel (e.g., pixels on building with varying height and a height difference <  𝜃 to its 

neighboring pixels can be mistakenly recognized as BE pixel). Thus these pixel 

represents potOBJ and were analyzed by 

 

𝑠𝑖𝑚 𝑝𝑜𝑡𝑂𝐵𝐽, 𝑂𝐵𝐽 =  
1,  𝜇 ∆𝑍𝑂𝐵𝐽  − ∆𝑍𝑝𝑜𝑡𝑂𝐵𝐽  ≤ 𝛾

0,                                             𝑒𝑙𝑠𝑒.
  

 

Where ∆𝑍 represents the value of the respective pnDSM, 𝜇 its mean and 𝛾 the user 

defined threshold. In this study the 𝛾-threshold was set to 0.8 m. This procedure of 

identifying OBJ is illustrated in the figure 19. 
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Figure 19: Idealized procedure for the identification of initial OBJ pixels that represent the basis 

for the region growing procedure. (a) Objects that are exceeded by the minimum window size 

(𝑤𝑚𝑖𝑛 ) can be identified by the application of a threshold 𝜃 on the pnDSM (Z -  z̿𝑤𝑚𝑖𝑛
).             

(b) Border pixels of objects that are not exceeded by 𝑤𝑚𝑖𝑛  are identified by subtracting z̅𝑤𝑚𝑖𝑛
 

from z̿𝑤𝑚𝑖𝑛
. They are classified as OBJ by combining edge extraction filter and segmentation. 

Section a) of this figure visualizes the identification of initial OBJ pixels that are above elevation 

difference threshold 𝜃 and yet unclassified and section b) visualizes the subtraction of  z̅𝑤𝑚𝑖𝑛
 

from z̿𝑤𝑚𝑖𝑛
 and identification of unclassified initial OBJ pixels by applying edge extraction and 

contrast segmentation. (Source: GEIß ET AL., 2014c). 

In the end all pixels which could not identified as buildings were classified as bare 

earth. The pixels classified as bare earth were exported as points for the subsequent 

step of generating a DTM (cf. chapter 4.2). Figure 20 illustrates a snippet of the 

separation procedure of BE and OBJ pixels within the eCognition environment.  
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Figure 20: Separation procedure (left) of bare earth pixels (blue) and building objects (red) for a 

snippet of the study area (right). 

However, as already mentioned before, the utilization of morphological filters to extract 

a normalized DSM is also attended with some limitations and drawbacks. As can be 

seen from the classification result a large number of OBJ pixels in mountainous areas 

were mistakenly founded (omission error). This may result from rock overhangs were 

the elevation strongly increases or decreases, and therefore the constraint to classify 

pixels as OBJ if the pnDSM > 𝜃 was complied. However, it is generally known that the 

utilization of morphological filters work well in flat terrain (KRAUSS ET AL., 2011) and 

exhibits errors in steep surfaces (MENG ET AL., 2010; MAGUYA ET AL., 2013). Hence, the 

GUF (cf. chapter 3.2.3,1) was used as a mask to extract subsistent urban areas from 

the subsequently calculated nDSM (cf. chapter 4.2) so that these errors could be 

avoided.  

It should be added that due to the resolution of the DSM data small single buildings 

were not included in the data. However, the nDSM information was completely used for 

homogeneous urban areas (cf. chapter 2.1.1 and 5.2) and not only the information of 

each single building.  
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4.2 Normalization of DSM 

 

This chapter outlines the computation of a DTM from the extracted BE points and the 

calculation of a nDSM to derive building height information. For generating a 

continuous terrain surface the BE pixels of all scene tiles were used for interpolating a 

DTM. In the spatial context, interpolation describes the process of estimating unknown 

values whilst taking into account known data values. This process comprises different 

methods. Generally it can be categorized into global and local interpolation techniques. 

Where global interpolation methods consider all available known data points for the 

estimation of unknown data values. Therefore, global interpolation methods depend on 

a single function for estimating unknown values for the entire region. Thus, changes in 

the applied data points (known values) will affect the interpolation result. In contrast, 

local interpolation methods use only adjacent values for the estimation of an unknown 

value. Hence, the function of local interpolation methods will be iteratively used on a 

defined range with known data values for the interpolation of unknown values.  

It was assumed, that an unknown point will be similar to its nearest neighboring points. 

This is what Tobler‟s first law of geography implies that “everything is related to 

everything else, but near things are more related than distant things” (TOBLER, 1970, 

pp. 236), too. Therefore, a local interpolation method was chosen for the estimation of 

unknown points. Thus, the inverse distance weighting (IDW) interpolation technique 

was applied in this study to interpolate the terrain surface (DTM) analogous to 

ANDERSON ET AL. (2005). This method used the weighted distance average of an 

unknown point to adjacent observer points for its interpolation. The IDW is a commonly 

used interpolation technique with reliable accuracies (LAM, 1983). The mathematical 

function for the IDW interpolation of an unknown value 𝜗 is given by 

𝜗 =  
 

1

𝑑𝑖
𝜏𝑖

𝑛
𝑖=1

 
1

𝑑𝑖

𝑛
𝑖=1

. 

Where 𝜏𝑖  represents the known value and 𝑑𝑖  the distance to 𝜗. In the GIS software 

package ArcMap, the IDW approach was already implemented and known as a fast 

interpolation method compared to other local methods (i.e., Kriging). Especially for 

large data sets such as for the study area of Istanbul, where over 21 million BE points 

have to be interpolated, the computation time depicts a crucial aspect. Furthermore, 

IDW is an exact interpolation method and does not manipulate the values of the input 
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points, only the values “between” were calculated. However, IDW is also afflicted by 

limitations, such as, that estimations can not exceed the minimum or maximum value of 

neighboring adjacent points. Therefore, this lead to the fact of flatting mountain peaks 

and valleys, if IDW is applied as interpolation technique for estimating elevation values 

of a terrain surface. In WATSON & PHILIP (1985) the limitations of the interpolation 

method IDW are specified. However, LLOYD & ATKINSON (2010) and ANDERSON ET AL. 

(2005) stated that simple interpolation methods such as IDW mostly provide sufficient 

results. 

For all BE points, detected from the DSM, an IDW interpolation with adjusted power of 

2 and a variable search radius of 12 was carried out. The power defines the distance 

exponent, where the larger the value, the less influence have distant points on the 

estimation. The search radius indicates a variable search radius around an unknown 

point to determine a certain number of points which were used for the interpolation. In 

the next step obvious erroneous negative values (e.g., -32.000 especially along the 

coastline) of the IDW interpolation outcome (DTM), as well as for the DSM dataset 

were set to zero. Subsequently, the nDSM was calculated by using the formula 

mentioned in chapter 4. Afterwards the GUF was used as a mask to extract building 

heights from the nDSM. So errors in mountainous areas, as previously mentioned in 

chapter 4.1 can be avoided. In figure 21 the utilized data set and the outcomes for the 

extraction of building heights is shown.  

 

Figure 21: Applied data sets for the extraction of building heights. 
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For the further segmentation procedure, which based on the optical data and the 

nDSM, the nDSM data set was resampled to a resolution of 5 m, consistent to the 

resolution of the optical data. The pixels of the resampled nDSM and the pixels of the 

mosaiced RapidEye data had to correspond in size (resolution) and positional 

precision. Otherwise, during the segmentation procedure, sliver polygons would appear 

(cf. chapter 5.2.1) as a result of different pixel sizes.  
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5. Delineation of Urban Structure Types 

 

 

In this section of the study the focus lies on the delineation of homogeneous urban 

structure types. This procedure was carried out with the software eCognition and 

includes the utilization of a multi-scale segmentation algorithm (ESCH ET AL., 2008; 

MARTHA   ET AL., 2011). Initially a theoretical overview on image segmentation, its 

techniques as well as an outline of multi-scale segmentation introduces this process. 

After that the segmentation approach for the study area is described. 

 

 

5.1 Segmentation Techniques 

 

Since the launch of satellites which deliver very high spatial resolution remote sensing 

imagery, object-based image analysis gains more and more importance in image 

processing (BLASCHKE & STROBL, 2001; BLASCHKE, 2010). Traditional methods of pixel-

based image analysis are exclusively based on pixel statistics and not involve form, 

texture and spatial context. This may tread to dissatisfaction to any classification result 

of high-resolution images. The smallest unit of an image is called pixel (pictorial 

element) and is also frequently representing a small portion of a classified high-

resolution imagery, and does often not transmit significant image semantics (BAATZ & 

SCHÄPE, 2000). This is related to heavily varying spectral characteristics of single pixels 

in high-resolution images (e.g., gaps in streets caused by vehicles and shadow etc.) 

(YU ET AL., 2006).  

Object-based image analysis is based on two main pillars, segmentation and 

„objectivation‟ e.g. classification (BLASCHKE ET AL., 2014). Segmentation depicts the 

initial step of object-based image analysis and aims at generating meaningful objects in 

the image by grouping neighboring pixels based on distinct homogeneity criteria. 

PEKKARINEN (2002) defined image segmentation as the division of images “into 

spatially continuous, disjoint and homogenous regions” (PEKKARINEN, 2002, pp. 2818). 

For segmenting an image several techniques are available which were briefly revealed. 

The focus of the section was put on the applied region-growing segmentation 

technique, due to the fact that this segmentation technique is most common used one 
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in remote sensing (ESPINDOLA ET AL., 2006). The categorization of image segmentation 

techniques is not strict however, some may discriminated: 

 Region based segmentation 

 Edge based segmentation 

 Threshold based segmentation 

 Clustering techniques 

Moreover, the region based segmentation technique rest upon splitting and merging 

(UNIVERSITY UTRECHT, N. D.). Both operations are based on a previous conducted 

initial segmentation. The merging operation can be used to merge similar adjacent 

objects when the image is over-segmented, or splitting inhomogeneous segments into 

smaller homogenous ones (splitting operation), if the initial segmentation achieved an 

under-segmentation. The terms over- and under-segmentation will be defined later in 

this chapter.  

 

In general the segmentation technique applied in this study is based on a region-

growing segmentation algorithm deployed on the fractal net evolution approach   

(BAATZ & SCHÄPE, 2000) with the software product eCognition® to build image object 

primitives (BAATZ & SCHÄPE, 2000). The fractal net evolution approach in eCognition is 

the most commonly used approach in remote sensing applications (BAATZ ET AL., 

2005). This algorithm is called “multiresolution segmentation” (BAATZ & SCHÄPE, 2000) 

and is a bottom-up approach by starting at the pixel-level („one-pixel objects‟) (BENZ   

ET AL., 2004). Afterwards pixels are merged to objects in an iterative process until some 

user-defined homogeneity criteria are fulfilled. The homogeneity criterion is 

compounded by compactness, shape, and scale (so-called „scale parameter‟). With the 

scale parameter the average object size can be influenced - the object size increases 

with increasing scale parameter and vice versa. 

The major weakness in region-growing image segmentation techniques is the 

appearance of different sized real world objects which leads to an over-segmentation 

and/ or under-segmentation. Over-segmentation is defined as the generation of too 

many segments for a real world object and under-segmentation as the computation of 

too less segments, whereby the boundaries of the real world object were dispersed. 

The subsequent categorization of different object types (e.g., landcover types) may 

lead to their misclassification. One opportunity to overcome this issue is the generation 

and utilization of different segmentation levels (segmentations with different sizes of 
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generated segments) which can be used for the subsequent categorization (using 

splitting and merging). These segmentation levels should be linked to each other as a 

hierarchy of super-objects and sub-objects. Thereby, sub-objects are objects with a 

smaller scale factor and are contained in their super-objects. Consequently super-

objects can be defined as the aggregation of finer image objects (sub-objects). Another 

option, as applied in this study, is the combination of different scales to a final 

segmentation by their optimization. With respect to the research question, which 

comprises the delineation of homogenous urban structure types, these categories can 

be varying in their spatial extent (e.g., large agglomeration of terraced houses and 

small areas with commercial buildings). Thus single segmentation levels would not be 

sufficient, and for this reason the approach of combining different segmentation scales 

is believed to represent the most efficient approach for this study. For that purpose the 

multiresolution segmentation algorithm was implemented in several consecutive 

automated segmentation steps to generate an optimized multi-scale segmentation for 

the subsequent characterization of urban structure types. In the following, the concept 

of the multi-scale segmentation and its application for the study area is delineated. 

 

 

5.2 Multi-scale Segmentation 

 

Multi-scale segmentation or multi-level segmentation represents an advanced 

approach to image segmentation as it was implemented in this study to categorize 

miscellaneous homogeneous urban areas for the further assessment of seismic 

vulnerability. This segmentation approach was inspired by the human visual perception 

synthesizing to the gestalt law (founded by WERTHEIMER, 1923; KÖHLER, 1929; and 

KOFFKA, 1935), which describes the behavior to isolate objects in their entirety. So the 

human eye perceives various scales of grouped objects consisting of inherent scale 

domains.  

Related to object-based image analysis this approach is dealing with the links between 

interrelated objects (object hierarchy) of different size and scale (e.g., single trees, 

types of tree, forest) derived from one of the standard segmentation techniques 

mentioned in chapter 5.1. In other words different segmentation levels provide different 

levels of detail which do not appear in other levels (BRUZZONE & CARLIN, 2006). This 

results from varying landcover types and therefore also varying sizes               
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(JOHNSON & XIE, 2011). However, each object on a level is hierarchically linked with 

other objects on the level above and below (BRUZZONE & CARLIN, 2006). Additionally 

the usage of multi-scale segmentation enables a more precise distinction of objects in 

heterogeneous scenes compared to the usage of a single segmentation scale 

(JOHNSON & XIE, 2011; JOHNSON & XIE, 2013). Furthermore the utilization of a multi-

scale approach aims for avoiding over-segmentation or under-segmentation, which 

have influences on the subsequent classification accuracy (decreases with over- and 

under-segmentation) (LIU & XIA, 2010; DORREN ET AL., 2003; KIM ET AL., 2009).  

Nevertheless the process of aggregating various segmentation levels requires 

experience-based knowledge in manual interpretation and feature delineation (LANG & 

BLASCHKE, 2003) for the determination of appropriate segmentation levels. According 

to JOHNSON & XIE (2011) a high-quality multi-scale segmentation can be done by        

a) visually inspection and selection of segmentation levels to perform multi-level 

segmentation by the user, by b) supervised methods, which compares segmentation 

levels by involving references produced by the user or ground truth (ZHANG, 1997), or 

by c) unsupervised methods which includes quality criteria to score and rank the 

segmentation levels (CHABRIER ET AL., 2006). 

DRAGUT ET AL. (2010) developed a tool for the automated estimation of scale 

parameters (ESP-tool) for the multi-scale segmentation in the eCognition® software. 

This tool is based on a bottom-up multiresolution segmentation by a constantly 

increasing scale factor (scale-parameter) until a local variance value is reached 

(DRAGUT ET AL., 2014). The successor enables the implementation of multi-spectral 

data as opposed to the ESP-tool (which only works on single layers) developed 2010 

(DRAGUT ET AL., 2014), however image layer weighting is not supported. Thus this tool 

could be not used in this study. 

 

In conclusion, multi-scale segmentation is the combination of various segmentation 

scales from a single resolution remotely sensed image to a final segmentation and 

avoids over- and under-segmentation. The multi-scale segmentation procedure in this 

study relies on the computed nDSM and the mosaiced optical data (RapidEye) for the 

entire study area.  
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5.2.1 Determination of appropriate Segmentation Scale 

 

As mentioned in the previous chapter urban structure types are differing in their size 

and necessitated a multi-scale segmentation as proposed by ESCH ET AL. (2008). In 

this process distinctive segments were compared and used for the generation of 

multiple segmentation scales. Generally in region-growing segmentations user-defined 

parameter settings are required. The selection of appropriate parameters to obtain 

qualitative high segmentation results is a challenging task (ESPINDOLA ET AL., 2006) 

and does often imply a time-consuming trial-and error process (ZHANG ET AL., 2010). 

