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Abstract

This paper focuses on the numerical simulation of the mo-
tion of regular shaped ice particles under the forces and
torques generated by aerodynamic loading. Ice particles
can occur during landing and take-off of aircraft at ground
level up to the lower bound of the stratosphere at cruis-
ing altitude. It may be expected that the particle Reynolds
number is high because the flow around the aircraft is in
certain regions characterized by strong acceleration and
deceleration of the flow. In combination with this flow pat-
tern, the rotation of particles becomes important. Applica-
ble translational and rotational equations of motion com-
bined with a drag correlation taking into account rotation
will be derived for a Lagrangian type particle tracking. Ori-
entation is described with quaternions to prevent the sin-
gularities associated with the description by Euler angles.
The influence of regular shaped particles on collection ef-
ficiencies is investigated. Test cases are the flow past a
cylinder, a NACA0012 airfoil and a NHLP L1/T2 three el-
ement airfoil. Due to the increased computational effort
compared to the purely translational approach, observed
trajectory simulation times are reported.

Nomenclature

Variables

A = surface or projected area, m2

CD = aerodynamic drag coefficient
CL = aerodynamic lift coefficient
d = diameter, m
~F = force vector, N
I = moment of inertia tensor, kgm2

L = length of particle, m
m = mass, kg
Ma∞ = freestream Mach number
R = rotation matrix
Re = Reynolds number
Sp = Spin number
~T = torque vector, Nm
t = physical time, s
~x = position vector, components x, y and z, m

Greek letters
α = incidence angle
β = collection efficiency
~ϕ = rotation vector, components φ, θ and ψ
Φ = sphericity
Φ⊥ = crosswise sphericity
Φ‖ = lengthwise sphericity
ω = angular velocity, 1/s

Subscripts

p = particle state
f = surrounding fluid state
r = resistance
R = rotation
c.p. = center of pressure
c.g. = center of gravity
∞ = freestream state
ref = reference state
rel = relative state

Introduction

Ice crystals may be found at the upper boundary of the
troposphere where strong winds exist and jet aircraft fly at
cruising speed in the transonic flow regime and high flow
Reynolds number. Ice crystals found in this part of the
atmosphere deviate considerably in shape from spheres
and may appear as thin needles up to disc-shaped struc-
tures. As the particle size grows from a few microns
to several hundreds of microns a high particle Reynolds
number is to be expected as well. These conditions will
most likely cause an arbitrary rotation and orientation of
the particle around its principal axes.
However, as drag is the most important force contribu-
tion, early investigations focused on the drag coefficients
of spheres moving through a fluid with relatively low flow
and particle Reynolds numbers. By a combination of the-
oretical work and extensive experimental testing a huge
amount of data was collected. It resulted in an empirical
correlation of the drag coefficient, dependent on the par-
ticle Reynolds number. Extension of these correlations to
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irregular shaped particles happened in small steps. Ini-
tially, a limited number of regular shaped particles was
considered by determining the settling behavior and keep-
ing track of the free-falling velocity and drag. Many of
these investigations have been carried out with prisms,
cylinders, cones or plates. Again, empirical drag correla-
tions were proposed with an additional parameter, often
referred to as sphericity. Sphericity is the ratio between a
certain characteristic description (e.g. the cross section)
of the equivalent sphere and the non-spherical particle.
By definition, sphericity does not account for the orienta-
tion of the particle in relation to the direction of fluid flow.
The main outcome was an increased drag coefficient for
non-spherical particles in comparison to spherical parti-
cles. For years, averaged or stochastic correlation were
used to determine drag coefficients based on huge sets
of experimental data for different, mostly regular shaped,
particles [1, 2, 3] and have been extended to irregular
shaped particles to provide a reliable drag correlation that
covers as many shapes as possible. The computational
effort to evaluate the drag coefficient will be comparable
to spherical particles.
However, if the particle Reynolds number increases con-
siderably and experimental investigations become diffi-
cult, considering the full particle motion including rotation
may significantly enhance the trajectory simulation. One
of the first investigations was done by Jeffery [4] for ellip-
soids and by Cox [5] for slender bodies, both comprehen-
sive theoretical studies. The influence of particle rotation
at higher particle Reynolds numbers was recently pointed
out by Qi [6] while investigating sedimentation. Huang
et.al. [7] identified different modes of particle motion re-
lated to a wide range of particle Reynolds numbers for
spheroidal particles in a Couette flow. Rosendahl [8] in-
troduced a multi-parameter description of the particle ro-
tation to improve prediction capability of numerical sim-
ulations instead of using a general single parameter like
the sphericity. Comprehensive overview article on exten-
sions to more general regular and irregular shaped parti-
cles may be found in Loth [9], Mandø and Rosendahl [10]
and Kleinstreuer and Feng [11]. Experimental investiga-
tions of rotating balls in a turbulent flow were examined by
Zimmermann et. al. [12].
Obviously, the general treatment of non-spherical parti-
cles needs to consider the shape and orientation depen-
dent aerodynamic forces, which are associated with non-
spherical particles. The computation of both the aerody-
namic forces and torques and of the particle motion re-
quires the tracking of the particle orientation and rotation
plus the formulation of appropriate orientation dependent
lift and drag correlations. If the translational and rotational
equations of motion are applied, a set of ordinary differ-
ential equations emerges, which introduce external forces
and torques. To simplify evaluation of forces and torques,
we delimit our investigation in this paper to the treatment

of regular shaped particles only. The forces and torques
may then be evaluated using orientation based geometri-
cal parameters. Certain parameters are derived from ex-
periments to keep the computational effort within bounds.

