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 Motivation 
 Climate sensitivity 𝜆𝜆 and efficacy 𝑟𝑟 describe 

the global mean surface temperature 
response to a radiative forcing 𝑅𝑅𝑅𝑅: 
  Δ𝑇𝑇𝑆𝑆 =  𝜆𝜆 ⋅ 𝑅𝑅𝑅𝑅 = 𝒓𝒓 ⋅ 𝜆𝜆𝐶𝐶𝐶𝐶2 ⋅ 𝑅𝑅𝑅𝑅 

Radiative forcings from perturbations of 
different kind or structure may give rise to 
distinctive radiative feedbacks, in turn leading 
to distinctive efficacies (r). 

This has been realized before, e.g., for some 
aviation forcings (Ponater et al., 2006), but 
understanding of the physical reasons has 
remained insufficient. 

Feedback analysis could be useful to provide 
a physical explanation for different 
temperature responses and efficacies, by 
identifying the responsible climate feedbacks.  

feedbacks 
clouds, water vapour, 
albedo, temperature 

radiative 

forcing ΔTS 

ΔR 

“Partial Radiative Perturbation” (PRP)-method 
Under the assumption of linearity and separability of radiative effects, each variable is 
substituted, one by one, from a climate change simulation, whereas all other variables are 
taken from a control simulation (forward calculation). By means of an offline radiation tool, 
the net radiation flux changes at top of the atmosphere ∆𝑅𝑅𝑥𝑥 are calculated. 
 
 feedback parameter 
 
 
The sum of feedbacks counteracts the radiative forcing to restore the radiative equilibrium at 
top of the atmosphere: 

𝛼𝛼 =  �𝛼𝛼𝑥𝑥 =  �
Δ𝑅𝑅𝑥𝑥
Δ𝑇𝑇𝑆𝑆𝑥𝑥𝑥𝑥

 𝑥𝑥 = 𝑞𝑞,𝐶𝐶,𝐴𝐴,𝑇𝑇, … 

𝛼𝛼 =  �𝛼𝛼𝑥𝑥 = −
𝑅𝑅𝑅𝑅
Δ𝑇𝑇𝑆𝑆

= −
1
𝜆𝜆

𝑥𝑥

 

Feedbacks under a variety of forcings 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

EMAC global model simulations (Dietmüller, 2011; Dietmüller et al, 2014) 

 
 2xCO2 and 4xCO2 simulations show 

statistically significant differences. 
       Contributions from water vapour,  

stratospheric temperature,  and cloud 
feedbacks are responsible for the climate 
sensitivity variation. 

 No significant distinction of the feedback sum 
for +75CO2 simulation (from 2xCO2) is 
possible as the statistical noise level (inter-
annual variability) is too high. 

       Possibility to identify feedback processes 
responsible for climate sensitivity variation 
becomes limited for small forcings. 

 

 

 NOX+CO and +75CO2 (without interactive 
chemistry) show a significant difference of 
the feedback sum, consistent with smaller 
efficacy for the NOX+CO forcing. 

       Various feedback changes contribute to 
a distinctive NOX+CO efficacy; enhanced 
positive 𝛼𝛼𝑞𝑞 is compensated by enhanced 
negative 𝛼𝛼𝐿𝐿𝐿𝐿; less positive  𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 
seem to shift the feedback balance to 
smaller climate sensitivity for NOX+CO. 

Climate sensitivity and efficacy may vary under 
• different type of radiative forcing 
• different strength of radiative forcing    
• spatial structure of the perturbation/forcing 
• amongst different models 

Wm-2K-1 

 

Global mean feedbacks: 
 Temperature feedback 

split up: 
• Planck feedback 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝: 

- 3.10 Wm-2K-1 

• Lapse rate feedback 𝛼𝛼𝐿𝐿𝐿𝐿: 
- 0.86 Wm-2K-1 

• Stratospheric temperature 
feedback 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠: 
+ 0.56 Wm-2K-1 

 
 Water vapour feedback 𝛼𝛼𝑞𝑞: 

+ 2.01 Wm-2K-1 

 
 Surface albedo feedback 𝛼𝛼𝐴𝐴: 

+ 0.23 Wm-2K-1 

 
 Cloud feedback 𝛼𝛼𝐶𝐶:  

+ 0.29 Wm-2K-1 

Can feedback analysis be used to understand efficacy 
differences between radiative forcings? 
 