Consequently, some studies were concerned with the evaluation of segmentations 

(STEIN & DE BEURS, 2005; CHABRIER ET AL., 2006; ESPINDOLA ET AL., 2006; KIM ET AL., 

2008, 2009; RADOUX & DEFOURNY, 2008). GAO ET AL. (2007) used the objective 

function proposed by ESPINDOLA ET AL. (2006) and showed the efficiency for the 

determination of the best segmentation scales. This approach based on the 

assumption that an optimal segmentation maximizes intrasegment homogeneity and 

intersegment heterogeneity, which are components for the measure of intrasegment 

variance (v) and Moran‟s I (I) (GEIß ET AL., 2014d). Accordingly in this study the 

procedure of computing a multi-scale segmentation proposed by ESCH ET AL. (2008) 

followed by the objective function by ESPINDOLA ET AL. (2006) for the finding of the best 

segmentation scale was utilized. The entire process is schematically illustrated in the 

flowchart (cf. figure 22) below. Additionally the fundamental processing steps are 

illustrated as subsets at the end of the optimized procedure in figure 26.  
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Figure 22: Flowchart of the multi-scale segmentation process. 

As mentioned in the previous chapter the multi-scale segmentation was implemented 

on the mosaiced optical data, the nDSM and supplementary bounded by the GUF for a 

segmentation of only urban areas. Due to the fact that the optical data and the height 

information (nDSM) were used to compute the segmentation both data sets should be 

available with the same pixel size and should exactly fit on top of each other to avoid 

the generation of sliver polygons (cf. chapter 4.2). Sliver polygons are defined as small 

slim polygons typically occurred along the borders of polygons (ESRI, N.D.) due to 

dissimilar levels of data and are manipulating the topology. Therefore, sliver polygons 

should be avoided. Thus the nDSM dataset was resized (as mentioned in chapter 4.2) 

to the same pixel size as the optical data (5m). 

 

The entire process of determining the initial multiresolution segmentation scale based 

on constant parameter settings of 0.7 for the shape heterogeneity criterion and 0.5 for 

the compactness heterogeneity criterion. These parameter setting was selected due to 
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the fact that buildings and other man-made structures have distinct size and shape 

characteristics (i.e., more emphasize was put on the shape parameter than on 

compactness) rather than grey-value heterogeneity. To ensure the transferability at the 

best possible rate for other multi-spectral data sets the most standard bands red, 

green, blue, and near-infrared (red-edge was skipped) were used for the segmentation 

and also for the succeeding feature calculation (cf. chapter 6). Even the red edge band 

is primarily used for vegetation analysis and so not actually relevant for this study. The 

weighting of the image layer bands (red, green, blue, near-infrared, and nDSM) relies 

on an empirical process of delineating meaningful segmented objects.  

During the process of generating multiple segmentations the segments of each scale 

were verified to fulfill the Shannon sampling theorem. This defines that “an object 

should be of the order of one tenth of the dimension of the sampling scheme - the pixel 

- in order to ensure that it will be completely independent of its random position and its 

orientation relative to the sampling scheme” (BLASCHKE, 2010, pp. 3). According to that 

an object has to consist of at least ten pixels to represent a valid object in terms of size 

and five pixels in terms of width: 

𝑣𝑎𝑙𝑜𝑏 =

 
 
 
 

 
 
  𝑎𝑜𝑏

𝑔

10
, 𝑆 < 3

 
 

𝑤𝑜𝑏

𝑔

5
, 𝑆 ≥ 3

  

with 𝑎𝑜𝑏  defining the area of the object, the geometric resolution of the image is 

determined by 𝑔, 𝑤𝑜𝑏  represents the object width and S is a shape complexity index.   

S is calculated as the perimeter to boundary ratio: 

𝑆 =
𝑃

2 ∙ 𝑟 ∙ 𝜋
, 𝑟 =  

𝑎𝑜𝑏

𝜋
 

where 𝑃 depicts the object perimeter, 𝑎𝑜𝑏  the area of the object and 𝑟 the radius of a 

circle with the same surface area. The shape complexity index S was set to 3 to 

distinguish compact and narrow/ long objects as proposed by HENGL (2006).  

The series of segmentations for detecting the initial segmentation scale ranged 

between 5 and 50 with an interval of 1. For each segmentation the number of objects, 
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the number of non-valid objects, the percentage of non-valid objects towards the 

number of objects, and the delta value of two consecutive segmentation scales were 

calculated (cf. appendix A). Thereby the number of non-valid objects represents the 

amount of objects which did not fulfill the Shannon sampling theorem. The percentage 

of non-valid objects represents the share of non-valid objects against the total number 

of objects representing the urban areas (classified as GUF). The percentage of non-

valid objects (𝛾) from the initial scale hi is calculated by  

𝛾𝑕𝑖
=  

 𝜇𝑕𝑖

𝑛
𝑖=0  ∙ 100 

 𝜑𝑕𝑖𝑛
 

where μ is a non-valid object of hᵢ, and 𝜑 the total number of objects from hᵢ. 

Additionally required for the determination of the appropriate starting scale constitutes 

the delta, which is the difference of the number of non-valid objects between two 

consecutive segmentation scales. This is specified by 

∆𝛿𝑕𝑖
= 𝛾𝑕𝑖

− 𝛾𝑕𝑖+1
. 

The segmentation scale which entails a relatively small proportion of non-valid objects 

and a local maximum of non-valid objects with respect to adjacent segmentation scales 

was selected as initial starting scale for the subsequent procedure. This condition was 

satisfied for h=24, as can be seen in figure 23.  

 
Figure 23: Determination of initial segmenation scale (marked by the arrow). 
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In the following ESPINDOLA ET AL.‟s (2006) proposed objectiv function is implemented. 

The function assumes that a maximizing intrasegment homogeneity and intersegment 

heterogeneity represents the optimal segmentation scale. For that purpose multiple 

segmentation scales starting with the determined initial segmentation h=24 to a scale 

factor of 150 with at an interval of 1 were calculated. The objective function is 

composed by measuring the intrasegment variance v and the Moran‟s I (I). Therefore 

the intrasegment variance is a global measure over the entire scene weighted by the 

area of each segment. Thus larger regions have more influence than smaller ones and 

avoid therefore instabilities caused by small segments (ESPINDOLA ET AL., 2006). The 

intrasegment variance was calculated by the formula:  

 v =
 𝑎𝑖v𝑖

𝑛
𝑖=1

 𝑎𝑖
𝑛
𝑖=1

 

where 𝑎𝑖  represents the area of segment i and v𝑖  is its variance. In the process the 

variance is computed with the spectral brightness values calculated from the optical 

band information of red, green, blue and near-infrared and additionally the building 

height information derived from the nDSM.  

Before measuring the intersegment heterogeneity all scales were exported as 

shapefiles with the information of the brightness value and the intrasegment variance of 

each segment. The further calculation of the Moran‟s I, which is a spatial 

autocorrelation index (FOTHERINGHAM ET AL., 2000) was implemented with the software 

ArcGIS. The Moran‟s I is determined by 

I = 
𝑁

  𝑤 𝑖𝑗𝑗𝑖
∙
  𝑤 𝑖𝑗𝑗𝑖  𝑋𝑖−𝑋   𝑋𝑗−𝑋  

  𝑋𝑖−𝑋  2
𝑖

 

where N represents the total number of segments indexed by i and j, X defines the 

brightness value from the before mentioned spectral bands for a segment, and 𝑋  the 

mean brightness of all segments. In addition 𝑤𝑖𝑗  defines the spatial weighting of spatial 

adjacency of the segments i and j. Thus 𝑤𝑖𝑗  is defined as: 

𝑤𝑖𝑗 =  
1, 𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑎𝑛𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑢𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
0, 𝑒𝑙𝑠𝑒.

  

The Moran‟s I measures the divergence from the averaged mean brightness values of 

each segment to the averaged mean values of its neighboring segments. For the 
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image segmentation a high intersegment heterogeneity and therefore low Moran‟s I 

values (low spatial autocorrelation) are preferable which means adjacent segments are 

statistically distinguishable (JOHNSON & XIE, 2011; ESPINDOLA ET AL., 2006).  

The proposed objective function was calculated for all scales hi by using the 

intrasegment variance and the Moran‟s I calculation and is defined as: 

F(v, I) = F(v) + F(I) 

Where F(v) an F(I) represent normalized functions specified by: 

F(x) = 
𝑋𝑚𝑎𝑥  − 𝑋

𝑋𝑚𝑎𝑥  − 𝑋𝑚𝑖𝑛
  

Where 𝑋𝑚𝑎𝑥   and 𝑋𝑚𝑖𝑛  are the maximum and minimum value of the intrasegment 

variance or the Moran‟s I over the range of all calculated scales hi. With the 

normalization of the functions the Moran‟s I and intrasegment variance were rescaled 

to range between 0 and 1. The optimal initial multiresolution segmentation is 

represented by the maximum value (identified for hi=24) of the objective function F(v, I) 

ranging over all computed scales hi and represents a balance between over- and 

under-segmentation (ESPINDOLA ET AL., 2006). In figure 24 the trend of the objective 

function is shown and additionally the single calucation steps for all segmentation 

scales are appended (cf. Appendix B).  

 

However as already mentioned a single-scale segmentation is not efficient to represent 

homogenous urban structure types. Therefore multiple scales should be combined to a 

multi-scale segmentation. For that purpose a plateau objective function F(p) defined as 

F(p) = F(v, I)max – σ 

introduced by MARTHA ET AL. (2011) was implemented to achieve the best scales for 

their usage in the process of optimizing the segmentation. F(v,I)max depicts the 

maximum value of the objective function and σ represents the standard deviation of the 

objective function for all scales. Scales located above the plateau objective function, 

which can be obtained from figure 24, were identified as optimal scales for the 

subsequent optimization procedure (cf. chapter 5.2.2) due to the fact that these scales 

persist by low internal and high external heterogeneity similar to the maximum value of 

the objective function. Thus, these scales also fulfill the balance between over- and 
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under-segmentation. Thereby the optimized procedure was carried out for all scales 

above the plateau function. From figure 24 the relevant scales from h=24 to h=38 can 

be obtained.  

 

 

Figure 24: Objective function for determining the optimal segmenation scale (marked by the 

green arrow) and plateau objective function F(p) to obtain multiple scales for the multi-scale 

segmentation with the detected initial scale for the multi-scale segmentation (marked by the red 

arrow). 
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5.2.2 Optimization Strategy 

 

As previously mentioned, the multi-scale segmentation should be used for the 

delineation of homogenous urban areas by combining the determined segmentation 

scales selected by the objective function (cf. chapter 5.2.1). Despite that the 

determined segmentation scales (h=24 to h=38) represent a balance of over- and 

under-segmentation, some segments are still over- or under-segmented. In the 

following the optimization of the initial segmentation scale is presented to enhance the 

segmentation accuracy by refining the over- and under-segmenation, employing 

clipping and merging of these segments (ESCH ET AL., 2008). As previously mentioned, 

the basic processing steps (cf. figure 22) of the computation of a multi-scale 

segmentation are graphically illustrated by using an example of a study area snippet in 

figure 26. 

 

This process starts with the initial segmentation hᵢ, appointed in the preceding chapter 

and contains the smallest objects in the subsequent multi-scale segmentation. As well 

as for the determination of the appropriate initial segmentation scale (cf. chapter 5.2.1), 

also here the Shannon sampling theorem was adopted for the identification of non-valid 

objects. These were consequently merged to those neigboring object which exibits the 

minimum difference of the brightness value. Analogous to the calculation of the 

intrasegment variance, the brightness is based on the intensity values of red, green, 

blue, near-infrared and the nDSM. Subsequently a second multiresolution 

segmentation for urban areas atop of L1 (= segmentation level of initial segmentation) 

with increased scale factor (by 1) was generated (L2). In this segmentation hierarchy L1 

represents sub-objects towards L2 (which is the super-object level of L₁) with different 

spectral characteristica. A measure for the spectral similarity between sub-objects (L1) 

and super-objects (L2) was calculated by the Mean Percentage Difference (mPD),  

mPD = 
|𝑋 𝐿1− 𝑋 𝐿2|

𝑋 𝐿2
    

where 𝑋  represents the mean brightness value of the super- (L2) and sub-objects (L1). 

Ensuing from sub-objects exceeding the mPD of all sub-objects by a standard 

deviation of two and larger, sub-objects are representing “real” sub-objects and were 

consequently transferred to the super-object level (LU ET AL., 2011). These objects 
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depict exceedingly distinct characteristics toward the objects with a standard deviation 

of the mPD lower two, and thus representing meaningful objects (real-objects) 

𝑟𝑒𝑎𝑙𝑜𝑏 =  
1, 𝑚𝑃𝐷 > 2𝜎𝑚𝑃𝐷

0, 𝑒𝑙𝑠𝑒.                   
  

Consequently, the transferred adjacent sub-objects (ob₁ and ob₂) to its super-object 

level were evaluated regarding their similar mean brightness values (𝑠𝑖𝑚𝑜𝑏1,𝑜𝑏2), and 

were merged if they had similar brightness values 

𝑠𝑖𝑚𝑜𝑏1,𝑜𝑏2 =  
1,  𝑀𝑒𝑎𝑛𝑜𝑏1 − 𝑀𝑒𝑎𝑛𝑜𝑏2 ≤ 5
0, else.                                          

   

For all segmentation scales atop of F(p) (cf.fig. 24) the process of calculating the mPD,  

generating “real”-objects, transfering these objects to their super-object level and 

merging them if the 𝑠𝑖𝑚𝑜𝑏1,𝑜𝑏2 condition is fulfilled was repeated. While for each step 

of increasing the scale factor (by 1) the prior last generated segmentation level will 

become sub-object level of the newly created segmentation scale.  

This process aims to integrate larger and smaller scales of differently scaled objects in 

one final multi-scale segmentation. Concurrent to the determination of appropriate 

segmentation scales the generated optimized segmentation levels (multi-scale 

segmentation) with transferred and partly merged distinctive sub-objects were analyzed 

by a plateau function, analogous to the chapter before (cf. chapter 5.2.1) and illustrated 

in figure 25. Analogous to the determination of appropriate segmentation scales the 

maximum value of the optimized function represents the best balance between over- 

and under-segmentation (ESPINDOLA ET AL., 2006). Therefore, this combination of 

several scales specifies the best multi-scale segmentation and defines therefore the 

final segmentation (in the figure marked with the blue arrow). For the further calculation 

of possible seismic vulnerability features as outlined in chapter 6 the final multi-scale 

segmenation was used. The calculated values for generating the optimized 

segmentation function is listed in the appendix (cf. Appendix C). 
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Figure 25: Optimized function for determining the optimal multi-scale segmenation  

(marked by the blue arrow). 