The original DLR TAU Lagrangian-type particle tracer, as
described in [13], could only consider translational mo-
tion of particles. The equations of motion are derived
from Newton’s second law for a point mass, but con-
sider drag, buoyancy and gravity forces. The drag cor-
relation implemented is based on a fit to Langmuir and
Blodgett’s [14] drag data for spherical water droplets in
a dispersed flow. The particle tracer was mainly estab-
lished to evaluate water droplet collection efficiencies for
subsequent ice accretion simulations. The resulting ordi-
nary differential equation (ODE) is solved in time with em-
bedded Runge-Kutta methods of third or fourth order. An
extension to the original implementation, solving in addi-
tion the rotational equations of motion and the equations
for evaluating the orientation, is described in this paper.
As irregular shapes are difficult to treat and the accurate
aerodynamics around the particle surface is not resolved
in our approach, restriction to regular shaped particles are
necessary. We consider both discs and rods with speci-
fied aspect ratios, for which the equation of motion can
be derived by basic mechanical considerations since ex-
perimental data are rare. Aerodynamic forces and cor-
responding torques are introduced from existing correla-
tions which account for orientation and non-spherical pa-
rameters.

A suitable drag correlation approach was introduced by
Hölzer and Sommerfeld [15], which depends on the parti-
cle Reynolds number, lengthwise and crosswise spheric-
ity and a general description of the sphericity. Lift and
resistance torque against the rotation is treated as pro-
posed by Mandø and Rosendahl [10]. Computation of
particle orientation angles and angular velocity is done in
the principal axis system of the considered particle using
Euler’s equations for a rotational motion. Orientation is
represented using quaternions. However, the quaternion
representation needs to be transferred back into Euler an-
gles to recompute projected areas and equivalent sphere
parameters. The differential equations for rotational and
the translational motion based on Newton’s law form to-
gether a system of ordinary differential equations, which
is again solved in time by embedded Runge-Kutta integra-
tors with local error control. The demand of this solution
process on computer time is outlined too, which is a lim-
iting factor for the potential use in industrial applications,
whenever orientation of particles is considered. Evalu-
ation of collection efficiencies for selected test cases will
emphasize the influence of particle rotation in comparison
to averaged correlation approaches.
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Governing equations of particle mo-
tion

The governing equations for the translational and rota-
tional motion of a particle in a fluid is Newton’s second
law in a global frame of reference,

~xp(t) := [xp(t), yp(t), zp(t)]
T , (1)

d~xp(t)

dt
:= ~̇xp(t) = ~Up(t), (2)

mp
d~Up(t)

dt
:=
∑

~F (t), (3)

and Euler’s equations of motion in a body fixed frame of
reference

~ϕp(t) := [φ(t), θ(t), ψ(t)]T , (4)
d~ϕp(t)

dt
:= ~̇ϕp(t) = ~ωp(t), (5)

Ip
d~ωp(t)

dt
+ ~ωp(t)× (Ip~ωp(t)) :=

∑
~T (t), (6)

Ip :=

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (7)

where mp is the particle mass and Ip is the particle’s mo-
ments of inertia tensor, respectively. Both are kept con-
stant. In the present paper, the index p denotes a parti-
cle property whereas index f is used for properties of the
surrounding fluid. Furthermore, Figure 1 shows the body
fixed coordinate system [x, y, z] and the geodesic refer-
ence coordinate system [xg, yg, zg].

L
2

c.g. ωp − ωf
Uf

x

z

zg
xg

yg

FL

FD

x
cp

y

α

d p

c.p.

Figure 1: Aerodynamic forces acting at the center of pres-
sure (c.p.) on a slender body and showing the relationship
between geodesic [xg, yg, zg] and body fixed [x, y, z] coor-
dinate system.

It is not appropriate to solve the Eq. (5) directly with a ro-
tation matrix based on Euler angles due to an inherent
singularity, well-known as gimbal lock. It appears when-
ever the second rotation turns the first rotation axis paral-
lel to the third axis of rotation, and the sequence of rota-
tions loses one degree of freedom, [12, 16]. An alternative
representation of the orientation, preventing gimbal locks,
is a representation by four variables called quaternions
and introduced as generalized coordinates to solve the
equations of rotation. After choosing an appropriate Euler
rotation sequence (3-1-3), described in [17], the quater-
nion parameters q(t) ∈ R4 and q := q(t) are defined as,
[18, 17],

q := [q0, (q1, q2, q3)]T , (8)

q0 := cos
θ

2
cos

(
φ+ ψ

2

)
, (9)

q1 := sin
θ

2
cos

(
φ− ψ

2

)
, (10)

q2 := sin
θ

2
sin

(
φ− ψ

2

)
, (11)

q3 := cos
θ

2
sin

(
φ+ ψ

2

)
(12)

The angular velocity transformation matrix from a body-
fixed frame of reference to a geodesic frame of reference
and vice versa can be written as

~ωgp := q ∧ ~ωp ∧ q̄, (13)

~ωp := q̄ ∧ ~ωgp ∧ q (14)

where q̄ denotes the conjugate quaternion, q ∧ q̄ ≡ 1 if
the quaternion is normalized to 1 and ∧ is the Grassmann
product. Defining the product of Eq. (13) is a matter of
convention, since it changes the effect of rotation direc-
tion. Eq. (13) results in a clockwise rotation.
Switching from quaternion to a matrix notation leads to
the following alternative formulation

~ωgp := R(q)~ω, ~ωp := RT (q)~ωgp . (15)

Since for a unit quaternion the following equivalence holds
R−1(q) ≡ RT (q) ≡ R(q), the orthogonal rotation matrix
R(q) is then defined by