• Significant feedback changes may be identified in a carefully chosen PRP analysis framework. 
 All feedbacks are potential candidates to significantly modify the feedback balance and to 

cause a distinctive efficacy of a given perturbation. 
• Larger forcing gives a better signal to noise ratio and facilitates the analysis, but feedbacks 

and climate sensitivity can also change significantly with increasing forcing. 
 Scaling forcings may be misleading when searching for physical reasons for efficacy  
 differences.  

• Feedbacks may be separable but are nevertheless interactive  
 An extended model framework involving new feedbacks may lead to substantial changes 

of the whole feedback balance and, thus, may yield different efficacy estimates.  
 
  

  

 

 

 

 

 

 

 

 

 

 

 

Recommendations for successful feedback analysis 
 

 

 

 

 

 

 

 

 

 

 Statistical uncertainty of feedbacks may be large, especially for small forcings 
  perturbation should be sufficiently large  to extract the signal from high 

background noise 

 Combination of forward (FW) and backward (BW) PRP feedback calculation guarantees 
  reproduction of the near-zero radiation balance at top of the atmosphere 
  separability of the feedbacks (sufficiently small residuum) 

CO2 doubling 
simulation 

ΔO3 (%) 

Simulation experiment 
with EMAC 

Inter-
active 

chemistry 

Radiative 
forcing 
Wm-2 

Climate sensitivity λ 
Efficacy r 

K/Wm-2 [95% confi.] 

ΔO3 from enhanced NOX+CO (v.s.) no NOX+CO 1.22 0.63 [0.55; 0.67] 0.86 

ΔO3 from enhanced NOX+CO (v.s.) yes NOX+CO_chem 1.22 0.69 [0.65; 0.73] 0.95 

Increase of CO2 by 75 ppmv no +75CO2 1.06 0.73 [0.67; 0.79] 1 

Doubling of CO2 no 2xCO2 4.13 0.70 [0.69; 0.72] 0.96 

Quadrupling of CO2 no 4xCO2 8.93 0.91 [0.90; 0.92] 1.25 

Different strength of radiative forcing 

Different type of radiative forcing 

Global climate system 

Advanced model (interactive chemistry) 

Example: 
O3 (from NOx/CO surface emissons) has a reduced efficacy   
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+75CO2 2xCO2 4xCO2

𝛼𝛼𝑝𝑝𝑙𝑙𝑎𝑎 

𝛼𝛼𝐿𝐿𝑅𝑅 

𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝐴𝐴 𝛼𝛼𝑞𝑞 𝛼𝛼𝐶𝐶 

Σ𝛼𝛼𝑥𝑥 
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+75CO2 NOX+CO

𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 

𝛼𝛼𝐿𝐿𝐿𝐿 

𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝐴𝐴 𝛼𝛼𝑞𝑞 𝛼𝛼𝐶𝐶 

Σ𝛼𝛼𝑥𝑥 
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NOX+CO NOX+CO_chem

𝛼𝛼𝐶𝐶3
 𝛼𝛼𝐶𝐶 𝛼𝛼𝑞𝑞 𝛼𝛼𝐴𝐴 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 

𝛼𝛼𝐿𝐿𝐿𝐿 

𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 

Σ𝛼𝛼𝑥𝑥 

 Additional feedbacks occur in a model 
setup with interactive atmospheric 
chemistry. Despite a additional negative 
ozone feedback (𝛼𝛼𝐶𝐶3

), the sum of 
feedbacks becomes less negative, leading 
to enhanced climate sensitivity. 

       𝛼𝛼𝐶𝐶 reacts markedly to the changes in 
𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 and the negative 𝛼𝛼𝐶𝐶3

 and, hence, 
appears to be responsible for the impact 
reversion compared to the primary 
chemical feedback (𝛼𝛼𝐶𝐶3

). 

Ozone change due to enhanced NOX/CO emissions 
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