A visual inspection of the result reveals a reduced, but already present over-

segmentation especially in industrial areas. This may results from the extremely 

inhomogeneous spectral characteristics (e.g., various colors of roofs). However, in the 

next chapter this fact was compensated by calculating features with respect to seismic 

vulnerability on two further segmentation scales.  
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GUF            initial optimal multiresolution segmentation 

 non-valid objects      transferred distinctive sub-objects to  

  super-object-level 

merged initial optimal multiresolution segmentation  final multi-scale segmentation    

selected object  

Figure 26: Fundamental processing steps for the generation of a multi-scale segmentation, 

initiating with a basic segmentation level based on the GUF and weighted input data sets (a). By 

analyzing a plateau function the segmentation scales for the optimization procedure (b) were 

determined. Non-valid objects (pink) identified by considering the Shannon sampling theorem (c1) 

were merged to their most similar adjacent objects (c2). The optimized procedure includes the 

determination of distinctive sub-objects (L1) (green) (d1), its transfer to the super-object level (L2) 

(d2) and its merging to similar adjacent objects (d3). Finally the identification of a final multi-scale 

segmentation (e) by assessing the objective function of the produced multi-level segmentation 

results.
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6. Characterization of Seismic 

Vulnerability Features 

 

 

To assess the seismic vulnerability of the discriminated homogeneous urban areas, the 

extraction of several parameters is necessary. In this study parameters which can be 

derived from the applied remote sensing data (optical data, elevation data, and multi-

temporal classification data) were calculated. In the following sections the calculation of 

these parameters will be explained and listed (cf. table 5).  

 

 

6.1 Calculation of Seismic Vulnerability Features 

 

In the segmentation section (cf. chapter 5) urban areas with similar building types were 

grouped to represent homogeneous urban units, assuming that homogeneous urban 

areas exhibit similar vulnerability characteristics. However, the elevation values as well 

as its spatial and spectral properties are differing between segments. In relation to the 

assessment of seismic vulnerability a wide range of parameters (during the further 

procedure named “features”) based on the optimized segmentation were derived and 

later on selected upon their relevance to assess seismic vulnerability in Istanbul. With 

the derived features the seismic vulnerability for each homogeneous urban area should 

be assessed. In this study the features were derived from the utilized remotely sensed 

data, mentioned in chapter 3.2.2, 3.2.3.2, and 4. The extraction of useful seismic 

vulnerability features by remote sensing enables towards in situ inventory a time-saving 

and cost-effectively rapid assessment of seismic vulnerability. Additionally up-to date 

inventories especially for large-areas (cf. chapter 3.2.4) were not present and reflect 

the general status quo. The operability and accuracy are some further advantages for 

remote sensing data.  

Especially the situation in Istanbul (cf. chapter 3.1.1) where the major part of the 

building stock was illegal built and no reliable plans of buildings exist, required a 



Characterization of Seismic Vulnerability Features 

75 

balance between thematic detail and feasibility. Therefore remote sensing provide a 

comprehensive overview of the existing building stock and enables the derivation of 

features associated with building vulnerability such as height, roof material, year of 

construction, spatial context, structure type and shape (GEIß & TAUBENBÖCK, 2013). 

Besides in several studies it was found that the extraction of features from remote 

sensing data for vulnerability assessment especially in urban areas can be valuable 

(FRENCH & MUTHUKUMAR, 2006; MÜLLER ET AL., 2006; SARABANDI ET AL., 2008; 

TAUBENBÖCK ET AL., 2009; BORFECCHIA ET AL., 2010; SAHAR ET AL., 2010; BORZI ET AL., 

2011; DEICHMANN ET AL., 2011; WIELAND ET AL., 2012; GEM, 2013; GEIß ET AL., 2014a). 

These studies are either based on a) combining remote sensing data with inter- and 

extrapolated in situ surveys or on b) finding correlations of vulnerability curves with 

extracted features from remotely sensed data (GEIß ET AL., 2014a). However, it should 

be taken into account that remote sensing data can not supply directly measures about 

construction type (reinforced, unreinforced), masonry material (except roof material) 

and construction quality of buildings. However, regarding time, money, and 

transferability, the consideration of all features influencing the vulnerability of built 

structures is impracticable. Accordingly, the assessment is done by using main 

vulnerability features deducible by remote sensing data. Supplementary the literature 

review has shown that seismic vulnerability assessment can also be done by utilizing 

remotely sensed data. In this study the calculated features are mostly consistent on the 

study by GEIß ET AL. (2014a) where the potential of remotely sensed data for the 

assessment of seismic vulnerability on single buildings were evaluated.  

In the following sections features related to seismic vulnerability by available remote 

sensing data for the optimized segmentation were introduced and extracted. The sub-

chapters are split into the utilized remote sensing data (optical = RapidEye data, 

nDSM, and ancillary geo-information = multi-temporal Landsat classification). 

Furthermore, equivalent to the optimized segmentation the same features were 

computed on two separable larger multi-resolution segmentation scales (h=80 and 

h=120) due to compensate remaining over- and under-segmentation (especially in 

industrial areas) of the optimized multi-scale segmentation. The idea of using super-

segmented information has also been exploited in BRUZZONE ET AL. (2006) and has 

shown that those features can enhance the classification accuracy. However, both 

multi-resolution segmentations did not imply the optimization procedure (cf. chapter 

5.2.2) which leads to the fact that these segmentation levels represent super-objects as 

well as sub-objects in respect to the optimized segmentation. In figure 27 the applied 
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segmentation scales (optimized segmentation, h=80, and h=120) and the 

characteristics of h=80 and h=120 to be super- and sub-objects towards the optimized 

segmentation scale are displayed.  

 

Figure 27: Snippets of the utilized segmentation scales. 

In the following sub-chapters the calculation of seismic vulnerability features derived 

from optical data (cf. chapter 6.1.1), nDSM data (cf. chapter 6.1.2), and from the 

Landsat classification (cf. chapter 6.1.3) for the three segmentation scales were 

outlined.  

The allocation of the calculated features on larger scale to the objects of the optimized 

segmentation necessitated some further transformation steps. At this, the objects of 

h=80 and h=120 with its calculated features (cf. chapter 6.1.1, 6.1.2., 6.1.3) were used 

for a further splitting into smaller objects related to the optimized segmentation to 

produce sub-objects with the assigned features from their respective scales (h=80 and 

h=120). Afterwards the sub-objects were transferred as points for their averaging and 

assignment (spatial join) to the optimized segmentation scale. Thus the optimized 

segmentation scale is finally composed of the features derived for this scale as well as 

the features from h=80 and h=120. Accordingly, each homogeneous urban area is 

represented by a 198-dimensional feature vector.  
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6.1.1 Seismic Vulnerability Features derived from Optical 

Data  

 

This chapter describes the calculation of features derivable from optical remote sensing 

data (by using the eCognition software). The derivation of vulnerability features were 

carried out on the optimized multi-scale segmentation bounded by the GUF, as well as 

for the segmentation scales h=80 and h=120 as mentioned before (cf. chapter 6.1).  

 

Due to the complex urban morphology of Istanbul the entire study area was divided in 

irregularly shaped spatial units (segments) instead of uniform segments. Therefore 

these segments depict were most qualified for the calculation of vulnerability related 

features of homogeneous urban areas. In general the segments represent similar 

aggregated single buildings, for which it is assumed that they comprise similar seismic 

vulnerability. The mosaiced multispectral remote sensing data (RapidEye scenes) was 

applied for the calculation of several statistical values and texture measures similar to 

GEIß ET AL. (2014a). The spectral information on this scale can be used for the 

distinction of diverse urban areas (HEROLD ET AL., 2003; STEINIGER ET AL., 2008).  

In table 5 the calculated features derived from optical data, nDSM, and multi-temporal 

Landsat classification, as outlined in the following were summed up. As previously 

mentioned (cf. chapter 5.2.1) the spectral bands red, green, blue, and near-infrared 

represent the general standard in multispectral remote sensing. Those were used for 

the feature calculation consistent to the segmentation procedure which based on these 

spectral bands beside of the nDSM values. 

 

Initially some common basic descriptive statistic parameters like the measures of 

central tendency and measures of spread for the spectral bands R, G, B, and NIR were 

calculated. The measures of central tendency comprises the arithmetic mean which is 

defined as 

𝑥̅ =  
1

𝑛
  𝑥ᵢ

𝑛

𝑖=1

=  
𝑥1 +  𝑥2+. . . +𝑥𝑛

𝑛
 

where the pixels xᵢ of an analyzed segment were summed up and divided by the 

number of involved pixels n. In addition, the median (50th percentile) of and ordered 

dataset (i.e., from low to high values) specified by 
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𝑥𝑚𝑒𝑑 =   

𝑥𝑛+1

2
, 𝑓𝑜𝑟 𝑛 𝑢𝑛𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

1

2
 𝑥𝑛

2
+  𝑥𝑛

2
+1

 , 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

  

were calculated; where x represents the pixel value of the total number of pixels n. 

Thus the median represents the middle of the dataset, if n is an uneven number. If n is 

an even number the median delineates the mean of the dataset. In addition the mean 

brightness was calculated, which represents the arithmetically averaged intensity of the 

spectral bands R, G, B, and NIR. Furthermore, for each segment the maximum 

difference between the mean values of the spectral bands were derived. Additionally, 

the minimum and maximum values of the embedded pixels in an image object 

(segment) were extracted. 

Variance, standard deviation, range, and interquartile range for the spectral bands R, 

G, B, and NIR were derived as measures of spread. At that, the variance is a measure 

for the degree of spread around the mean value, defined by 

𝜎2 =  
1

𝑛
  (𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

with n representing the number of pixel of a segment is based. The calculation of 

standard deviation for each of the spectral values is given by 

𝜎 =   𝜎2 =  
1

𝑛
  (𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

where the standard deviation is determined as the square root of the variance. The 

measures of mean and standard deviation of spectral bands were primarily used to 

point out spectral dissimilarities of different urban structures (GEIß ET AL., 2014a). 

For the calculation of the range, the minimum pixel value was subtracted from the 

maximum pixel value  

𝑅(𝑚𝑎𝑥 −min ) =  𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛  

where 𝑥𝑚𝑎𝑥   and 𝑥𝑚𝑖𝑛   are units of the measures of tendency and were calculated 

before. 
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Finally the calculation of measures of spread, the difference between the upper (3rd 

quartile) and lower quartiles (1st quartile), defined as interquartile range was 

ascertained via 

𝐼𝑄𝑅 = 𝑄.75 − 𝑄.25 

where 𝑄.75  constitutes the upper quartile (75% of the data set) and 𝑄.25 the lower 

quartile (25% of the data set). Thus the interquartile range comprises the 50% of the 

data set.  

 

Beside the calculation of statistical features some texture measures on the brightness 

value (compounded by the spectral values of R, G, B, and NIR) using the grey level co-

occurrence matrix (GLCM) (HARALICK ET AL., 1973) were calculated. Texture measures 

can be used to distinguish urban structures (HEROLD ET AL., 2003). Furthermore, 

texture measures were regularly used to overcome lacks of spectral information 

(PACIFICI ET AL., 2009). The calculation of GLCM texture features list the occurrence of 

various gray levels (intensity of each pixel) in tabular form and gives information about 

the variations of spectral intensity in an image (ECHOVIEW, 2014). The calculated 

GLCM features were: 

 Homogeneity 

 Contrast  

 Dissimilarity 

 Entropy 

 Angular 2nd Moment (= Energy) 

 Mean  

 Standard Deviation 

 Correlation. 

In the following a general short description of the eight GLCM features is given: 

- Homogeneity: Measure for the closeness of distributed GLCM elements to the 

diagonal elements. 

- Contrast: Measure for the intensity contrast (difference between lowest and 

highest pixel value) by exponentially weighting of the diagonal (similar to 

Dissimilarity).  
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- Dissimilarity: Measure for the intensity contrast by linear weighting of the 

diagonal (similar to Contrast). 

- Entropy: Measure of randomness of the elements. 

- Angular 2nd Moment (Energy): Measure for the uniformity of elements. 

- Mean: Pixels were weighted by the frequency of their occurrence in 

combination with a certain adjacent pixel value (TRIMBLE, 2011). 

- Standard Deviation: Measures the dispersion of pixel values around the mean 

value (similar to Contrast and Dissimilarity) (TRIMBLE, 2011). 

- Correlation: Measurement for linear dependencies of pixels (correlation 

between rows and columns). 

For more details about GLCM texture it is referred to the literature (HARALICK ET AL., 

1973) at this point.  

The next group of features, which were derived from optical remote sensing data 

focuses on the involved amount of vegetation in each homogeneous urban area as a 

proxy to distinguish different urban structures (e.g., industrial structures, residential 

structures). Its relevance as important feature for assessing the seismic vulnerability in 

Istanbul was examined in the chapter dealing with the selection of appropriate features 

(cf. chapter 6.2). The vegetation was determined on pixel-level (i.e., sub-object level) 

by using the Normalized Differenced Vegetation Index (NDVI) introduced by ROUSE    

ET AL. (1974) as 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

where NIR and RED characterize the reflectance of the spectral bands near-infrared 

(NIR) and red. In this analysis all pixels with an NDVI ≥ 0.3 were interpreted as 

vegetation. Afterwards the proportion of vegetated and non-vegetated areas was 

calculated by 

𝛼 =
 𝑝𝑛

𝑖=0 𝑖
∙ 100

 𝑔𝑖
𝑛
𝑖=1

  

where pᵢ represents a pixel with NDVI ≥ 0.3 (i.e., vegetation) on the pixel-level and gᵢ 

the total number of pixels embedded in on image object.  

Features with assumed relation to seismic vulnerability were additionally derived from 

the nDSM data as outlined in the subsequent chapter.  
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6.1.2 Seismic Vulnerability Features derived from nDSM 

 

Building heights have an effect on the seismic building vulnerability (FEMA310,1998;  

IEE NICEE, 2004). Therefore, the nDSM data were used to extract supplementary 

possible vulnerability parameters.  

The feature type calculation from nDSM data were mostly similar to the features 

derived from optical data. Descriptive statistical parameters like the measures of 

central tendency and measures of spread were derived for the nDSM values, where 

high nDSM values characterize high objects and low brightness values flat objects. 

Similar to the feature calculation of optical remote sensing data the texture measures 

were calculated (cf. chapter 6.1.1). As opposed to the calculation of the proportion of 

vegetated features by using multispectral information, the nDSM provides information 

about the elevation of surface‟ objects (e.g., buildings, bridges, trees etc.) which can be 

similarly used to derive the amount of buildings with a certain height in homogeneous 

urban areas (segments). This type of feature calculation based on the analysis of 

embedded single pixel values (i.e., pixel-level). The amount of elevated objects gave a 

measure of covered areas (in percentage) with objects over a defined threshold (from a 

certain object height). Uniformly to the extraction of building height information (nDSM 

calculation), mentioned in chapter 4, the threshold for identifying elevated objects 

(OBJ) on pixel-level were set to 2.6 meter, assumed that buildings have a minimum 

height of 2.6 m. This threshold enables the separation between ground and elevated 

object. Therefore the proportion of elevated objects in the segments were extracted by 

𝛽 =
 𝑝𝑛

𝑖=0 𝑖
∙ 100

 𝑔𝑖
𝑛
𝑖=1

  

where pᵢ represents a pixel with a 𝑚𝑒𝑎𝑛𝑛𝐷𝑆𝑀  ≥ 2.6 m (i.e., elevated object) on the 

pixel-level and gᵢ the total number of pixels embedded in one image object. Beyond, 

the calculation of the amount of elevated objects the highest object of each segment 

was extracted by exploring the maximum nDSM value on pixel-level. The same was 

done for the analysis of the flattest object in the image objects by extracting the 

minimum nDSM value atop of the threshold for the identification of elevated objects. In 

addition, the average building heights of all elevated objects were derived as an 

additional feature by calculating the mean value of all elevated objects. Furthermore, 

the range of the elevated objects which was calculated by the difference of the 
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maximum elevated object (i.e., highest elevated object) and the lowest (i.e., minimum 

elevated object) object of each segment was computed. Afterwards the standard 

deviation and the variance of the elevated objects were generated as a further possible 

seismic vulnerability feature derivable from altitude values. 