R(q) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 =

=

 1
2 − q2

2 − q2
3 q3q0 − q2q1 q1q3 + q2q0

−(q2q1 + q3q0) 1
2 − q2

1 − q2
3 q0q1 − q2q3

q1q3 − q2q0 −(q2q3 + q1q0) 1
2 − q2

1 − q2
2

 (16)

The implementation ofR(q) is introduced as 2R(q) to save
the multiplication of Eq. (17) by 0.5. The equation of state
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variables for each particle satisfies the equation

q̇ =
1

2
(~ωgp ∧ q) =

1

2
(q ∧ ~ωp) =

1

2
Q(q)

[
0
~ωp

]
(17)

Q(q) =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 (18)

An equation defining the second derivative of q, q̈ :=
q̈(q(t), ω̇p(t)), is obtained by differentiating Eq. (17). This
results in a second-order ODE for q,

q̈ =
1

2
(q̇ ∧ ~ωp + q ∧ ~̇ωp), ~ωp = 2(q̄ ∧ q̇) (19)

q̈ =
1

2

[
|q̇|
0

]
+

1

2
(q ∧ ~̇ωp) =

1

2
Q(q)

[
0

~̇ωp

]
(20)

Transformation from quaternions back to Euler angles is
provided with the rotation matrix in Euler angles

R313(~ϕp) =

 cφcψ − sφcθsψ cψsφ + cφcθsψ sψsθ
−sφcψ − sφcθcψ −sφsψ + cφcθcψ cψsθ

sθsφ −sθcφ cθ


(21)

sϕ := sin(ϕ), cϕ := cos(ϕ).

(22)

Equivalent to matrix R(q), Eq (16), the Euler angles are
defined by

~ϕp(R(q)) :=

arctan 2(r31,−r32)
arccos(r33)

arctan 2(r13, r23)

 (23)

which is used for computing projected areas and the angle
of attack of the fluid. Note, that arccos of ±1 is not defined.
The arccos function returns the angle between 0 and π
radians. The singularities are identified with Eq. (21) as
r33 = −1→ π radians and r33 = 1→ 0 radians.
A common problem in the integration of rotational motions
described by quaternions is the inherent quaternion drift.
The quaternion is defined as a unit quaternion and its
length has to remain equal to one. However, during inte-
gration the quaternions will drift away from this unit length.
Therefore, it is necessary to re-normalize the quaternions
at an appropriate time.

qnew =
q

|q| , |q| =
√
q2
0 + q2

1 + q2
2 + q2

3 (24)

During the particle simulation the normalization was per-
formed after each completed time step.
Finally, solving the equation for the particle angular veloc-
ity, Eq. (6) and Eq. (17) may be rewritten as

~̇ωp = I−1
p

(
~T − ~ωp × (Ip~ωp)

)
(25)

Introducing a reference moment of inertia, the moments
of inertia may be non-dimensionalized

Iref,p = ρp d
5
p, I

′

p =
Ip
Iref,p

(26)

which equates for spheres and cylinders to

I
′

p,sphere =
π

60
(27)

I
′

p,x,cyl =
π

32
c, I

′

p,y,z,cyl =
1

48
c(

3

4
+ c2) (28)

the dimensionless angular acceleration yields

~̇ω
′

p = (I
′

p)
−1
(
~T

′ − ~ω′

p × (I
′

p~ω
′

p)
)

(29)

~ω
′

p = ~ωp
Lref

ẋref
(30)

ẋref equals the magnitude of the free stream velocity and
Lref is the characteristic length of the airfoil, e.g. the chord
length. These are equations for the translational and an-
gular acceleration and the quaternion. It represents a
system of 10 differential equations to be solved instead
of 3 differential equations to be solved for the basic La-
grangian trajectory simulation. The equations are inte-
grated in time numerically with an embedded fourth-order
Runge-Kutta method.

Forces and Torques

The sum of all forces in Eq. (3) acting on the particle may
consist of the aerodynamic lift and drag and forces result-
ing from the density difference between particle and fluid
(buoyancy and gravity),∑

~F = ~FDrag + ~FLift + ~FBuoyancy + ~FGravity + · · · . (31)

All other forces are neglected. Introducing the relative ve-
locity between particle and fluid ~̇xrel = ~̇xp − ~̇xf and using
a drag law, where the drag varies with the relative velocity
squared, Eq.(3) may be written

~̈xp = (−CD + CLR(q⊥))
Ap,Sρf

2mp
|~̇xrel|~̇xrel −

ρf
ρp
~g + ~g, (32)

q⊥ :=
(π

2
,~arot

)
→ R(q⊥), (33)

~arot :=


if ~̇xrel·~z
|~̇xrel·~z|

= 1 then [0,−1, 0]T ,

if ~̇xrel·~z
|~̇xrel·~z|

= −1 then [0, 1, 0]T ,

else ~̇xrel×~z
|~̇xrel×~z|

(34)

where Ap,S , ρp, mp and CD are the cross section of the
equivalent sphere, the particle density, the mass and the
drag coefficient of the particle, respectively. ρf is the den-
sity of the fluid. ~g is the gravity vector. The drag force
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is negative parallel and the lift force acts perpendicular
to the relative velocity vector. The orientation of the lift
force can be established by applying a Householder trans-
formation, arbitrary axis is chosen to be the body fixed
~z := [0, 0, 1]T axis, and conversion into a quaternion to
evaluate the rotation matrix R(q⊥).
By rearranging the equation above, Eq. (34) may be ex-
pressed as

~̈xp = (−CD + CLR(q⊥))
Rep
24

18

d2
p

µf
ρp
~̇xrel +

ρp − ρf
ρp

~g. (35)

with dp, the particle diameter, and Rep, the particle
Reynolds number, defined as

Rep =
|~̇xrel| dpρf

µf
. (36)

If Eq. (35) is written in dimensionless form (dashed quan-
tities are dimensionless),

~̈x′p = (−CD +CLR(q⊥))
Rep
24

1

K
~̇x′rel +Fr2 ρp − ρf

ρp

~g

|~g| , (37)

then two similarity parameters of the particle-fluid inter-
action become apparent, the so-called inertia parameter
K,

K =
d2
p

18

ρp
µf

ẋref

Lref
, (38)

and the Froude number, Fr = ẋref/
√
|~g|Lref.

