

Towards uncovering the origin of efficacy differences For different radiative forcings related to transport emissions Michael Ponater, Vanessa Rieger, Simone Dietmüller and Robert Sausen

"Partial Radiative Perturbation" (PRP)-method

Under the assumption of linearity and separability of radiative effects, each variable is substituted, one by one, from a climate change simulation, whereas all other variables are taken from a control simulation (forward calculation). By means of an offline radiation tool, the net radiation flux changes at top of the atmosphere ΔR_x are calculated.

$$\Delta T_S = \lambda \cdot RF = \mathbf{r} \cdot \lambda_{CO_2} \cdot RF$$

distinctive radiative feedbacks, in turn leading to distinctive efficacies (*r*).

This has been realized before, e.g., for some aviation forcings (Ponater et al., 2006), but understanding of the physical reasons has remained insufficient.

Feedback analysis could be useful to provide a physical explanation for different temperature responses and efficacies, by identifying the responsible climate feedbacks.

Example: O₃ (from NO_x/CO surface emissons) has a reduced efficacy

Global distribution of climate feedbacks for a CO₂ doubling simulation (RF = 4.13 W/m², $\Delta T_{s} = 2.91$ K)

Stratospheric Temperature

Water vapour

- Temperature feedback split up:
 - Planck feedback α_{pla} : - 3.10 Wm⁻²K⁻¹
 - Lapse rate feedback α_{LR} : - 0.86 Wm⁻²K⁻¹
 - Stratospheric temperature

feedback parameter
$$\alpha = \sum_{x} \alpha_{x} = \sum_{x} \frac{\Delta R_{x}}{\Delta T_{S}}$$
 $x = q, C, A, T, ...$

The sum of feedbacks counteracts the radiative forcing to restore the radiative equilibrium at top of the atmosphere: $\alpha = \sum \alpha_x = -\frac{RF}{\Delta T_S} = -\frac{1}{\lambda}$

Feedbacks under a variety of forcings

Climate sensitivity and efficacy may vary under

- different type of radiative forcing
- different strength of radiative forcing
- spatial structure of the perturbation/forcing
- amongst different models

Simulation experiment	Inter-		Radiative forcing	Climate sensitivity λ		Ffficacy r
with EMAC	chemistry		Wm ⁻²	K/Wm ⁻²	[95% confi.]	Lincacy
ΔO_3 from enhanced NO _X +CO (v.s.)	no	NOX+CO	1.22	0.63	[0.55; 0.67]	0.86
ΔO_3 from enhanced NO _X +CO (v.s.)	yes	NOX+CO_chem	1.22	0.69	[0.65; 0.73]	0.95
Increase of CO ₂ by 75 ppmv	no	+75CO2	1.06	0.73	[0.67; 0.79]	1
Doubling of CO ₂	no	2xCO2	4.13	0.70	[0.69; 0.72]	0.96
Quadrupling of CO ₂	no	4xCO2	8.93	0.91	[0.90; 0.92]	1.25

EMAC global model simulations (Dietmüller, 2011; Dietmüller et al, 2014)

Recommendations for successful feedback analysis

Statistical uncertainty of feedbacks may be large, especially for small forcings \rightarrow perturbation should be sufficiently large to extract the signal from high background noise

Different strength of radiative forcing

Different type of radiative forcing

- NOX+CO and +75CO2 (without interactive) chemistry) show a significant difference of the feedback sum, consistent with smaller efficacy for the NOX+CO forcing.
 - \rightarrow Various feedback changes contribute to a distinctive NOX+CO efficacy; enhanced positive α_q is compensated by enhanced negative α_{LR} ; less positive α_{str} and α_{str} seem to shift the feedback balance to smaller climate sensitivity for NOX+CO.

- 2xCO2 and 4xCO2 simulations show statistically significant differences.
 - \rightarrow Contributions from water vapour, stratospheric temperature, and cloud feedbacks are responsible for the climate sensitivity variation.
- No significant distinction of the feedback sum for +75CO2 simulation (from 2xCO2) is possible as the statistical noise level (interannual variability) is too high.
 - → Possibility to identify feedback processes responsible for climate sensitivity variation becomes limited for small forcings.

- Combination of forward (FW) and backward (BW) PRP feedback calculation guarantees
 - → reproduction of the near-zero radiation balance at top of the atmosphere
 - → separability of the feedbacks (sufficiently small residuum)

Can feedback analysis be used to understand efficacy differences between radiative forcings?

- Significant feedback changes may be identified in a carefully chosen PRP analysis framework. → All feedbacks are potential candidates to significantly modify the feedback balance and to cause a distinctive efficacy of a given perturbation.
- Larger forcing gives a better signal to noise ratio and facilitates the analysis, but feedbacks and climate sensitivity can also change significantly with increasing forcing.
 - \rightarrow Scaling forcings may be misleading when searching for physical reasons for efficacy differences.
- Feedbacks may be separable but are nevertheless interactive
 - \rightarrow An extended model framework involving new feedbacks may lead to substantial changes of the whole feedback balance and, thus, may yield different efficacy estimates.

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Advanced model (interactive chemistry)

References:

Dietmüller, S. (2011) Relative Bedeutung chemischer und physikalischer Rückkopplungen in Klimasensitivitätsstudien mit dem Klima-Chemie-Modellsystem EMAC/MLO, PhD Thesis at the Ludwig-Maximilians-Universität München, DLR-Forschungsbericht 2011-19, 124pp.

- Additional feedbacks occur in a model setup with interactive atmospheric chemistry. Despite a additional negative ozone feedback (α_{O_2}), the sum of feedbacks becomes less negative, leading to enhanced climate sensitivity.
- $\rightarrow \alpha_{c}$ reacts markedly to the changes in α_{str} and the negative α_{O_2} and, hence, appears to be responsible for the impact reversion compared to the primary chemical feedback ($\alpha_{O_{\alpha}}$).

Dietmüller, S., Ponater, M., Sausen, R. (2014) Interactive ozone induces a negative feedback in CO₂-driven climate change simulations, J Geophys Res Atmos, 119, 1796-1805

Ponater, M., Pechtl, S., Sausen, R., Schumann, U., Hüttig, G. (2006) Potential of the cryoplane technology to reduce aircraft climate impact: A state-of-the-art assessment, Atmos Environ, 40, 6928-6944.

Institut für Physik der Atmosphäre http://www.dlr.de/ipa