In table 5 an overview of the calculated features derived from optical data (cf. chapter 

6.1.1), elevation data, and ancillary geo-information (cf. chapter 6.1.3) is given. 
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                       Based 

                          on 

Feature type 

 

Optical Data 

 

Elevation Data (nDSM) 

Ancillary 

geo-

information 

Measures of central 

tendency 

𝑀𝑒𝑎𝑛𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝑀𝑒𝑎𝑛𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒 𝑠𝑠  

𝑀𝑒𝑎𝑛𝑚𝑎𝑥 .  𝑑𝑖𝑓𝑓  

𝑀𝑒𝑑𝑖𝑎𝑛𝑅,𝐺,𝐵,𝑁𝐼𝑅  

 𝑀𝑒𝑎𝑛𝑛𝐷𝑆𝑀  

𝑀𝑒𝑑𝑖𝑎𝑛𝑛𝐷𝑆𝑀  

- 

Measures of spread 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝑅𝑎𝑛𝑔𝑒𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑅𝑎𝑛𝑔𝑒𝑅,𝐺,𝐵,𝑁𝐼𝑅  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑛𝐷𝑆𝑀  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝐷𝑆𝑀  

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑛𝐷𝑆𝑀  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑛𝐷𝑆𝑀  

𝑅𝑎𝑛𝑔𝑒𝑛𝐷𝑆𝑀  

𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑅𝑎𝑛𝑔𝑒𝑛𝐷𝑆𝑀  

- 

Texture (GLCM) 

𝐺𝐿𝐶𝑀 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 2𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝑀𝑒𝑎𝑛𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑏𝑟𝑖𝑔 𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑏𝑟𝑖𝑔𝑕𝑡𝑛𝑒𝑠𝑠  

𝐺𝐿𝐶𝑀 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 2𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝑀𝑒𝑎𝑛𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝐷𝑆𝑀  

𝐺𝐿𝐶𝑀 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑛𝐷𝑆𝑀  

- 

Vegetated Objects 

(Pixel-Level) 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝐷𝑉𝐼  ≥0.3 

 

- 

 

- 

Elevated Objects 

(Pixel-Level) 

- 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑛𝐷𝑆𝑀  >26 

- 

Period of 

Construction 

- - unknown 

until 1975 

1975 – 1987 

1987 - 2000 

Table 5: Calculated features derived from remotely sensed data on the  

optimized segmentation scale, h=80, and h=12. 
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6.1.3 Seismic Vulnerability Features derived from Landsat 

Classification 

 

Another derived feature related to seismic vulnerability depicts the construction phase 

of the building stock. For this analysis supplementary data such as the available multi-

temporal Landsat classification (TAUBENBÖCK ET AL., 2009) were necessary (cf. chapter 

3.2.3.2). The Landsat classification provides a time series from three different time 

steps, 1975, 1987, and 2000. For each of them urban areas were classified. So the 

extension of the city can be investigated over these time frames. However, this data 

can not give information about new renovated or rebuild constructions if its location 

was already assigned to a certain construction phase. Furthermore, it should be taken 

into account that the Landsat classification features a geometric resolution of              

30 meters. Nevertheless, the Landsat classification can quote the general year of 

construction of certain homogeneous urban areas. Due to the uncertainties of this 

ancillary information this feature was leave out of consideration in the feature selection 

(cf. chapter 6.2) and model learning procedure (cf. chapter 7.2.1, 7.2.2, and 7.2.3). 

Albeit, this information was added as further information to the results of seismic 

vulnerability assessment (cf. chapter 8.2 and 8.3). Furthermore, this feature is 

represented as a categorical character in distinction to all other derived vulnerability 

features which are characterized by numerical characters. Therefore, this feature could 

not be used for the classification procedure regarding its affect to the classification 

result.  

The analysis and assignment of the general construction phase to its homogeneous 

urban areas on the three different segmentation scales was carried out with the 

software eCognition. At this, the segments were identified as been built before 1975, 

between 1975 and 1987, or between 1987 and 2000, by the dominated area of the 

respective class of the Landsat classification. Objects which could not obvious 

assigned to a class due to the same portion of a Landsat class were allocated to this 

constructions phase which is dominated in adjacent objects. Furthermore, objects were 

classified as unknown construction phase if there is no information from the Landsat 

classification (unclassified) or the proportion of Landsat classes is lower than the 

proportion of unclassified areas. This results from the dissimilar Landsat classification 

extent and the extent of the study area. Objects classified as unknown construction 

phase primarily occurred in marginal areas where since 2000 new buildings were built 
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(segmentation based on the RapidEye (2009) and TanDEM-X data (2010-2012)) and in 

the northern portion from the study area where no Landsat classification was available.  

In the figure below (figure 28) the recognized construction phase for the optimized 

segmentation scale is displayed. 

 
Figure 28: Identified construction phase for the optimized segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Characterization of Seismic Vulnerability Features 

86 

6.2 Evaluation and Selection of Seismic 

Vulnerability Features  

 

This chapter describes the procedure of selecting features to create various feature 

sets which were used for the further process of regression and classification analysis 

with SVM (cf. chapter 7) to assess seismic vulnerability. Hence, the feature selection 

was applied separately with respect to the three utilized learning techniques (SVR,     

C-SVM, OC-SVM), expounded in the following chapter (cf. chapter 7). Fundamentally 

the feature selection followed quantitative and qualitative criterions. The quantitative 

selection of features based on the underlying thematic remotely sensed data (optical 

and nDSM) and the levels of segmentation (optimized segmentation, h=80, and 

h=120). Six qualitatively selected feature sets were compiled. Initially feature sets were 

built by using all features from all segmentation levels derived from optical data, all 

from elevated data (nDSM), and all features from optical and elevated data. After that, 

the same feature sets were generated, but at this time only for features from the 

optimized segmentation scale (optical, elevated, and all). These feature sets were used 

to evaluate and quantify the different remote sensing data on which the feature 

calculation based on, as well as the segmentation levels.  

The quantitatively feature selection was used to avoid redundant and strong correlated 

features, which frequently occurs in data sets composed of a large number of features. 

Additionally, this feature selection strategy was applied to avoid “Hughes phenomenon” 

which stated that with increasing feature vector dimensionality the accuracy decreases 

(HUGHES, 1968). For reducing the dimensionality of the feature sets two filtering 

methods for selecting appropriate features with respect to the utilized learning 

approaches (SVR, C-SVM, and OC-SVM; cf. chapter7.2.1, 7.2.2, and 7.2.3) an the 

respectively given sample data were conducted. These filtering procedures were 

realized within the Waikato environment for knowledge analysis software (WEKA). 

WEKA is an open source java-programmed software, developed for machine learning 

techniques and data mining processes. For identifying the most suitable features in 

terms of the SVM approach (SVR, C-SVM, and OC-SVM), the respective entire training 

data sets (sample data set) with the respective labeled instances were used. In chapter 

7.2.1, 7.2.2, and 7.2.3 the respective sample data sets are introduced for the distinct 

SVM approaches.  
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The first applied filtering method is called „Correlation-based Feature Selection‟ (CFS), 

proposed by HALL (1999). This method relies on detecting the most uncorrelated 

features from a matrix of feature classes using a best first search algorithm. Thereby, 

the correlation between each feature X and the class Y is measured within a range of 

[0,1] by 

𝑟𝑋,𝑌 = 2.0 ×  
𝑔𝑎𝑖𝑛

𝐻 𝑌 + 𝐻(𝑋)
 . 

Where gain is a symmetrical measure between X and Y and is defined by                

H(X) + H(Y) – H(X,Y), where H(X) represents the entropy of the feature (HALL, 1999; 

LIU ET AL., 2002). To assign a numerical score, which indicates the value of a subset of 

features S, a measure  

𝑀𝑆 =  
𝑘𝑟𝑐𝑓

 𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓
  

is computed. Where 𝑘 represents the number of features of S, 𝑟𝑐𝑓  the mean feature-

class correlation, and 𝑟𝑓𝑓  the average feature-feature inter-correlation. Therefore, CFS 

analyzes each feature of the entire feature set independently. At this, the numerator is 

an indicator of how predictive a feature set is. The denominator gives information about 

the redundancies of the feature set. Subsequently, features with a low feature-class 

correlation and features with a high feature-feature correlation (high redundancy) were 

identified as inappropriate features. The stopping criterion parameter was set to five to 

consecutive fully expanded non-improving subsets before the search is completed. 

Hence, the outcomes offer a suitable feature subset (with the highest 𝑀𝑆 during the 

search) for the respective regression or classification technique.  

 

The second applied filtering method enables the ranking of features according to 

adjacent instances. This strategy is implemented in the Relief-F approach from 

KONONENKO (1994). It works with the assumption, that useful features representing a 

certain class should have similar values, but differ between distinct classes (LIU & 

SCHUMANN, 2005). For the utilization of the Relief-F procedure, instances of the sample 

data set were randomly drawn and k nearest neighbors for each class determined. 

With respect to k and the sample class, the neighbor features were compared and a 

score for each feature was assigned. This process was repeated m times, where m is a 
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user defined free variable, which is typically set to the number of instances to achieve a 

more reliable approximation (KONONENKO, 1994; LIU & SCHUMANN, 2005). For this 

study k was set to 10 analogous to GEIß ET AL. (2014a) and GEIß ET AL. (2014b), where 

it was found that the results for different settings of k were hardly sensitive. The 

outcome after applying the Relief-F approach is a ranked list of all features with a 

respective relevance value w. Out of this, 4 feature sets were generated for the 10, 20, 

and 50 best ranked features as well as for all positive ranked features (w > 0). 

Negative ranked features (w < 0) have no relevance for a class.  

 

The feature selection methods were applied with respect to underlying data sets, 

segmentation scales, and classification techniques (cf. chapter 7). In figure 29 the 

eleven feature sets, generated by quantitative and qualitative feature selection 

criterions are schematically summed up.  

 

Figure 29: Feature subsets from quantitative and qualitative feature selection methods. 

Accordingly, the respective features sets of CFS (cf. figure 30) and Relief-F (cf. figure 

31) for each classification method is represented in the following illustrations. For each 

of the three learning approaches, different feature sets for Relief-F and CFS originated 

due to varying labeled reference instances (e.g., probable damage grades for SVR, 

three classes of in interest for C-SVM, and only one class label for 𝜈-OC-SVM). The 

corresponding naming key for the features is attached in appendix D.  
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Figure 30: Feature sets using CFS for applied classification methods  

SVR (a), C-SVM (b), and OC-SVM (c).  

 

a) b) 

c) 
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positive degree of relevance 

a) b) c) 

Figure 31: Feature sets using Relief-F feature selection for applied SVR (a), C-SVM (b),  

     and 𝜈-OC-SVM (c). 



Identification of vulnerable Urban Areas 

91 

7. Identification of vulnerable Urban 

Areas 

 

 

In this chapter the assessment of seismic vulnerability with respect to homogeneous 

urban areas of Istanbul is elucidated. This firstly comprises the description of 

methodological principles of Support Vector Machines (SVM), since they were applied 

for supervised classification and regression, in this study. More precisely, the utilized 

SVM methods Support Vector Regression (SVR), soft margin SVM (C-SVM) for Multi-

Class problems, and One-Class SVM (OC-SVM) are introduced. The experimental 

setup and the application of the three approaches of SVM are indicated.  

 

 

7.1 Supervised Methods for Classification and 

Regression: Support Vector Machines 

 

For remote sensing data classification techniques are commonly used for pattern 

recognition. Generally, classification methods can be subdivided in supervised and 

unsupervised techniques, independently from the image analysis type (e.g., pixel-

based, object-based). Thereby, supervised classification techniques are the mostly 

often used classification techniques for image analysis (RICHARDS & JIA, 2006). The 

decision for a supervised or unsupervised classification technique is especially 

controlled by the availability of training data, i.e. reference data or sample data. A 

further division of supervised classification techniques is constituted by the given form 

of the density function. Those can be of parametric or non-parametric character. The 

categorization of classification methods is given in figure 32.  
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Figure 32: Categorization of classification methods (Source: WASKE & BRAUN, 2009; modified). 

Due to the given complexity of assessing seismic vulnerability by the availability of a 

huge number of features related to seismic vulnerability, it was decided to use the 

classification approach of Support Vector Machines (SVM). Support Vector Machines 

arose from the field of machine learning and were introduced as a non-parametric 

supervised classification technique (RICHARDS & JIA, 2006) to remote sensing by 

GUALTIERI & CROMP (1998). The SVM approach based on the process of learning rules 

from a training set composed of labeled samples (i.e., classes) for the ensuing 

generation of a model.  

During the further classification procedure, the generated models are used for 

estimating the respective class from the entire data set. Hence, that technique does not 

necessitates prior knowledge for the description of a class, as opposed to knowledge 

based classification techniques assembled by logical rules. Beside the utilization of 

SVM for classification purposes, it can be also used for regression analysis (VAPNIK, 

1995).  

A more detailed description of SVM is given in VAPNIK (1995), CORTES & VAPNIK (1995), 

VAPNIK (1998), SCHÖLKOPF & SMOLA (2002), SCHÖLKOPF & SMOLA (2004), BURGES 

(1998), CHRISTIANINI & SHAWE-TAYLOR (2000), CHANG & LIN (2001), and ABE (2005). 

Nowadays in many studies in the field of remote sensing the SVM approach was 

applied (e.g., MELGANI & BRUZZONE, 2004; TZOTSOS & ARGIALAS, 2008; MUÑOZ-MARI   

ET AL., 2010; MARCONCINI ET AL., 2014). Comprehensive information about SVM in 
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remote sensing is provided in MELGANI & BRUZZONE (2004), CAMPS-VALLS & BRUZZONE 

(2005), CAMPS-VALLS & BRUZZONE (2009), MOUNTRAKIS ET AL. (2011), and        

SALCEDO-SANZ ET AL. (2014). In the following the SVM principles after the just 

mentioned citations of training a model are outlined.   

 

The training set S can be defined by  

𝑆 =    𝑥1 , 𝑦1 , … , (𝑥𝑘 , 𝑦𝑘)  ⊆ (𝑋 × 𝑌)ⁿ. 

At this, a single labeled training instance is compounded by 𝑥𝑖  and 𝑦𝑖 . Where 𝑥𝑖  

represents a n-dimensional vector of the feature space X, and 𝑦𝑖  the associated output 

label. If S is used for classification, 𝑦𝑖  delineates a certain attribute. If S is used for 

regression, 𝑦𝑖  delineates a real number of the output domain.  

 

The aim of training a model means the assignment of an appropriate class to each 

element of X. During the training stage, the training instances were separated with 

respect to the associated class label of the n-dimensional feature space. This 

procedure of deciding about the separation is determined by a so called hyperplane, 

which can be mathematical represented for a linearly two-class separation by 

𝑓 𝑥 =   𝑤, 𝑥 + 𝑏 =   𝑤𝑖𝑥𝑖 + 𝑏               𝑤 𝜖𝑁
𝑖=1  ℝ𝑁 , 𝑏 𝜖 ℝ . 

Where     depicts the dot product, w the normal vector perpendicular to the hyperplane 

and b the bias. The separation of the data enables different hyperplane functions (i.e., 

different options of hyperplanes). Whereby the optimal hyperplane on a given sample 

set represents the best possible generalization process with respect to unseen data. 

Therefore, the optimal hyperplane is those hyperplane with the maximum margin 

between the instances. To minimize the risk of misclassifications of unseen instances, 

the hyperplane separates the instances with respect to the associated class label. 