The inertia parameter K is the ratio between a particle
relaxation time and a characteristic time of the fluid flow.
The Froude number Fr is the ratio between gravitational
forces and fluid forces.
Hölzer and Sommerfeld [15] introduced a drag correlation
for the complete Reynolds number region:

CD :=
8

Rep
1√
Φ‖

+
16

Rep
1√
Φ

+
3√
Re

1

Φ
3
4

+

+ 0.42 · 100.4(−log(Φ))0.2 1

Φ⊥
(39)

which depends on the shape, the orientation and the par-
ticle Reynolds number. The sphericity (Φ) represents
the ratio between the surface area of the volume equiv-
alent sphere and that of the considered particle. The
crosswise sphericity (Φ⊥) is the ratio between the cross-
sectional area of the volume equivalent sphere and the
projected cross-sectional area of the considered particle.
The lengthwise sphericity (Φ‖) is the ratio between the
cross-sectional area of the volume equivalent sphere and
the difference between half the surface area and the mean
projected longitudinal cross-sectional area of the consid-
ered particle.

 [deg]
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Figure 2: Comparison of the values for drag coefficient
extracted from Hölzer and Sommerfeld [19] for cylindrical
particles at Rep = 240 with the implementation in TAU. In
addition, the drag coefficient for a disc with an aspect ratio
of 0.5 is presented.

The drag coefficient for cylindrical particles obtained from
Hölzer and Sommerfeld is presented in Figure 2 in com-
parison with the implementation of Eq. (39) in TAU for a
particle Reynolds number of 240 for a quarter rotation of
the particle. Figure 2 includes the drag coefficient for a
disc with an aspect ratio of 0.5. A noticeable effect is the
higher drag coefficient for the disc at 90 degrees (flat in
flow direction) and the lower coefficient for the cylindrical
particle at 0 degree (cross section in flow direction). The
diameter was kept constant which then scales the length
or thickness of the particle with the aspect ratio.

To characterize non-spherical objects, Wadell [20] intro-
duced the sphericity Φ. It is the ratio of a volumetric equiv-
alent surface of a sphere and the actual surface of a par-
ticle. The sphericity is defined as

Φ =
A0,Sphere

A0
:=

d2
v

d2
A0

, dA0
=

√
1

π
A0, (40)

Φcyl =
2
(

3
2c
)2/3

1 + 2c
, c =

L

dp
, dv :=

(
6

π
Vp

)1/3

(41)

Φ will be in the range Φ ≤ 1, with Φ ≡ 1 for a sphere and
dv is the equivalent diameter for a sphere of the same
volume. Obviously, the sphericity does not account for
orientation of the particle which is evident and was noted
already by Wadell.

Similar to the sphericity, two additional sphericities may
be defined, the crosswise and lengthwise sphericity, re-
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spectively,

Φ⊥ :=
A⊥,Sphere

A⊥
:=

d2
v

d2
A⊥

, dA⊥ :=

√
4

π
A⊥ (42)

Φ‖ :=
A‖,Sphere
1
2A0 −A‖

:=
d2
v

2d2
A0
− d2

A‖

, dA‖ :=

√
4

π
A‖ (43)

In general the crosswise sphericity is much easier to eval-
uate then the lengthwise sphericity. Replacing the length-
wise with the crosswise sphericity in the general correla-
tion formula Eq. (39) will result in a small relative deviation
compared to the general formula as mentioned by Hölzer
and Sommerfeld [15].
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Figure 3: Lift over drag coefficient ratio from Mandø and
Rosendahl [10] and Hörner [21] for a quarter rotation of
the particle.

Lift forces may be differentiated into aerodynamic lift, aris-
ing from circulation generated in the fluid flow around the
particles shape, as well as lift due to velocity gradients
in the flow and lift due to particle rotation. The latter
two are usually called Saffmann and Magnus lift-force, re-
spectively. In this paper, aerodynamic lift is considered
only. Aerodynamic lift may be modelled based on the
cross-flow principle of Hörner [21] which relates the aero-
dynamic drag coefficient with the lift coefficient by the in-
cidence angle

CL
CD

= sin2 α cosα, 0 ≤ Rep ≤ 103 (44)

Mandø and Rosendahl [10] modified the ratio between
lift and drag coefficient to also depend on the particle
Reynolds number

CL
CD

=
sin2 α cosα

0.65 + 40Re0.72
p

. (45)

Figure 3 compares both approaches. Obviously,
Mandø and Rosendahl’s relationship is about three orders
of magnitude smaller than Hörners approach. Due to that
discrepancy, Eq. (44) is implemented.
The sum of all torques in Eq. (6),∑

~T = ~Tc.p. + ~TR + . . . (46)

are torques around the center of pressure as aerodynamic
forces appear and the particles resistance torque against
rotation. All other torques are neglected. Aerodynamic
forces act around the center of pressure (c.p.) at the
length xc.p. from the center of gravity. The resulting torque
is