Although a perfectly adjusted hyperplane to a specific distribution of instances in a 

training set without any outliers is the optimum. However, that is defined by a very 

complex decision function and entails poor results for unseen data. Therefore, SVM 

tackle this problem by an automatic optimization procedure of structural risk 

minimization. This is the process of finding a tradeoff between the accuracy of best 

fitting and the complexity, and overcomes the traditional empirical risk minimization 

(GUNN, 1998). At this, the marginal hyperplanes defined by the border instances of the 
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respective separated class are named support vectors (SV) (BURGES, 1998). In     

figure 33 the optimal separation of a linearly two-class problem is visualized.  

 

Figure 33: Optimal separating hyperplane for two classes  

(Source: SCHÖLKOPF & SMOLA, 2001, modified).  

However, in most cases the data set is not linearly dividable as figure 34a illustrates. 

Hence, the SVM approach overcomes this problem by mapping the training data 

𝑥1 , … , 𝑥𝑛  into a higher-dimensional feature space 𝐻. This transformation procedure is 

defined by the kernel function Φ: 

𝑥 = (𝑥1 , … , 𝑥𝑛) →  Φ 𝑥 =  Φ1 𝑥 , … , Φ𝑁 𝑥  . 

 

Subsequently, the training instances are then linear separable within the higher-

dimensional feature space H. This enables the application of SVM not only on linearly 

distributed training instances. The SVM principles are graphically illustrated in       

figure 34.  
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Figure 34: Idealized procedure for generation of a nonlinear decision function by SVM. (a) 

Dataset with two classes (red and blue dots) that are non-linearly separable in X are mapped 

through a nonlinear transformation ϕ(·) into a space of higher dimensionality H (b). A linear 

separation becomes possible in that space and a hyperplane (cyan) with maximum margin is 

fitted (c), what corresponds to a nonlinear decision function in X (d) (Source: GEIß ET AL., 

2014d). 

Thereby the applied kernel function determines the shape of the decision surface 

(SCHÖLKOPF & SMOLA, 2002; CHRISTIANINI & SHAWE-TAYLOR, 2000). The kernel function 

can be of linear, polynomial, radial or sigmoid type (ABE, 2005; HSU ET AL., 2010). A 

commonly used kernel function in environmental applications is the Gaussian Radial 

basis function (RBF) (BURGES, 1998; VOLPI ET AL., 2013) with  

𝐾 𝑥𝑖 , 𝑥𝑗  =  𝑒−𝛾 𝑥𝑖  − 𝑥𝑗 ²      𝛾 > 0. 

Where the free parameter 𝛾 is responsible for the smoothing of the function and is 

inversely proportional to the kernel width (MELGANI & BRUZZONE, 2004). The effects of 

oversmoothing and overfitting are results from a too large or too small kernel width 

(MOUNTRAKIS ET AL., 2011).   
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Furthermore, SVM can be used for distinct prediction problems with respect to the type 

of the sample data set by using diverse SVM approaches, such as a) Support Vector 

Regression (SVR) b) One-Class SVM (OC-SVM) or c) Soft-margin SVM (C-SVM). 

These three SVM approaches were applied for different experimental settings in this 

study and are therefore further expounded.  

 

 

7.1.1 Function Estimation with Support Vector Regression 

 

SVM provides an approach for regression analysis, so-called Support Vector 

Regression (SVR). This method can be applied for problems when the instances to be 

estimated features samples to an interval or ratio scale. At this a linear model 

(regression) is used on the mapped samples of the higher dimensional feature space, 

as it is defined in f(x), mentioned in chapter 7.1. The linear regression of samples in a 

higher dimensional feature space is consistent to a non-linear regression in the feature 

space of lower dimensionality. SVR aims to find a certain function for the estimation of 

all training instances (𝑥𝑖 , 𝑦𝑖), where a specified deviation threshold 𝜀 is not exceedable 

(SCHÖLKOPF & SMOLA, 2004). 𝜀 can be seen as a kind of margin around the hyperplane 

(± 𝜀), which is extendable by a loss-function. This function is composed by so-called 

slack variables  𝜉, which are used for measuring the deviation of sample instances 

towards the hyperplane for except outliers (TZOTSOS, 2006). In figure 35a the ± 𝜀 

margin of a hyerplane for a linear SVM problem is shown. Figure 35b represents the 

proposed 𝜀-insensitive loss function. 

 

Figure 35: Soft margin loss setting for a linear SVM (Source: SCHÖLKOPF & SMOLA, 2004). 
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The 𝜀-insensitive loss function enables the definition of a reliable generalization border. 

Thus, if the training instances fall inside the ± 𝜀 margin the instances are not affected. 

Then the 𝜀-insensitive loss function is 0. Otherwise, the training instances are linearly 

penalized by the degree of the distance to 𝜀. For this, weights w are defined for 

minimizing the complexity of the model by  

min
𝐰,𝜉𝑖 ,𝜉𝑖

∗,𝑏
 
1

2
 𝐰 2 + 𝐶  (𝜉𝑖

𝑖

+ 𝜉𝑖
∗)  

and is subject to  

𝑦𝑖 −   𝜙 𝐱𝑖 , 𝐰 + 𝑏  ≤ 𝜀 + 𝜉𝑖     ∀i = 1, …, n 

   𝜙 𝐱𝑖 , 𝐰 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗ ∀i = 1, …, n 

    𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 ∀i = 1, …, n 

where 𝜉𝑖  and 𝜉𝑖
∗ are the slack variables and C a regularization variable between the 

function flatness (complexity) and a tolerated error  𝜉𝑖
𝑛
𝑖=1  of incorrectly estimated 

sample instances. The optimal parameter settings for C and 𝜀 have to be defined 

empirically and are the decisive factors for the generalization performance (training 

errors) and the model complexity. A transformation of the optimization objective can 

solve the dual problem when introducing the Lagrange multipliers 𝛼𝑖 and 𝛼𝑖
∗ by the 

regression estimation function of 

𝑓 𝐱∗ =   𝛼𝑖 − 𝛼𝑖
∗ 𝐾 𝐱𝑖 , 𝐱∗ + 𝑏𝑛

𝑖=1 . 

where K is the kernel function (e.g., RBF) and n the number of support vectors. The 

Lagrange multipliers were used to solve the minimization objective by quadratic 

programming techniques (DRUCKER ET AL., 1997; SCHÖLKOPF & SMOLA, 2002; 

VERRELST ET AL., 2012; SALCEDO-SANZ ET AL., 2014).  
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7.1.2 Targeted Classification with One-Class-SVM 

 

Another SVM approach for classification depicts the One-Class SVM (OC-SVM). This 

approach is used for problems, where only labeled samples of one class (target class) 

are available. The fundamental idea of OC-SVM based on the process of separating 

origin labeled training instances (i.e., where the density is large) in the n-dimensional 

feature space with a maximum distance where outliers (instances on the other side of 

the hyperplane) are allowed. The region of the hyperplane, where the dominant share 

of sample instances is located, is called support region. For the separation of the 

support region, which covers the target class, no prior assumption of the data 

distribution is needed (GEIß ET AL., 2014d). Such a function can describe the target 

class. For that, two formulations of OC-SVM exist, the single class SVM (𝜈-SVM) after 

SCHÖLKOPF ET AL. (2000, 2001) and the support vector data description (SVDD) after 

TAX & DUIN (1999). These OC-SVM methods can be used for clustering and outlier 

detection (ABE, 2005). For the separation of the training instances the minimization 

objective for 𝜈-OC-SVM, the applied OC-SVM method in this study is given by  

min
𝐰,ξ𝑖 ,𝑝

 
1

2
 𝐰 2 +

1

𝜈𝑙
 𝜉𝑖

𝑖

− 𝑝  

dependent on  

             𝐰, 𝜙(𝐱𝑖)  ≥ 𝑝 − 𝜉𝑖                           ∀i = 1, …, l 

                                                           𝜉𝑖 ≥ 0                                   ∀i = 1, …, l. 

where “(w,p) are a weight vector and an offset parametrizing a hyperplane in the 

feature space associated with the kernel” (SCHÖKOPF ET AL., 2000, p. 1446). The 

parameter 𝜈 ϵ (0,1] controls the tradeoff between the amount of training samples and 

the model complexity (MUÑOZ-MARI ET AL., 2010). Analogous to C-SVM and SVR the 

introduction of Lagrange multipliers and a kernel function lead to the final decision 

function of 

𝑓 𝐱∗ = sgn   𝛼𝑖𝐾 𝐱𝑖 , 𝐱∗ − 𝑝

𝑖

 , 

to classify unlabeled instances 𝐱∗. 
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This approach can be further used for problems composed by more than one class. 

Therefore, the model has to be trained for each class separately. For the final result, 

comprising all classes, some heuristics (e.g., prior or posterior probability) have taken 

into account to determine final class membership for instances assigned to more than 

one class (MARCONCINI ET AL., 2014). Generally, the performance of this approach is 

sensitive to the selected kernel function (e.g., RBF) and the tuning of free parameters 

analogous to the C-SVM approach (cf. chapter 7.1.3). The separation of the data set, 

using the 𝜈-OC-SVM approach is illustrated in figure 36.  

 

Figure 36: 𝜈-OC-SVM approach, where the hyperplane is used to separate with a maximum 

margin all target data from the origin. Whereby outliers are located in the lower side of the 

hyperplane and samples of the assigned target class in the upper side of the hyperplane.  
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7.1.3 Multi-Class Classification with C-SVM 

 

To tackle problems with class overlaps or noise in the training data, CORTES & VAPNIK 

(1995) introduced the soft margin SVM (C-SVM). This approach depicts a modified 

approach of the maximum margin problem. Thereby distinct labeled and distributed 

sample instances can be separated with relaxed constraints and enables therefore a 

multi-class classification. The labeled sample instances can be indicated as  𝐱𝑖
 ,  𝑦𝑖 𝑖=1

𝑛 , 

with 𝐱𝑖  ∈ ℝ𝑑  and 𝑦𝑖  ∈   −1, +1  . As typical for SVM methods, the training sample 

instances are mapped from a linear feature space X via a non-linear transformation 

function Φ(∙) into a higher n-dimensional feature space H. Accordingly, the 

transformed training instances are then linearly separable (CAMPS-VALLS & BRUZZONE, 

2005). For C-SVM the minimization objective is given by 

min
𝐰,𝜉𝑖 ,𝑏

 
1

2
 𝐰 2 + 𝐶  𝜉𝑖

𝑛

𝑖=1

  

and depends on  

𝑦𝑖  𝜙 𝐱𝑖 , 𝐰 + 𝑏  ≥ 1 − 𝜉𝑖      ∀i = 1, …, n 

                                  𝜉𝑖 ≥ 0         ∀i = 1, …, n. 

The established variables were already described in chapter 7.1, 7.1.1, and 7.1.2. The 

application of this function enables the separation of various labeled sample instances 

with a maximum margin by the prevention of over-fitting ensured by means of slack 

variables. As well as the minimization objective function of SVR and 𝜈-OC-SVM        

(cf. chapter 7.1.1 and 7.1.2), the C-SVM minimization objective function can be solved 

by means of Lagrange multipliers and quadratic programming techniques   

(SCHÖLKOPF & SMOLA, 2002). Thus, the decision function for the assignment of 

instances to a labeled class can be rewritten as 

𝑓(𝐱∗) = sgn   𝑦𝑖𝛼𝑖𝐾 𝐱𝑖 , 𝐱∗ + 𝑏𝑛
𝑖=1  . 

Where 𝐱∗ represents an instance of unknown class membership, K the kernel (e.g., 

the commonly used Gaussian RBF kernel) and 𝛼𝑖  the Lagrange multipliers analogous 

to the variable description in the preceding chapters. The C-SVM approach enables a 

very reliable decision of estimating 𝐱∗ in higher dimensional feature spaces.  
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7.1.4 Measures for Accuracy Assessment 

 

Generally, the quality of classifications (cf. chapter 8.2 and 8.3) can be identified by 

means so-called confusion matrices. At that the classification results are compared 

with the labeled reference data for each class in tabular form. Out of this, a couple of 

accuracy measures can be calculated (e.g., 𝜅-statistics, overall accuracy, user‟s 

accuracy and producer‟s accuracy), which are in the following outlined.  

A measure of global accuracy is the 𝜅-statistics and is commonly used for classification 

accuracies (FOODY, 2002). 𝜅-statistics range from -1 to 1 and was introduced by 

COHEN (1960). A 𝜅 of 1 represents the highest possible accuracy, where all reference 

data correspond to the classification results. In contrast a, 𝜅 of -1 defines the lowest 

accuracy, at that the accordance of classification and reference data is randomized. 

Very high accuracies are quoted by a 𝜅-statistic > 0.8 (GREVE & WENTURA, 1997).  

 𝜅 is defined by  

𝜅 =  
𝑛 𝑥𝑖𝑖 −  𝑥𝑖+ ∙ 𝑥+1

𝑟
𝑖=1

𝑟
𝑖=1

𝑛2 −  𝑥𝑖+ ∙ 𝑥+𝑖
𝑟
𝑖=1

 

where n is the sum of all objects from the calculated confusion matrix (i.e., total number 

of observations), r the number of lines from the confusion matrix (i.e., number of 

classes), 𝑥𝑖𝑖  the quantity of correctly classified objects (i.e., element of main diagonal of 

the confusion matrix), 𝑥𝑖+ the sum of all objects in a line (i.e., classified values), and 𝑥+𝑖  

the sum of all object from a column (i.e., reference data). Therefore, 𝜅-statistics 

considered commission and omission errors (cf. OA below) and is therefore not biased 

concerning the distribution of samples (FOODY, 2004). 

 

The overall accuracy defined by 

𝑂𝐴 % =  
 𝑥𝑖𝑖

𝑟
𝑖=1

𝑛
∙ 100 

is a measure for the proportion of correctly classified segments with respect to the total 

number of considered objects. By means of OA the error of commission                   



Identification of vulnerable Urban Areas 

102 

(i.e., mistakenly assigned objects of another class) as well as the error of omission   

(i.e., non recognized objects of a class) is considered in the accuracy evaluation.  

User‟s and Producer‟s Accuracy are indicators for the classification precision of single 

classes calculable out of the confusion matrix. The User‟s Accuracy  

𝑈𝐴 % =  
𝑥𝑖𝑖

𝑥𝑖+
∙ 100, 

defines the amount (in percentage) of ascertained classes agree with the reference 

samples. Whereas the Producer‟s Accuracy defines the percentage share of covered 

reference samples by  

𝑃𝐴[%] =  
𝑥𝑖𝑖

𝑥+𝑖
∙ 100. 

These accuracy measures are used for 𝜈-OC-SVM and C-SVM for evaluation of the 

classifications (cf. chapter 8.2 and 8.3).  

 

 

7.2 Seismic Vulnerability Assessment of Istanbul 

 

In this chapter the three SVM methods, described in chapter 7.1.1, 7.1.2, and 7.1.3 

were applied for the assessment of seismic vulnerability for different scenarios of 

available training data. As previously mentioned (cf. chapter 7.1), a sample data set is 

required for supervised classification techniques, such as SVM. This type of data set is 

often compiled by in situ surveys. Relating to SVM classification, the sample data is 

used for training a model which is then applied for estimating the respective class of 

instances in an area of interest. Generally, each SVM approach was applied on 

respectively 11 feature sets for qualitatively and quantitatively selected features, with 

respect to the SVM method as mentioned in chapter 6.2. Furthermore, the procedure of 

regression (SVR) and classification (𝜈-OC-SVM, C-SVM) of a certain feature set was 

repeated five times for different randomized samples. This enables to made a robust 

statement about the prediction accuracy and avoid skewed results of the utilized 

feature set. In addition, each randomized feature set, for SVR and C-SVM, was applied 

for 25%, 50%, 75%, and 100% of the sample data. For that, feature sets contained by 

a lower number of labeled samples of the data were completely covered by the 
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respective feature set with a larger number of labeled samples (e.g., the feature set 

based on 50% of the data completely contained the same feature set composed of 

25% of the data). This was utilized to test the sensitivity of different numbers of applied 

samples, and to avoid a biased quantification of the sample data, which should be used 

for the assessment of seismic vulnerability.  