~Tc.p. = ~xc.p. × (Rga ~FD +Rga ~FL) (47)

with the transformation matrix Rga from the aerodynamic
into the geodesic frame. As the particle is not discretized
itself, an adequate description of xc.p., see Figure 1, is
extracted from the literature. Rosendahl [8] describes xc.p.
as a function of the incidence angle α and the aspect ratio
of axes c = L/d

xc.p.
L

=
1

2
(1− exp(1− c)) (1− sin3 α) (48)

and his co-worker Yin [22] proposed a similar relationship

xc.p.
L

= 0.25(1− | cos3 α|) (49)

Both distributions are displayed in Figure 4 for a quarter
rotation, indicating the orientation of the particle.
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x
c

p
/L
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0

0.05

0.1

0.15

0.2

0.25
Yin

Rosendahl

Figure 4: xc.p./L location during rotation with indication of
the body’s orientation.

Throughout the simulations Yin’s relationship of xc.p./L
was preferred.
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Figure 5: Resistance towards rotation [10].

The torque due to resistance can be directly derived by in-
tegration of the friction, caused by rotation, over the length
of the particle, see Figure 5. First the torque will be de-
rived with the simplification that the rotation takes place
around the y-axis only, a two-dimensional simplification.
The rotational velocity, the Reynolds particle number and
the projected area are defined by

~uR = ~ωrel ×~l, ~ωrel =
1

2
~ωf − ~ωp (50)

ReR(l) =
ρf |~ωrel|dp l

µ
, (51)

Ar(l) = d l, (52)

where Ar(l) denotes the projected area towards the par-
ticle rotation. White [23] found a drag correlation for cylin-
ders in a uniform flow

CD(l) ≈ 1 +
10

Re2/3
R (l)

, 10−4 < ReR < 2 · 105

which can be integrated analytically. Introducing that
equation for the resistance torque, we obtain for a two-
dimensional rotation around the y-axis and introducing the
aspect ratio c = L/dp in dimensionless form:

T
′

r,y =
Tr,y
Iref,p

(
Lref

ẋref

)2

, (53)

T
′

r,y =
ρf
ρp

(ωp,y − ωf,y)2c4L2
ref

ẋ2
ref

(
1

64
+

1

3.36Re2/3
R

)
(54)

Figure 6 points out the rotational torque coefficients for dif-
ferent cylindrical shapes using Eq. (54). An analytical ex-
pression derived for the rotational torque by Dennis [24],
T ′r = 6.84/Re

1/2
R + 31/ReR is depicted as well. Note that

Eq. (54) is non-dimensionalized as proposed by Dennis to
display them accordingly.

Rer

Tr
’

10-1 100 101 102 10310-2

10-1

100

101

102

103
Dennis
Mando Cyl 1.0
Mando Disc 0.5
Mando Cyl 2.0

Figure 6: Rotational torque coefficient T ′r as a function of
the rotational particle Reynolds number for the different
approaches, Dennis [24] correlation for a sphere is used
as a reference.

A more recent approach for the rotational torque has been
presented by Zastawny et. al. [25] based on Direct Numer-
ical Simulations (DNS) for prolate/oblate spheroids, discs
and fibers. The resulting formula is a curve-fit taking into
account symmetric and anti-symmetric axis of the parti-
cles shape. However, the implementation follows Eq. (54).

Initial conditions

Initialization of the particle’s initial location is provided
through user input via a single start point, a line of start
positions or a two-dimensional equidistant grid of start po-
sitions. After specifying the release location, the particle
velocity is set to the interpolated fluid velocity

~̇xp

∣∣∣
t=0

= ~̇xf

∣∣∣
t=0

. (55)

Regarding rotation, the initial Euler angles ~ϕp are set to
[0, π/4, 0]T . Due to the fact that the center of pressure
location equals zero at θ ≡ 0, an initial value θ 6= 0 has to
be taken. Otherwise no rotation of the particle occurs.
Setting the initial particle angular velocity is very difficult,
because there is barely any information or experimental
data available regarding the angular velocity distribution
at flight altitudes.
In opposition to the numerical modeling of the flow past
an object a uniform flow is assumed at the far field. More-
over the rotation of the particle is driven with the torque
caused by aerodynamic forces and the viscous resistance
against rotation. However, as the equilibrium torque be-
tween aerodynamic and resistance torque in a uniform
flow is not known a priori, the particle release location is
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well ahead of the obstacle to ensure an almost constant
particle angular velocity.
Ice density of ice particles is usually assumed to be 914
kg/m3, which corresponds to the ice density of glace ice.

Local collection efficiency

The local collection efficiency β, is the ratio of the area
A0 spanned by four particle release points in the release
plane projected on to a plane perpendicular to the oncom-
ing flow and the area Am spanned by the corresponding
particle impingement points, see Figure 7, and defined by

β =
A0 cosα

Am
(56)

where α is the angle of attack of the flow. The calculated β
value is assigned to the centroids (+) of the quadrilaterals.

Figure 7: Determination of local catch efficiency β for
three-dimensional droplet impingement.

Results

It is difficult to validate the correct implementation of the
afore-mentioned equations of motion and the physical
correctness of the force and torque correlations: Exper-
imental data are rare or do not fit to the flow conditions
of interest and DNS simulations can not be performed be-
cause of computational cost. However, to gain a certain
confidence in the implementation, Hölzer and Sommer-
feld’s drag correlation model has been compared to the
original data set, see Figure 2, and the rotational torque
of particles was compared against analytical derived for-
mulas, Figure 6. Moreover, to avoid implementation er-
rors, for computing the torque generated by aerodynamic
forces a procedure is used as a template that has been
already in use for many years in the TAU code for calcula-
tion of airfoil pitching moments.