In general, the procedure of learning models and the implementation of them on the 

entire study area was carried out within the WEKA software. The three SVM 

approaches were deployed with the LibSVM package (library for support vector 

machines) by CHANG & LIN (2001) and the proposed RBF kernel (BURGES, 1998). 

Furthermore, all features were normalized to obtain normalized kernel functions (GRAF 

ET AL., 2003). A detailed description of the applied sample data set, the training of 

models, and the utilized parameter settings for the respective SVM method is given in 

the subsequent chapters.  

 

 

7.2.1 Estimation of Damage Grades with Support Vector 

Regression 

 

The sample data, for the district Zeytinburnu emerged by fieldwork during the study by 

TAUBENBÖCK ET AL. (2009), was used for the generation of a reference data set for this 

study. Therefore, the data set, composed by single building objects provided with 

probable damage grades (labeled samples), was aggregated to the optimized 

segmentation scale according to the capacity spectrum method (cf. figure 12). The 

description of this data set and its aggregation, to make it usable as reference data for 

this study, was given in chapter 3.2.4. During the SVR procedure (with the LibSVM 

approach and the RBF kernel), labeled sample data were used for the estimation of 

probable damage grades for unlabeled urban structures. For this, a different number of 

labeled sample data (25%, 50%, 75%, and 100%) with varying randomizations (i.e., 5 

differently randomized sample data sets) was used (cf. figure 37). 
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Figure 37: Sample data for SVR. 

Furthermore, this setting of a different amount of labeled sample data and different 

randomizations was applied on the eleven feature sets (cf. chapter 6.2). Hence, the 

SVR was carried out for 220 distinct settings of the sample data set. These data sets 

were used as training sets for learning the models by using a 5-fold cross validation for 

each feature set. At this procedure the generalization capabilities can be evaluated as 

the average of three independent trails by reference to the mean absolute percentage 

error (MAPE) (GEIß ET AL., 2014d). The parameter tuning for finding the optimal settings 

based on the MAPE for ranges of σ = {10-1,…,10}, C = {1, …, 100}, and ε = {10-6, 10-3}. 

Figure 40 (cf. chapter 8.1) represents the respective MAPEs as functions for distinct 

training set sizes (25%, 50%, 75%, and 100% of the sample data) of each feature set, 

composed of their respectively randomized sample data. With respect to the seismic 

vulnerability assessment, the MAPE is a measure for the accuracy of the applied 

feature sets. Furthermore, the associated maps of estimated damage grades for 

Zeytinburnu, using SVR are represented in figure 41 and are discussed in chapter 8.1. 
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7.2.2 Assignment of Vulnerability Classes with 𝝂-OC-SVM 

 

Due to the fact that only reference data for Zeytinburnu exist (cf. chapter 3.2.4), the 

SVM approaches of C-SVM and OC-SVM necessitates sample and reference data for 

the entire study area. This kind of data is normally acquired in the field, as already 

mentioned in chapter 7.2.1. However, for such size of a study area in situ surveys were 

too costly and time-consuming. Therefore, the generation of reference data is 

grounded on expert knowledge about urban structures. For that, the available 

reference data of Zeytinburnu was used to derive information about seismic 

vulnerability with respect to different urban structures.  

The comparison of the reference data of Zeytinburnu (cf. figure 11 and 12 in chapter 

3.2.4) with the optical remote sensing data shows that especially large commercial and 

industrial urban structures were identified as highly vulnerable urban areas. Thereby, 

low damage grades were assigned to tall detached residential buildings which indicate 

a rather slightly seismic vulnerability for this urban structure type. This relation of 

building types was also used for seismic vulnerability assessment in WIELAND ET AL. 

(2012). For the residual urban areas medium damage grades were principally 

recognized and indicated therefore a medium seismic vulnerability. As a consequence, 

these three types of urban structures have to be found in the study area by a reliable 

source. For that, Google Street View, a technology of Google where real panoramic 

views from the position of a car was taken to create a virtual reality, provides the 

opportunities to unambiguously categorize certain urban structures by having a look on 

the images from a building. However, Google Street View is actually not provided for 

Istanbul. Hence, ground-based GPS photos from Google Earth (i.e., Google 

Panoramio™) were taken to generate a reference data set. Segments of the optimized 

segmentation scale were labeled as one of these certain classes if a ground-based 

GPS photo was available for this urban structure type. 

Analogous to TAUBENBÖCK ET AL. (2009), detached buildings with more than 7 floors 

and a primarily residential usage represent the class „tall detached buildings‟. 

Commercial/ industrial urban structures are composed of buildings with a large spatial 

extent like storage houses, usually with brightly flat roofs not higher than 4 stories. The 

class residual urban structures involves single detached and terraced houses primarily 

for residential usage or mixed usage, and all other buildings which could be not 

identified as tall detached buildings or commercial/ industrial buildings. 
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The OC-SVM method is used for the classification of one class of interest (cf. chapter 

7.1.2). However, as already mentioned in chapter 7.1.2 the 𝜈-OC-SVM approach can 

be applied separately for a respective classification procedure (i.e., calculation of two 

single OC-SVM classifications) of the class of interest which is then combined. This 

experiment was a realistic task for real-life situations, for instance when not all 

information for a class of interest are available. Therefore a reference data set with the 

two types of urban structures (i.e., large industrial/ commercial buildings and residential 

high-rise buildings) is required. For that, only samples of these two classes were used 

as samples as illustrated in figure 38 (i.e., 191 samples for commercial/ industrial urban 

structures and 305 samples for tall detached residential buildings). Thereby 

commercial/ industrial buildings represent highly vulnerable structures, whereas high-

rise buildings depict low vulnerable urban structures. For assigning a label to unlabeled 

samples, 50% of each class of the sample data was used for computing the models 

composed of different feature sets (cf. chapter 7.2). Whereas the other 50% were 

restrained for validating the classification accuracy (cf. chapter 8.2). However, with  

OC-SVM only one class of interest can be assigned a label, thus the result of OC-SVM 

is binary (i.e., estimated class of interest and the negative class).  

 

Figure 38: Sample data for OC-SVM. 
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The application of the 𝜈-OC-SVM method was carried out with the RBF kernel, which 

requires the adjustment of two free parameters 𝜈 (i.e., tradeoff between the share of 

outliers and the model complexity) and 𝛾 (i.e., kernel width). The free parameter tuning 

procedure is a difficult task, if only labeled samples of one class are available. So that 

only true positive rates (i.e., sensitivity) can be calculated. The negative class can not 

be calculated in respect to its specificity (errors). In MUÑOZ-MARI ET AL. (2010) and 

MARCONCINI ET AL. (2014) a heuristic of  

arg 𝑚𝑎𝑥𝜃   
𝑂𝐴[%]

#𝑆𝑉
  

is used to overcome this problem. Where 𝜃 is the set of free parameters, OA the 

overall accuracy and #SV the number of support vectors. Therefore, a high OA and a 

simultaneously low model complexity, composed of a low number of SV, reveals a high 

value for the heuristic. Therefore, the optimal settings of the free parameters 𝜈 and 𝛾 is 

given for the highest value of the evaluation heuristic. Regarding the parameter tuning 

a grid search for the range {0.01,…, 0.1} for 𝜈 in 0.01 steps and a range of 

{10−2 , … , 101} for 𝛾 in power of  10 steps was applied. The calculation of OA used a 5-

fold cross-validation, analogous to the C-SVM approach (cf. chapter 7.2.3).  

For the assessment of seismic vulnerability the respective classification results (i.e., for 

each feature set) of 𝜈-OC-SVM were combined. Thereby a segment could be assigned 

to both classes, in this case the segment is assigned to the negative (i.e., residual) 

class, due to the reason that this segment was not indiscernible (i.e., this segment was 

classified as tall detached residential buildings in the first OC-SVM classification, and in 

the second OC-SVM classification aiming to identify industrial/ commercial as this 

class). The evaluation of the models accuracy (i.e., 𝜅-statistics, OA, UA, and PA) and 

the respective best results for each feature set (i.e., for five independently randomized 

sample data), represented as maps are outlined in chapter 8.2.  
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7.2.3 Assignment of Vulnerability Classes with C-SVM 

 

For this classification method, data acquired from ground-based GPS images (cf. 

chapter 7.2.2) were used as reference data for learning the models and validating three 

types of urban structures, related to seismic vulnerability. Thereby, the reference data 

set is composed of 696 samples (191 for commercial/ industrial urban structures, 305 

for tall detached residential buildings, and 200 samples of the residual class). The 

distribution of the sample data (i.e., reference data) over the entire study area can be 

obtained from figure 39. In the classification procedure 50% of the reference data were 

used as sample data set for training the model and the other 50% for validation 

purposes. 

 

Figure 39: Sample data for C-SVM.

For the classification of these three classes with the fully supervised classification 

approach of C-SVM, a one-against-one scheme was selected (HSU & LIN, 2002). The 

most qualified model generated with the RBF kernel for C-SVM requires the tuning of 

the free parameters C (cost-parameter) and 𝛾 (kernel width). For tuning these 

parameters the grid search method enables to avoid an exhaustive trial-and-error 

procedure. Thereby, the grid search strategy based on a 5-fold cross-validation was 

carried out for HSU ET AL.‟S (2010) proposed settings of C = {2-4, 2-3,…, 212} and            
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𝛾 = {2-5, 2-4,…, 23}. The evaluation of the generalization accuracy deploys the estimated       

𝜅-statistics for three independent trials, similar to SVR. This procedure was done for 

each feature set (i.e., thematically selected and by using filters) with different 

randomizations of the samples (i.e., five variations so that the result is not biased due 

to the distribution of the labeled instances (FOODY, 2004)) and a varying amount of 

labeled samples (i.e., 25%, 50%, 75%, and 100%). Analogous to the SVR approach 

the generalization capabilities are represented as a function of the feature sets and are 

displayed in figure 45. The corresponding discussion and the maps are given in 

chapter 8.3.  
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8. Results and Discussion 

 

 

In this chapter the results of the applied SVM methods (SVR, C-SVM, and 𝜈-OC-SVM) 

are represented and discussed with respect to the utilized feature sets and their 

accuracies (cf. chapter 7.1.4). At that, the respective quantitatively selected features 

(i.e., feature selection using filters) for each SVM method can be obtained from figure 

30 (CFS) and 31 (Relief-F) in chapter 6.2. 

 

 

8.1 Evaluation: Estimation of Damage Grades 

with SVR 

 

The regression analysis with SVR was carried out with different training set sizes and 

randomizations of these samples, as already mentioned in chapter 7.2.1. The 

illustrated MAPE functions for these feature sets, given in figure 40, shows differences 

in their accuracies. Especially the feature set compounded by features derived from 

elevation data only (i.e., nDSM) perform a higher MAPE than corresponding features 

from optical data (cf. figure 40a and 40b). More precisely, when considering the MAPE 

values from elevation features from the optimized segmentation scale, it decreases 

from 20.76% (± 0.94) and a respective correlation coefficient R of 0.16 (i.e., goodness 

of model fit) to a MAPE of 16.23% (± 0.36; R=0.54), for the feature set composed by 

optical features (figure 40a). Furthermore, the graphs indicates better results            

(i.e., lower MAPEs) for feature sets derived from all segmentation levels, where super-

and sub-object information are considered, than to feature sets derived from the 

optimized segmentation level only. For this type of feature sets (cf. figure 40b) the 

MAPE value of elevation features decreases from 14.54% (± 0.41; R=0.60) to 11.64% 

(± 0.30; R=0.75) for optical features. Thus, it can be said that feature sets considering 

feature information from further segmentation scales (i.e., h=80 and h=120) achieve 

better accuracies than feature sets only from the optimized segmentation scale. Figure 

40a and 40b also depicts, that a combination of optical and elevation features does not 

increase a notable accuracy against the optical features (GEIß ET AL., 2014d). This can 
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be noticed by observing the MAPEs for these feature sets. For that, the combined 

features (all = elevation and optical) on all segmentation levels obtained lowest MAPE 

value of 11.85% (± 0.30; R=0.74) and for the same feature set based on the optimized 

segmentation only a value of 16.34% (± 0.36; R=0.52). In figure 40c the MAPEs from 

selected feature sets by using filters (i.e., Relief-F and CFS) are represented. From 

this, the lowest MAPE value of 10.74% for the ranked feature set with the best 50 

features can be depicted. This feature set gained therefore the highest accuracy of the 

applied SVR method.  

 

 

Figure 40: Functions of the mean absolute percentage errors (MAPE) for different training set 

sizes of the applied feature sets with SVR. a) MAPEs for feature sets derived from the optimized 

segmentation scale; b) MAPEs for feature sets derived from the optimized segmentation scale, 

h=80, and h=120 and c) MAPEs for feature sets selected by filter methods. 

Basically it was found that feature sets derived from elevation data only (i.e., height 

information from nDSM) can not achieve suitable accuracies. The highest accuracies 

could be gained for thematically derived features by more than one segmentation 

scale, analogous to BRUZZONE & CARLIN (2006) and JOHNSON & XIE (2013). That 

indicates that one segmentation scale is not enough to achieve high accuracies. 

Despite that the multi-scale segmentation integrates more than one scale, but with still 

present over-segmentation as mentioned in chapter 5.2.2. The over-segmentation is 

most notable in regions characterized by large industrial complexes. Ideally similar 

industrial complexes should be represented by one segment (i.e., homogeneous urban 

area) and not by multi-segments (i.e., over-segmented). However over-segmentation is 

not completely avoidable. With respect to classification, over-segmented objects can 

be possibly assigned to one class of interest in contrast to under-segmented images. 

a) b) c) 
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The implementation of further segmentation scales, containing super-object information 

precise assignments of class labels can be promoted. Hence, the feature sets from 

more scales with super-object information could reduce the MAPE as can be seen by 

comparing figure 40a and 40b.  

 

With respect to the complex urban morphology of Istanbul (especially for industrial/ 

commercial urban structures) the additional information of super-objects attained 

higher accuracies (cf. figure 40b). The SVR mapping results deployed on models 

originated by 50% of the samples, for the appropriate feature sets and are illustrated in 

figure 41 with respect to its corresponding MAPE. The residual 50% of the sample data 

are used for validation.  

The inspection of the maps shows that extremes (i.e., lowest and highest damage 

grades) were barely estimated in all maps. Especially in feature sets with higher 

MAPEs, the models estimated mainly medium damage grade values, so over- and 

underestimation of the extremes are present. That reflects the typical phenomenon of 

regression analysis to the mean, which was initially delineated by GALTON (1886). This 

effect particularly appears for features with low correlations. Therefore, the correlation 

coefficient R is an additional important measure for the determination of accuracies 

from regression analysis, beside the MAPE. Hence, the optimum is indicated by a high 

R and a low MAPE.  