Therefore, any test case presented in the following is not
a validation of the implementation. The test cases only
serve the purpose to show the appropriateness of a non-
rotating particle initial condition and to illustrate the impor-
tance of taking into account the rotational motion of par-
ticles in certain flow situations. The following test cases
have been considered: The first test case is a poten-
tial flow past a cylinder to investigate the development
of particle rotation for particles released far upstream of
the cylinder with a zero initial particle angular velocity.
The second case is a subsonic laminar flow around a
NACA0012 airfoil and the third case is a turbulent flow
around a high-lift device. Both test cases are selected to
determine collection efficiencies on the airfoils comparing
rotating cylindrical particles and non-rotating spheres.
As it is common to describe the rotation behavior with sim-
ilarity parameters, the particle spin number is introduced
as follows

Sp =
ωpdp
Uf,∞

(57)

which is in an aerodynamic context the reduced fre-
quency. Eq. (57) can be remodeled with the assumption

ωp := ω′p
ẋref

Lref
, ω′p = U ′f,∞ ≡ Ma∞ (58)

Sp =
U ′f,∞ẋrefdp

U ′f,∞ẋrefLref
=

dp
Lref

(59)

where Ma∞ denotes the freestream Mach number. In
particle related literature, a reference particle diameter
is often defined as Lref ≡ dp,ref, mainly for use in non-
dimensionalization. Thus, the spin number becomes
unity.

Flow past a cylinder

The first test case, a potential flow past a cylinder, has
been selected to demonstrate the rotation behavior of par-
ticles. The cylindrical body considered has a diameter of
0.5 m and a circular far field encompasses the cylinder at
a radius of 4.5 m. The flow conditions are summarized in
Table 1.

Table 1: Numerical Simulation parameter for the
flow past a Cylinder

Ma∞ α [deg.] ẋref [m/s] dcyl [m] dp[µm]

0.3 0.0 277.4 0.5 100

Cylindrical particles are released very close to the up-
stream far field boundary with an initial particle angular
velocity of zero without considering gravity forces. Two
trajectories are considered with different particle aspect
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ratios, passing by very close to the top and bottom of the
cylinder. The trajectories of the particle with aspect ratio
of L/d = 10 can be seen in Figure 8 and for an aspect
ratio of L/d = 0.1 in Figure 9 as dashed lines. The trajec-
tories marked by solid lines, in both figures, are the same
particles, but without considering rotation, serving as a
reference. The flow field in both figures is contoured with
the static pressure.
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Figure 8: Flow past a cylinder at Ma∞=0.3 showing the
trajectory of a cylindrical particle with aspect ratio L/dp =
10 (dp = 100µm) without rotation (solid) and with self-
induced rotation (dashed).
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Figure 9: Flow past a cylinder at Ma∞=0.3 showing the
trajectory of a cylindrical particle with aspect ratio L/dp =
0.1 (dp = 100µm) without rotation (solid) and with self-
induced rotation (dashed).

The upper and lower trajectory between rotating and non-
rotating particles with an aspect ratio L/dp = 10 do not dif-
fer much as seen in Figure 8. That is related to the overall
low spin of the particles for L/dp > 1 seen in Figure 10
and Figure 11. The lifting force and torque will not have a
great impact, except for the drag which remains nearly the
same as for the non-rotating particle. Figure 9 displays
the upper and lower trajectory for the rotating particle with
L/dp = 0.1. It is much more widespread to its non-rotating
counterpart and they are not symmetric to the z ≡ 0 line
additionally. First, the deviation to rotating particles with
L/dp > 1 is caused by its higher spinning rate while pass-
ing the obstacle in comparison to particles with L/dp < 1,
resulting in a higher influence of the aerodynamic force.

Second, the non-symmetric behavior between both rotat-
ing particle trajectories is related to a negative angle of
attack at the upper trajectory and a positive on the lower,
respectively, but the rotation is unaffected by the angle of
attack, see both Figure 10 and Figure 11 for correspond-
ing aspect ratios.
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Figure 10: Dimensionless particle angular velocity mon-
itored over covered distance for the trajectories passing
the object above for various aspect ratios L/dp, dp is 100
µm.
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Figure 11: Dimensionless particle angular velocity mon-
itored over covered distance for the trajectories passing
the object below for various aspect ratios L/dp, dp is 100
µm.

The dimensionless angular velocity of the considered par-
ticles are plotted in Figure 10, related to the trajectories
passing the obstacle above, and Figure 11 is related to
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the trajectories passing the obstacle below. Both figures
seem to be the same. The difference in the angular ve-
locity for the rotating particles is marginal between the
trajectories passing above or below the obstacle. The
spin of the particle increases naturally when approach-
ing towards the obstacle. All particles experience a raise
in spin while passing the obstacle and the rotation di-
rection is reverted. The spin number of 1 is reached at
ω′p,y ≡ Ma∞ = 0.3. The particles with higher aspect ra-
tio are nearly unaffected because the moment of inertia
is increasing quadratically with the particle dimension. A
cylindrical particle with aspect ratio 10 has an equivalent
diameter of 380 µm while an aspect ratio of 0.1 results in
an equivalent diameter of 66 µm. After about three times
the obstacles diameter, the particle angular velocity has
decayed almost to zero.

NACA0012 subsonic laminar case

The next test case was defined for the High Altitude Ice
Crystal (HAIC) project [26] as the TRL4-2 benchmark
case to investigate the dependence of the collection ef-
ficiencies β on drag correlations, phase change and other
relevant parameters for ice crystals. The flow conditions
for the NACA0012 airfoil are summarized in Table 2.