The mapping results in figure 41 depict the relations of R and MAPE for each feature 

set. Thereby, low correlation coefficients are associated with higher MAPEs and the 

associated effect of regression to the mean. For all mapping results with R > 0.7 a 

MAPE < 14% was obtained and a relatively slight effect of the regression to the mean 

is present. That reflects also the best fitted model with good agreements to the 

reference data, which was originated from the best 50 ranked features with the lowest 

MAPE of all feature sets of 13% and an R of 0.75.  
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Figure 41: Estimated damage grades for Zeytinburnu using SVR on different feature sets. 
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8.2 Evaluation: Assignment of Vulnerability 

Classes with 𝝂-OC-SVM 

 

The models created with 𝜈-OC-SVM from the eleven feature sets, composed five 

independent trials (i.e., randomized distributions of sample data) were validated by 

means of 50% of the samples, which were previously not used for model learning. 

Furthermore, 50% of the reference samples from the residual class, available for        

C-SVM, were used for validation. The classification accuracy is quoted by the             

𝜅-statistic, User‟s- and Producer‟s Accuracy for each class label, and the Overall 

Accuracy as described in chapter 7.1.4. The predicted 𝜅-accuracies for the models 

composed of different randomly drawn feature sets are given in figure 42.  

 

 

 

Figure 42: Functions of the 𝜅-statistics of the combined 𝜈-OC-SVM results for different feature 

sets with five different randomly drawn feature sets (marked with different symbols: ,,,,) 

a) represents the classification accuracies (𝜅-statistics) for feature sets derived from the 

optimized segmentation scale; b) the classification accuracies for feature sets derived from the 

optimized segmentation scale, h=80, and h=120 and c) the 𝜅-statistics for feature sets selected 

by filter methods. 
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At this point, it should be noted that each trial of randomly drawn samples is similar for 

the respective feature set. Even more interesting are the differently achieved 

accuracies of each randomization (cf. figure 42) where the highest accuracies were not 

always obtained from the same randomization. Similar to the SVR-approach the 

accuracies of distinct feature sets differ significantly. As well as for the other applied 

SVM methods, feature sets composed of optical features could generally gained higher 

accuracies than elevation features or feature sets made up of elevation and optical 

features (i.e., all features). In addition, feature sets derived from optimized scale only, 

achieved lower accuracies than the same feature sets obtained from all segmentation 

scales, analogous to the SVR approach. Thereby, the 𝜅-statistics range from -0.03 to 

0.24 for feature sets derived from the optimized scale only. In general a mean increase 

of 𝜅-statistics by 0.09, 0.05 and 0.12 regarding similar feature sets from optimized 

scale to all scales could be recognized. Again the highest 𝜅-statistic, and therefore the 

highest accuracy, were encountered within the group of feature sets originated by 

feature selection methods with filters. Thereby, the highest accuracy of 𝜅 = 0.468 was 

achieved for the 50 highest ranked features, closely followed by the 20 best ranked 

features with a 𝜅-statistic of 0.467. However, the accuracies between the five 

independent trials of the 50 best ranked features exhibit a larger spread, than for the 

best 20 ranked features (cf. figure 42). Hence, no precise suggestion regarding the 

viability of a specific feature set (i.e., best 20 or best 50 ranked features) in real-life 

situation can be given. Nevertheless, figure 43 shows the seismic vulnerability of 

Istanbul for the highest obtainable accuracy from the underlying best 50 ranked feature 

sets. In addition, the feature „year of construction‟ (cf. chapter 6.1.3) was attributed to 

extract the urban development regarding the urban structures.  
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Figure 43: Classification of urban structures of Istanbul with an ensemble of 𝜈-OC-SVM  

for the highest obtainable accuracy combined with the year of construction.

Additionally, the highest attainable accuracies (OA, UA, PA, and 𝜅-statistics; cf. chapter 

7.1.4) for the applied feature sets are represented as seismic vulnerability maps with 

respect to the class of interest in figure 44. That shows that the class tall residential 

building was generally best estimated with an UA of 66.67% to 87.14% when 

comparing all feature sets used for generating the maps. Despite, the PA ranges 

between 9.21% and 86.84%, whereas low values were mainly gained for the elevated 

feature sets. The class industrial/ commercial buildings could be correctly estimated by 

53.33% – 80.56% (UA) with an associated PA of 12.63% to 74.74%. The residual class 

obtained the lowest rate of correctly estimated objects, indicated by its UA of 28.76% to 

42.86% and a respective PA of 39.0% to 91.0%. This affirms the statement that it is 

difficult to delineate only one class of interest (i.e., commercial/ industrial buildings and 

high-rise buildings) by true positive rates, whereas the residual class represents the 

negative class, despite of the combination of single 𝜈-OC-SVM classifications. The 

highest accuracy (𝜅-statistic of 0.47 and OA of 65.4%) was obtained from the best 50 

ranked features as already mentioned before. This highest obtainable accuracy of a 

medium agreement with the reference data, questions the viability in real-life situations, 

especially in comparison to the results of the C-SVM approach, as outlined in the 

subsequent chapter (GEIß ET AL., 2014d).  
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 Figure 44: Classification of urban structures of Istanbul using an ensemble of 𝜈-OC-SVM for different  

     feature sets. 

Results and Discussion Results and Discussion 
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8.3 Evaluation: Assignment of Vulnerability 

Classes with C-SVM 

 

Similar to the 𝜈-OC-SVM strategy, the model accuracies of the different feature sets 

were graphically represented as functions in figure 45. Thereby, the accuracy for each 

feature set was calculated as the mean of five independent trials for different shares of 

samples and distinct feature sets. The figure is analogous to the seismic vulnerability 

assessment with SVR subdivided in the distinct types of feature sets by a) features 

derived from optimized segmentation scale, b) features derived from all scales, and    

c) features selected with filters (i.e., CFS, Relief-F). 

 

 

Figure 45: Functions of the 𝜅-statistics for different training set sizes of the applied feature sets 

for C-SVM. a) represents the classification accuracies (𝜅-statistics) for feature sets derived from 

the optimized segmentation scale; b) the classification accuracies for feature sets derived from 

the optimized segmentation scale, h=80, and h=120 and c) the 𝜅-statistics for feature sets 

selected by filter methods. 

In comparison with the other SVM approaches the accuracies differs depending on the 

applied feature sets. Elevation feature sets on optimized segmentation scale (𝜅=0.46 

±0.05) as well as on all scales (𝜅=0.61 ±0.04) could gained, compared to respective 

optical and all features the lowest accuracy. The highest 𝜅-statistic for qualitatively 

selected feature sets (i.e., features from optimized segmentation scale only and from 

all scales) were revealed for the combined feature sets with a slight difference (i.e., a 

difference between -0.022 and -0.044) to the optical feature sets. For the combined 

feature set on all scales a 𝜅-statistic of 0.832 (±0.02) could be gained, and a               

a) b) c) 
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𝜅-statistic > 0.7 (±0.03) for the features derived from the optimized segmentation only. 

Concerning the features sets selected by filter methods, the highest classification 

accuracy was found for the feature set of all positive ranked features of the Relief-F 

approach (i.e., w > 0). For this feature set a 𝜅-statistic of 0.827 (±0.05) was achieved. 

Therefore, the best performed classification result was generated for the trained model 

of the feature set derived for all segmentation scales with elevation and optical features 

together. This feature set covers only one more feature (i.e., n=153) than the ranked 

feature set with all positive ranked features (i.e., n=152). The attained classification 

accuracies of 𝜅-statistic > 0.81 indicate excellent classification accuracies (GREVE & 

WENTURA, 1997).  

 

The estimated classes of each type of feature set for Istanbul is given in figure 47 and 

gives indications about the seismic vulnerability of the city. Thereby 50% of the sample 

data were used for training the model, and 50% for validation purposes analogous to 

OC-SVM. Respective 𝜅-statistics, Overall Accuracy, as well as User‟s- and Producer‟s 

Accuracy of each class label for the applied feature sets are given in the illustration.  

In general, when comparing all mapping results of all deployed feature sets the tall 

detached building class could gained a Producer‟s Accuracy between 70.3% and 

93.0% and a User‟s Accuracy of 77.3% to 99.4%. The commercial/ industrial class 

achieved a Producer‟s Accuracy between 47.3% and 84.9% and a User‟s Accuracy of 

62.5% to 84.8%. A large range was obtained for PA and UA for the residual class, 

where PAs were between 37.3% and 86.7% and UAs between 34.4% and 70.5%. 

Therefore, the class containing high-rise buildings could be generally best estimated 

(UA between 77.3% and 99.4%), whereas the residual class was partly difficult to be 

estimated, similar to the 𝜈-OC-SVM approach (cf. chapter 8.2). However, that reveals 

the assumption for this type of urban structures, because this class comprised a 

combination of different building types, whereas the other classes where composed of 

only a single type of buildings. This illustration (figure 45) demonstrates that especially 

elevation features achieved an over-estimation of commercial and industrial urban 

structures, as can be seen from the low PA and UA (UA 55.2% and PA 62.4% for 

elevated features on optimized scale and UA 62.5%, PA 64.5% for elevated features 

on all scales). For the quantitatively selected feature sets (cf. figure 47) very high 

accuracies (UA > 84%) of tall detached residential buildings could be achieved.  

The highest overall accuracy (85.63%) and the highest 𝜅-statistic (> 0.77) was 

identified for the feature set covering all features on all segmentation scales. Especially 



Results and Discussion 

120 

for the residual urban structure types (UA: 70.5%) and the commercial/ industrial 

buildings (UA 84.8%) the highest accuracies were obtained on this feature set. Despite 

that tall detached residential buildings achieved a UA of 94%, this urban structure type 

could be better derived for the feature sets with the best 50 ranked features             

(UA: 99.4%) as well as the optical features on all scales (UA: 95.7%). However, the OA 

is higher than for optical features on all scales or the 50 best ranked features (i.e., it is 

a tradeoff of accuracies of all classes).  

 

Additionally, as already mentioned in chapter 8.2, the information „year of construction‟ 

is added as supplementary information to the best classification result (i.e., based on 

the combined feature set composed of optical and elevation features from all 

segmentation scales) and is illustrated in figure 46. This illustration shows the 

development of Istanbul‟s built-up area with respect to the type of urban structures 

before 1975 till now. 

 

Figure 46: Classification of urban structures of Istanbul with C-SVM for the highest  

obtainable accuracy combined with the year of construction. 
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Figure 47: Estimated class label with respect to seismic vulnerability using C-SVM on different feature sets. 

Results and Discussion Results and Discussion 



Results and Discussion 

122 

When comparing the best results from 𝜈-OC-SVM and C-SVM the accuracies from    

C-SVM increased distinctively. This outcome was assumed due to more a prior 

knowledge within the C-SVM approach (i.e., information of three classes instead of one 

resp. two classes). Thereby, 𝜈-OC-SVM could only yield moderate 𝜅-statistics up to 

0.45, where for C-SVM an outstanding 𝜅-statistic (𝜅 > 0.8), was obtainable. A 𝜅 > 0.8 

indicates excellent accuracies (cf. chapter 7.1.4; GREVE & WENTURA, 1997). 

Furthermore, the classified urban structure types of C-SVM are spatially more 

cumulated than for 𝜈-OC-SVM. In addition, the residual urban structure class of the     

𝜈-OC-SVM result is highly under-estimated with respect to the result of C-SVM. 

Generally the class tall detached residential buildings could be best estimated, which 

attest the gained high accuracies, compared to the other classes, in both classification 

results.  

However, in real-life situations it is often the case that not all classes are known or not 

all samples are available. The ensemble of the applied 𝜈-OC-SVM approach was 

implemented to tackle this problem with moderate accuracies of selected features. 

Therefore, the applied SVM approaches had shown that it is possible to estimate urban 

structures which are related to seismic vulnerability with moderate to excellent results 

regarding available a priori knowledge.  
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9. Conclusion and Outlook 

 

 

Enduring urbanization processes and progressive agglomerations of buildings evoke 

the risk to be struck by seismic activity. Especially building conditions influence the 

seismic vulnerability. Many studies focused on the determination and inventory of 

seismic vulnerability of single buildings by means of remote sensing and in situ 

inventories (TAUBENBÖCK ET AL., 2009; BORZI ET AL., 2011; BORFECCHIA ET AL., 2009; 

WIELAND ET AL., 2012). Beside rapid transformations in the townscape and the 

extension of a city make it impossible to gather seismic building vulnerability for the 

entire area of large cities. 

Hence, this study focused on the assessment of seismic vulnerability of so called 

homogeneous urban areas (i.e., agglomerated buildings with similar characteristics). 

Therefore, multi-sensor remote sensing data and in situ information were used for 

assessing seismic vulnerability of these urban structures. Based on optical data      

(i.e., RapidEye) and building height information (i.e., nDSM calculated by means of a 

DSM, derived from TanDEM-X) homogeneous urban structures were delineated by 

object-based image analysis. By means of remote sensing numerous features related 

to seismic vulnerability were derived and distinct feature sets compiled                     

(i.e., quantitative and qualitative feature sets). Finally, within a framework of statistical 

learning (i.e., SVM) seismic vulnerability was estimated for different scenarios of a 

priori knowledge. This procedure was carried out for the Turkish mega city Istanbul.  

Initially the building heights were derived by calculating a normalized DSM. This was 

further on used for the discrimination of homogeneous settlement units as well as for 

the calculation of seismic vulnerability features. Urban areas are generally composed 

of complex morphology. Frequently, homogeneous urban settlement units are 

irregularly shaped and sized, where fundamental segmentation techniques can not be 

used. The problem of delineating homogeneous urban areas was tackled by a multi-

scale procedure, whilst taking into account the multispectral remote sensing data and 

building heights (i.e., nDSM). Subsequently, seismic vulnerability features were 

calculated and grouped according to their underlying remote sensing data (i.e., optical, 

elevation or both remote sensing data), segmentation scale and SVM-based feature 

selection methods (i.e., correlation based and feature ranking methods). Finally, the 

assessment of seismic vulnerability of homogeneous urban areas based on a 
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framework of approaches originated from SVM. Thereby, different settings for available 

reference data were assumed and applied in three different regression and 

classification scenarios (i.e., SVR, C-SVM, and an ensemble of 𝜈-OC-SVM) to confirm 

their viability.  

The regression analysis (i.e., SVR) for the district Zeytinburnu based on available 

aggregated single building in situ references composed of probable damage grades. 

The application gained an estimation of probable damage grads with a mean absolute 

percentage error less than 11% for an optimal feature set with a correlation coefficient 

of > 0.75. The SVM methods 𝜈-OC-SVM and C-SVM aimed for the identification of 

specified classes of interest correlated with certain levels of seismic vulnerability. For 

the approach of 𝜈-OC-SVM a sample set composed of only one class of interest for 

estimating the occurrence in the entire data set was used. In this study an ensemble of 

two 𝜈-OC-SVMs (i.e., classification of commercial/ industrial urban structures and tall 

detached residential buildings) were used and combined for assessing Istanbul‟s 

seismic vulnerability. In contrast, the C-SVM method was used for a given sample set 

composed of 3 classes of interest: commercial/ industrial buildings considered as 

highly vulnerable, tall detached residential buildings considered as low vulnerable and 

residual buildings representing medium vulnerable urban structures. A comparison of 

the outcomes from C-SVM and 𝜈-OC-SVM showed a moderate classification accuracy 

of 𝜅 below 0.5 for the 𝜈-OC-SVM ensemble and an extremely high accuracy of the 

optimal applicable feature set of 𝜅 > 0.8 for the C-SVM method. 

The utilization had shown that features derived from elevation data only, as well as 

from one segmentation scale only could not obtain viable models for classification. A 

combination of features derived from optical data and elevation data, or also features 

from optical data basis could gain much higher accuracies. Furthermore, the 

accuracies in all SVM studies were higher, when feature sets are derived from more 

than one segmentation scale. Nevertheless, in most cases (i.e., SVR and OC-SVM) 

feature set derived by a feature selection methods (e.g., Relief-F and CFS) was 

founded as optimal feature set (i.e., gathered the highest accuracies).  