Table 2: Numerical simulation parameters for the
laminar flow around the NACA0012 airfoil.

Ma∞ Re∞ [106] α [deg.] ẋref [m/s] Lref [m]

0.3 3.8 2.0 277.4 0.5

Table 3: Particle simulation parameters for rotating
cylinders and discs. The sphere is non-rotating.
Notations have the following meaning: equivalent
sphere diameter ≡ dv, sphericity ≡ Φ and the cross-
wise sphericity ≡ Φ⊥.

Case dp (µm) L/dp dv (µm) Φ Φ⊥

Sphere 20 1 20 1 1
Cyl. 20 10 49.3 0.58 0.48
Cyl. 20 2 28.8 0.83 0.82
Disc 20 0.5 18.2 0.83 0.83
Disc 20 0.1 10.6 0.47 0.28

Sphere 100 1 100 1 1
Cyl. 100 10 246.6 0.58 0.48
Cyl. 100 2 144.2 0.83 0.82
Disc 100 0.5 53.1 0.83 0.83
Disc 100 0.1 90.9 0.47 0.28

Table 3 presents the test matrix defined for the different
shapes to be investigated. In addition, the equivalent
spherical diameter, sphericity and cross-wise sphericity

are included. The simulation of non-rotating spheres is
shown as a reference.
All cylindrical shaped particles are released with the same
spin number of 0.0004 to keep the unsteadiness com-
parable. It is calculated from the particle diameter of
dp = 20µm and divided by the reference length of 0.5 m.
100 particles are released from equidistant start positions
near the far field boundary of the computational domain
to calculate the collection efficiency. The start position of
the trajectories is chosen such that the airfoil is enclosed
completely by trajectories. Thus, only a few trajectories
will pass above and below the airfoil.
Figure 12 shows the computational grid and the flow field
for the NACA0012 airfoil. An extensive refinement of the
grid at the nose region allows a proper resolution of the
collection efficiency. Most Lagrangian-type particle trac-
ers suffer from a rough predicted collection efficiency,
whenever the airfoils surface discretization becomes too
coarse.

x

z

0 0.2 0.4 0.6

­0.2

0

0.2

0.4

x
z

0 0.2 0.4 0.6

­0.2

0

0.2

0.4 pressure

1.065

1.05

1.035

1.02

1.005

0.99

0.975

0.96

Figure 12: Computational grid of the NACA0012 airfoil
and static pressure distribution of the flow simulation for
Ma∞=0.3 and angle of attack α=2 deg. .
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Figure 13: Collection efficiency β on the NACA0012 airfoil
for a particle diameter of 20 µm .
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The collection efficiency distribution over the Cartesian z-
coordinate are displayed in Figure 13 and Figure 14 for
the two particle diameters. In general, the distributions
are almost indistinguishable from each other. An excep-
tion are the disc-shaped particles which have a collection
efficiency clearly separated from the other particles. This
separation reduces with increasing dp. The same effect
is also observed for spheres of the same equivalent di-
ameter. A reason for the small deviation is the particles
inertia response time. The relative velocity of the particle
is low and therefore does not contribute much to the air-
foils circulation, which is necessary to spin up or down the
particle until it hits the surface of the airfoil.
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Figure 14: Collection efficiency β on the NACA0012 airfoil
for a particle diameter of 100 µm .

High-lift three-element airfoil

The third test case is the high-lift three-element airfoil
NHLP L1/T2 [27]. Table 4 lists the subsonic turbulent flow
simulation parameters. The high angle of attack and the
design of the high-lift devices generate a strong circula-
tion around the airfoil. Numerical simulations have been
performed with the classic Spalart-Allmaras turbulence
model [28]. For this test case, the interaction between
the flow field and particles leads to strong excitation of
the particle rotation since the flow vorticity (equivalent to
the angular velocity of solid body rotation in the flow), ωf ,
is inherently linked to the particle angular velocity since it
increases the relative angular velocity driving the rotation
of the particle.

Table 4: Numerical simulation parameter for the NHLP
L1/T2 high-lift three-element airfoil.

Ma∞ Re∞ [106] α [deg.] ẋref [m/s] Lref [m]

0.197 3.52 4.0 279.99 1.0

The computational grid, Figure 15, is entirely composed
of quadrilaterals with a rectangular far field set 50 chord
lengths away from the airfoil in both directions.

Figure 15: Computational grid for the NHLP L1/T2 high-lift
three-element airfoil.

The close-up view of the slat-airfoil and airfoil-flap inter-
section can be seen in Figure 16. At both gaps the flow is
accelerated, resulting in strong and varying flow velocity
gradients.

Figure 16: Detailed slat-airfoil and airfoil-flap region of
the computational grid for the NHLP L1/T2 high-lift three-
element airfoil.

This effect is well seen in the contour plot of the Mach
number in Figure 17. At the front gap, the flow veloc-
ity is approximately doubled from underneath the airfoil
through the upper side. It is also obvious, that two recir-
culation regions appear at the back of the slat and main
airfoil element with low flow velocities.
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Figure 17: Flow field simulation of the NHLP L1/T2 high-
lift three-element airfoil at Ma∞ =0.197, Re∞=3.52 million
and α= 4.0 deg. .

Collection efficiencies have been obtained for the same
particles as described in Table 3. β distributions are pre-
sented over the Cartesian z-coordinate for the slat in Fig-
ure 18 and Figure 19, for the main airfoil element in Fig-
ure 20 and Figure 21 and for the flap in Figure 22 and
Figure 23.
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Figure 18: Collection efficiency distribution for a particle
diameter of 20 µm and various aspect ratios obtained for
the slat.