 

In conclusion, this study has shown that multi-sensor remote sensing can be used to 

delineate homogeneous urban areas and characterize them for the assessment of 

seismic vulnerability with viable results and high accuracies, in respect of available a 

priori knowledge. 
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Nevertheless, further developments in the methodological framework could gain 

enhanced accuracies, especially if only a few numbers of labeled samples are 

available. In this context a semi-supervised approach (e.g., BRUZZONE ET AL., 2006) 

with encode knowledge from unlabeled data may be beneficial (GEIß ET AL., 2014d). In 

addition, enhancements in the multi-scale segmentation technique may reduce 

remaining over-segmentation and could be compensate the application of additional 

segmentation scales. Especially the usage of OC-SVM necessitates further 

developments in the identification of finding the optimal free parameter settings for 

training the most suitable model, because the applied evaluation heuristic based on the 

overall accuracy and the model complexity (i.e., expressed by the number of support 

vectors). A more sophisticated approach may lead to higher accuracies if a more 

accurate parameter tuning could be reached.  

From the conceptual perspective, different constructive forms of buildings impact 

seismic vulnerability (e.g., steel-reinforced, construction material). This information can 

not or just partly acquired with remote sensing such as the material of the building roof 

(e.g. with hyperspectral remote sensing). Therefore, in situ surveys by earthquake 

engineers are indispensable so that damage grades can be estimated, as the SVR 

approach indicated. However, by means of remote sensing different types of 

constructions can be identified in a relatively short timeframe. Hence, remote sensing 

data may be helpful for the estimation of seismic building vulnerability and can support 

lengthy and expensive in situ building assessments. Therefore, an exchange with 

experts in the field of earthquake engineering may profitable and could facilitate the 

assessment of seismic vulnerability in urban areas of larger extent.  
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Appendix 

 

 

Appendix A: 

Scale 
factor 

number of 
objects 

number of non-
valid objects 

percentage of non-valid 
objects delta 

5 252415 252324 99.96394826 - 

6 175024 174254 99.56006033 0.403887925 

7 127796 124876 97.71510845 1.84495188 

8 96685 90131 93.22128562 4.493822836 

9 75293 64740 85.98408883 7.237196792 

10 59865 46031 76.89133885 9.092749981 

11 48539 32433 66.81843466 10.07290418 

12 40128 22996 57.30661882 9.511815841 

13 33611 16310 48.52578025 8.780838569 

14 28449 11609 40.80635523 7.719425018 

15 24254 8264 34.07273027 6.733624961 

16 20979 5973 28.47132847 5.6014018 

17 18369 4427 24.10038652 4.370941951 

18 16073 3247 20.20158029 3.898806231 

19 14255 2468 17.31322343 2.88835686 

20 12707 1879 14.78712521 2.526098224 

21 11419 1487 13.02215606 1.764969151 

22 10252 1178 11.49044089 1.531715166 

23 9333 955 10.2325083 1.257932586 

24 8529 778 9.121819674 1.11068863 

25 7779 641 8.240133693 0.881685981 

26 7101 509 7.168004506 1.072129187 

27 6520 409 6.273006135 0.894998371 

28 5998 343 5.718572858 0.554433277 

29 5551 285 5.134210052 0.584362805 

30 5202 251 4.825067282 0.30914277 

31 4819 203 4.212492218 0.612575064 

32 4527 172 3.799425668 0.41306655 

33 4288 147 3.428171642 0.371254026 

34 4027 125 3.104047678 0.324123964 

35 3777 109 2.885888271 0.218159407 

36 3568 97 2.718609865 0.167278406 

37 3373 89 2.638600652 0.080009213 

38 3195 82 2.566510172 0.07209048 

39 3050 72 2.360655738 0.205854434 

40 2904 62 2.134986226 0.225669512 

41 2750 55 2 0.134986226 

42 2612 44 1.684532925 0.315467075 

43 2496 36 1.442307692 0.242225233 

44 2401 33 1.374427322 0.06788037 

45 2302 30 1.303214596 0.071212726 

46 2204 25 1.13430127 0.168913326 

47 2127 23 1.081335214 0.052966057 

48 2032 23 1.131889764 -0.05055455 

49 1961 21 1.070882203 0.061007561 

50 1893 19 1.003697834 0.067184369 

Appendix A: Percentage of non-valid objects for the scales h=5 to h=50,  

to determine initial segmentation scale. 
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Appendix B: 

scale factor v I vnorm Inorm F(v,I) 

24 146.22 0.000260 1 0.927325581 1.927325581 

25 149.24 0.000254 0.9612423 0.944767442 1.906009742 

26 152.22 0.000250 0.9229979 0.956395349 1.879393295 

27 154.90 0.000247 0.8886037 0.965116279 1.853719975 

28 157.54 0.000238 0.8547228 0.991279070 1.846001862 

29 160.18 0.000240 0.8208419 0.985465116 1.806307005 

30 162.41 0.000243 0.7922228 0.976744186 1.768966979 

31 164.64 0.000248 0.7636037 0.962209302 1.725812998 

32 166.78 0.000251 0.7361396 0.953488372 1.689628002 

33 168.66 0.000260 0.7120123 0.927325581 1.639337902 

34 170.71 0.000266 0.6857033 0.909883721 1.595587006 

35 172.73 0.000272 0.6597793 0.892441860 1.552221121 

36 174.45 0.000277 0.6377053 0.877906977 1.515612316 

37 176.26 0.000281 0.6144764 0.866279070 1.480755456 

38 177.92 0.000287 0.5931725 0.848837209 1.442009694 

39 179.55 0.000295 0.5722536 0.825581395 1.397834989 

40 180.88 0.000302 0.5551848 0.805232558 1.360417363 

41 182.12 0.000310 0.5392710 0.781976744 1.321247791 

42 183.42 0.000320 0.5225873 0.752906977 1.275494246 

43 184.65 0.000328 0.5068018 0.729651163 1.236453011 

44 186.05 0.000337 0.4888347 0.703488372 1.192323074 

45 187.32 0.000345 0.4725359 0.680232558 1.152768492 

46 188.74 0.000343 0.4543121 0.686046512 1.140358627 

47 189.94 0.000352 0.4389117 0.659883721 1.098795425 

48 191.06 0.000350 0.4245380 0.665697674 1.090235662 

49 192.21 0.000358 0.4097793 0.642441860 1.052221121 

50 193.34 0.000395 0.3952772 0.534883721 0.930160928 

51 194.32 0.000402 0.3827002 0.514534884 0.897235089 

52 195.17 0.000410 0.3717916 0.491279070 0.863070651 

53 196.16 0.000419 0.3590862 0.465116279 0.824202521 

54 196.78 0.000425 0.3511294 0.447674419 0.798803782 

55 197.74 0.000433 0.3388090 0.424418605 0.763227640 

56 198.56 0.000440 0.3282854 0.404069767 0.732355188 

57 199.52 0.000447 0.3159651 0.383720930 0.699686023 

58 200.26 0.000454 0.3064682 0.363372093 0.669840266 

59 200.97 0.000460 0.2973563 0.345930233 0.643286495 

60 201.83 0.000467 0.2863193 0.325581395 0.611900697 

61 202.48 0.000474 0.2779774 0.305232558 0.583209971 

62 203.17 0.000485 0.2691222 0.273255814 0.542377991 

63 203.67 0.000491 0.2627053 0.255813953 0.518519292 

64 204.26 0.000498 0.2551335 0.235465116 0.490598587 

65 204.81 0.000503 0.2480749 0.220930233 0.469005181 

66 205.21 0.000508 0.2429415 0.206395349 0.449336827 

67 205.82 0.000512 0.2351129 0.194767442 0.429880378 

68 206.20 0.000517 0.2302361 0.180232558 0.410468698 

69 206.68 0.000523 0.2240760 0.162790698 0.386866673 

70 207.20 0.000528 0.2174025 0.148255814 0.365658278 

71 207.76 0.000534 0.2102156 0.130813953 0.341029559 

72 208.27 0.000539 0.2036704 0.116279070 0.319949501 

73 208.79 0.000543 0.1969969 0.104651163 0.301648083 

74 209.28 0.000547 0.1907084 0.093023256 0.283731675 

75 209.75 0.000550 0.1846766 0.084302326 0.268978917 

76 210.14 0.000553 0.1796715 0.075581395 0.255252853 

77 210.65 0.000554 0.1731263 0.072674419 0.245800702 

78 211.00 0.000558 0.1686345 0.061046512 0.229681009 

79 211.47 0.000560 0.1626027 0.055232558 0.217835228 

80 211.71 0.000563 0.1595226 0.046511628 0.206034215 

81 212.08 0.000563 0.1547741 0.046511628 0.201285755 

82 212.37 0.000564 0.1510524 0.043604651 0.194657013 

83 212.67 0.000566 0.1472023 0.037790698 0.184992956 

84 213.01 0.000571 0.1428388 0.023255814 0.166094623 

85 213.37 0.000573 0.1382187 0.017441860 0.155660546 

86 213.66 0.000573 0.1344969 0.017441860 0.151938780 
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87 213.99 0.000575 0.1302618 0.011627907 0.141889714 

88 214.20 0.000575 0.1275667 0.011627907 0.139194642 

89 214.60 0.000575 0.1224333 0.011627907 0.134061172 

90 214.93 0.000575 0.1181982 0.011627907 0.129826059 

91 215.26 0.000577 0.1139630 0.005813953 0.119776993 

92 215.62 0.000577 0.1093429 0.005813953 0.115156869 

93 215.83 0.000576 0.1066478 0.008720930 0.115368774 

94 215.98 0.000579 0.1047228 0 0.104722793 

95 216.17 0.000579 0.1022844 0 0.102284394 

96 216.41 0.000579 0.0992043 0 0.099204312 

97 216.59 0.000534 0.0968943 0.130813953 0.227708204 

98 216.84 0.000533 0.0936858 0.133720930 0.227406762 

99 217.06 0.000532 0.0908624 0.136627907 0.227490330 

100 217.48 0.000530 0.0854723 0.142441860 0.227914140 

101 217.83 0.000524 0.0809805 0.159883721 0.240864214 

102 218.15 0.000523 0.0768737 0.162790698 0.239664414 

103 218.27 0.000521 0.0753337 0.168604651 0.243938327 

104 218.38 0.000518 0.0739220 0.177325581 0.251247553 

105 218.54 0.000516 0.0718686 0.183139535 0.255008118 

106 218.69 0.000515 0.0699435 0.186046512 0.255990043 

107 218.87 0.000511 0.0676335 0.197674419 0.265307889 

108 218.98 0.000509 0.0662218 0.203488372 0.269710138 

109 219.12 0.000504 0.0644251 0.218023256 0.282448307 

110 219.23 0.000499 0.0630133 0.232558140 0.295571487 

111 219.30 0.000497 0.0621150 0.238372093 0.300487083 

112 219.52 0.000493 0.0592916 0.250000000 0.309291581 

113 219.70 0.000487 0.0569815 0.26744186 0.324423380 

114 219.95 0.000485 0.0537731 0.273255814 0.327028915 

115 220.02 0.000483 0.0528747 0.279069767 0.331944511 

116 220.10 0.000477 0.0518480 0.296511628 0.348359677 

117 220.30 0.000474 0.0492813 0.305232558 0.354513872 

118 220.34 0.000470 0.0487680 0.316860465 0.365628432 

119 220.42 0.000464 0.0477413 0.334302326 0.382043599 

120 220.54 0.000458 0.0462012 0.351744186 0.397945418 

121 220.79 0.000453 0.0429928 0.366279070 0.409271883 

122 220.90 0.000450 0.0415811 0.375000000 0.416581109 

123 221.06 0.000444 0.0395277 0.392441860 0.431969581 

124 221.10 0.000440 0.0390144 0.404069767 0.443084141 

125 221.36 0.000434 0.0356776 0.421511628 0.457189246 

126 221.48 0.000434 0.0341376 0.421511628 0.455649205 

127 221.59 0.000429 0.0327259 0.436046512 0.468772384 

128 221.67 0.000420 0.0316992 0.462209302 0.493908481 

129 221.80 0.000413 0.0300308 0.482558140 0.512588940 

130 222.00 0.000402 0.0274641 0.514534884 0.541998949 

131 222.08 0.000397 0.0264374 0.529069767 0.555507139 

132 222.28 0.000390 0.0238706 0.549418605 0.573289241 

133 222.45 0.000380 0.0216889 0.578488372 0.600177284 

134 222.63 0.000371 0.0193789 0.604651163 0.624030013 

135 222.84 0.000367 0.0166838 0.616279070 0.632962848 

136 222.96 0.000360 0.0151437 0.636627907 0.651771644 

137 223.21 0.000351 0.0119353 0.662790698 0.674726016 

138 223.25 0.000344 0.0114220 0.683139535 0.694561506 

139 223.28 0.000340 0.0110370 0.694767442 0.705804403 

140 223.34 0.000335 0.0102669 0.709302326 0.719569266 

141 223.45 0.000324 0.0088552 0.741279070 0.750134306 

142 223.58 0.000312 0.0071869 0.776162791 0.783349649 

143 223.62 0.000305 0.0066735 0.796511628 0.803185139 

144 223.70 0.000297 0.0056468 0.819767442 0.825414259 

145 223.75 0.000291 0.0050051 0.837209302 0.842214436 

146 223.79 0.000286 0.0044918 0.851744186 0.856235972 

147 223.83 0.000272 0.0039784 0.892441860 0.896420300 

148 223.96 0.000256 0.0023101 0.938953488 0.941263550 

149 224.04 0.000244 0.0012834 0.973837209 0.975120577 

150 224.14 0.000235 0 1 1 

vmin = 146.22   vmax = 224.14  Imin= 0.000235  Imax = 0.000579 

   𝜎 (F(v,I)) = 0.49542975 F(v,I)max = 1.927325581 F(p) = 1.431895832 

Appendix B: Calculation of objective function for h=24 to h=15. 
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Appendix C: 

scale factor v I vnorm Inorm 
                 

F(v,I) 
24 989,06 0,000817 1 0 1 
25 1137,84 0,000772 0,816551996 0,260115607 1,076667603 

26 1183,72 0,00076 0,759981258 0,329479769 1,089461027 

27 1230,49 0,000746 0,702313137 0,410404624 1,112717761 

28 1276,29 0,000735 0,64584104 0,473988439 1,119829479 

29 1328,16 0,000723 0,58188454 0,543352601 1,125237142 

30 1378,4 0,000711 0,519937856 0,612716763 1,132654619 

31 1432,05 0,000701 0,45378659 0,670520231 1,124306821 

32 1484,82 0,000691 0,388720377 0,728323699 1,117044076 

33 1538,25 0,000682 0,322840374 0,780346821 1,103187195 

34 1586,89 0,000673 0,262866514 0,832369942 1,095236456 

35 1638,96 0,000664 0,198663412 0,884393064 1,083056475 

36 1688,26 0,000658 0,137875761 0,919075145 1,056950906 

37 1743,89 0,000652 0,069283125 0,953757225 1,02304035 

38 1800,08 0,000644 0 1 1 

vmin = 989.06   vmax = 1800.08  Imin= 0.000644  Imax = 0.000817 

   𝜎 (F(v,I)) = 0.043229139 F(v,I)max = 1.132654619 F(p) = 1.08942548 

Appendix C: Calculation of optimized function for h=24 to h=38. 
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Appendix D: 

Appendix D: Naming key for vulnerability related features. 
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