For each element the collection efficiency for 20 µm and
100 µm particles are depicted in the left and right graph of
these figures. The release location of all particles is near

the far field boundary with 200 equidistant start points,
flowing around the airfoil in a narrow band. The initial spin
number is Sp = 0.0002 based on the particle diameter of
20 µm.

z
­0.08 ­0.06 ­0.04 ­0.02 0 0.02

0

0.2

0.4

0.6

0.8

1
Sphere

L/d=10.0

L/d=2.0

L/d=0.5

L/d=0.1

Figure 19: Collection efficiency distribution for a particle
diameter of 100 µm and various aspect ratios obtained
for the slat.
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Figure 20: Collection efficiency distribution for a particle
diameter of 20 µm and various aspect ratios obtained for
the airfoil main element.

The β distribution for the slat in Figure 18 for a particle
diameter of 20µm and in Figure 19 for 100 µm, respec-
tively, shows a coincidence of graphs to the left of the air-
foils stagnation point (z ≈ −0.075), which is equivalent to
the pressure side of the slat, and a separation of graphs
with a noticeable difference in β to the right side (corre-
sponding to the suction side). This behavior is caused by
the blunt nose of the slat and the flow being accelerated
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on the suction side. Surprisingly, no particles reached the
recirculation region.
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Figure 21: Collection efficiency distribution for a particle
diameter of 100 µm and various aspect ratios obtained
for the airfoil main element.

The graph in Figure 20 for particle diameters of 20 µm
shows a β exceeding a value of 1 for the sphere, a cylin-
der with L/dp = 2 and the disc with L/dp = 0.5. The
reason for this behavior is the small gap between slat and
main airfoil element. The stream tube formed by the parti-
cles initially released is compressed while sliding through
the gap between slat and main airfoil element, resulting in
a smaller impingement area. Otherwise, β is different at
the stagnation point of the main airfoil element only. A bit
more challenging is the interpretation of the graph in Fig-
ure 21 for the particle diameter of 100 µm. The C-shaped
distribution is caused by impingement on the whole bot-
tom side of the main airfoil element. The upper part of the
curve until the reversal point is from the stagnation point
at the nose to the lowest z-coordinate of the main airfoil el-
ement, which corresponds approximately to the mid-point
of the airfoil on the lower side. The graph shows a narrow
spread in the β distribution, a reverted effect compared to
the slat. Because of the angle of attack at the slat and
main airfoil element, the exposed and shadow areas have
reverted. The cylindrical particle with L/dp = 10 hits the
bottom of the main airfoil element surface only until the
minimum z-coordinate is reached.
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Figure 22: Collection efficiency distribution for a particle
diameter of 20 µm and various aspect ratios obtained for
the flap.
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Figure 23: Collection efficiency distribution for a particle
diameter of 100 µm and various aspect ratios obtained
for the flap.

The particle impingement on the flap, Figure 22 and Fig-
ure 23, is comparable to the main airfoil element since it
is mainly impacted on the lower side. However, particles
reach the upper side of the airfoil in a narrow band from
the β-peak to the right end of the curves, which is visi-
ble in both figures. The maximum difference occurs in the
region of the β maximum and particularly the cylindrical
particle with L/dp = 10 has a distinctly larger βmax com-
pared to all other particle types.
Whenever it comes to industrial applications, the com-
putational effort is often a measure for the applicability,
results are given in Table 5. The simulation of spheres
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without rotation has been used as reference since it was
the previous standard. The time ratio ξ = trot/tno-rot is
the time for computing rotating particles divided by the
time required for the non-rotating particles, each mea-
sured for 200 trajectories. The standard implementation
has to solve six equations, three for the path and three for
the velocity in a three-dimensional context. Now, for the
rotation, seven additional equations need to be solved,
four quaternion parameters and three for the particle an-
gular velocity, which means that the number of equations
to be solved is more than doubled.

Table 5: Computational effort for the trajectory sim-
ulation of the NHLP L1/T2 airfoil with the time factor
ξ = tno-rot/trot.

Particle-Shape L/dp tno-rot (s) trot (s) ξ

20 µm

Sphere 1 10.54 - 1
Cylinder 10 - 45.05 4.3
Cylinder 2 - 45.53 4.3
Cylinder 0.5 - 47.39 4.5
Cylinder 0.1 - 50.21 4.8

100 µm

Sphere 1 5.69 - 1
Cylinder 10 - 18.35 3.2
Cylinder 2 - 17.62 3.1
Cylinder 0.5 - 19.49 3.4
Cylinder 0.1 - 20.87 3.7

In summary, depending on the considered particle dimen-
sions and flow conditions, an additional factor of three to
four needs to be expected in terms of computing time if the
influence of rotation plays an important role and needs to
be considered.

Conclusion

A Lagrangian-type particle tracer based on the TAU Code
has been presented, taking into account rotation of reg-
ular shaped particles. Validation of the implementation
was based on a comparison of analytical solutions and lit-
erature based data and correlations for drag, forces and
torques. However, no validation was possible using the
standard way, e.g. by comparing trajectory paths or im-
pingement distributions with experiments.
The influence of considering particle rotation on the col-
lection efficiency is strongly linked to the application. It
may be negligible for a transport aircraft cruising at high
altitudes and transonic flow conditions with a moderately
blunt nose. The situation changes significantly for airfoils
or wings generating a high circulation as it is often re-
quired during take-off and landing at subsonic flow condi-

tions. Particularly, in flow regions exposed to strong flow
accelerations or decelerations as seen in the gaps be-
tween a slat and the main airfoil element and the main
airfoil element and a flap or at the airfoil stagnation point.
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