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Abstract— It has recently been shown that intrinsically elastic - K;
m

robots are capable of outperforming rigid robots in terms - B ANAA M
of peak velocity by making systematic use of energy storage

and release. Certainly, high link side velocities are bendfial
for performance, however, they also increase the probabily 0 q

of self damage or human injury in case of a collision. To |—> |—>

ensure the physical integrity of both human and robot, it is

therefore crucial to avoid potentially dangerous collisims and

react in a compliant manner if unwanted contact has occurred Fig. 1. 1-DOF elastic joint

or may occur unforeseeable. In this paper, we consider the

most intuitive collision anticipation and pre-reaction scheme,

namely stopping an elastic robot, if possible in minimum o ]

time. For 1-DOF elastic joints with limited elastic deflecton risk already before a collision occurs is therefore also an

we extend existing model-based and model-free controllers important problem for this class of robots.
and compare their performance. Furthermore, we analyze the In this paper, we consider the most basic pre-collision

braking trajectory that is achieved with the different strategies. h . . . X
The 1-DOF solition is extended to the double pendulum case, Scheéme for elastic robots, namely effective braking. In-opt

where we show that feasible estimates for maximum and final mal control literature, there exists the time-optimal ol
position can be obtained at the very first instant of braking. for braking of linear visco-elastic joints [13]. In [14] #hi

problem was extended by taking also limited elastic deflec-
. INTRODUCTION tion into account. It was shown that the SISO control law
Many of today’s robots are being developed for clos€an be applied to multi-DOF robots by using a decoupling
interaction with humans in either industrial or domestizien based control scheme. An alternative method was presented
ronments. One key issue in physical human-robot interactidn [15], which makes use of the energy storage and release
(PHRY) is safety, because it is primary to ensure that a humd¥operties of elastic joints to develop a passive, mods-fr
is not harmed in any situation. For this, a robot must bbraking scheme. The aim of the present work is to extend
designed and controlled such that no potentially dangero@®d compare existing model-based with model-free braking
collision occurs. In particular, one is interested in miizimg ~ strategies for 1-DOF elastic joints. Furthermore, we araly
harm already prior to the collision. the braking trajectory for the respective controllers tedict
In robotics, there exist many pre-collision strategies téhe braking distance of an elastic robot. A double pendulum
generally avoid contact with the environment [1], [2], [3]is finally used to exemplify the application of braking cattr
or to limit the robot speed to a biomechanically safe valugnd braking distance estimation #®eDOF robots.
such that human injury can be avoided upon contact [4]. In This paper is organized as follows. In Sec. Il we introduce
the context of safe motion control, one important problerthe elastic joint model considered in this work. In Sec. llI
is to stop a robot as fast as possible. For rigid robots witwve formally define the considered control problem, describe
stiff position control, there exist standardized schenus f existing braking controllers and propose modifications for
braking according to DIN EN 60204, e.g. engaging thémproving their performance. The case of limited elastie de
brakes and switching off the drives at the same time (cagegoflection as well as the applicability to nonlinear joints dulf
0) or commanding a stopping trajectory using the maximum-DOF robots are discussed. Braking distance estimation for
available power (category 1). Such strategies might also BeDOF elastic joints and the extension to a double pendulum
employed for torque controlled rather rigid designs such a¥e considered in Sec. IV. Finally, Sec. V concludes the
the LWR family, which show compliance via active control.paper.
More recently, it has become increasingly popular to intro-
duce intrinsic elasticity for achieving compliance alrgaal [I. CONSIDERED MODEL
the mechanical structure [5], [6], [7]. Another motivatifor
introducing deliberate joint elasticity is to exploit theezgy
storage and release capabilities to outperform rigid byt
means of energy efficiency and peak velocity [8], [9], [10]

The dynamics of a single visco-elastic robot joint consist-
ing of motor, elastic transmission, and link (see Fig. 1) are
governed by following differential equations

Considering safety, however, the benefit of joint elagticit Bi—=r1 —7e—nr 1)
on collision safety has to be treated differentiated. kdagt . m ! 7

may improve compliance on the one hand, but high link side Mg=1y—1y (@)
velocities increase human injury probability during cantta 7 =K;(0—q), 3)

on the other hand [11], [12]. The problem of reducing injury o N
where the motor inertia and position are denafeandd, the
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First, we assume that gravity torques are being compensated
Furthermore, we assumg =~ 0 for sake of clarity.
As the intention of this paper is to unveil basic principles

elastic deflection ¢

of intrinsically elastic joints, we take the most importaesl- ¢ ¢
world constraints of such devices into account, namely the 1 S
maximum motor velocity and elastic deflection
lel =10 = q| < Pmax (4) —l
|9| < émax. (5) link velocity ¢

Typically, the motor dynamics of intrinsically elastic jug F'9: 2. System behavior if control law (14) is used. The stawels
S . . : . clockwise on the blue ellipses if the minimum motor speedpigliad and

are significantly faster than the link side dynamics. In thigy the red ellipses if the maximum velocity is applied.

work, we thus model the motors as velocity sources, meaning

desired velocities complying with (5) can be reached instan

taneously under all operating conditions. The validityliét g Ramark: Reaching equilibrium

singular perturbation approach was already experimgntallfS

shown in [8], [15]. The reduced dynamics can now be The overall system energy of the considered elastic joint

expressed as IS 1 1
V=U+T=-K;p*+ =M, (11)
: 2 2
0= /9 dt + 6o (6) ) i i L
whereU is the spring potential energy afidthe link kinetic
j=w(0—q), (7) energy. The change of energy is simply found to be
where 6, is the initial motor positionw = /K ;/M the V=K;pu. (12)

mass-spring eigenfrequency, afiy = 2m/w the periodic A yery intuitive energy dissipating idea would thus be to
time. We select the motor velocity as the control input= .ho0se the control law

9, and the elastic deflection and link velocity as the system
statex := [¢ ¢]. Now, the first order differential equations u=—K.p (13)

are found to be based on (12), wheré. is the controller gain. We seek

. 0 w? 0 for maximum controller performance, i.e. the motor travels
= Az + Bu = . 8 : - . Lo
T =Awt bu ( 10 ) T (1) “ ® at maximum/minimum velocify The control law (13) then
For the examples shown in this paper, we select the systebrr(?comes = —sign()u (14)
parameterd/ = 1.8 kg, Ky = 207 Nm/rad,u,.x = 2 rad/s, - EHP) Umax-
and ¢ymax = 0.1 rad if boundary control is considered. This control law reduces the system energy locally. However

the trajectory may not converge to the equilibrium, but
Il. 1-DOF BRAKING CONTROLLERS remains at a point on the line segment [—umax, Umax),
In this section, we discuss five different methods to brake = 0. This is because the ellipses centered arotig, .,
an elastic joint. Two of them take advantage of the full joinineet on this line segment with opposite direction of travel,
dynamics, while the other three assume unknown systesee Fig. 2 Because = 0, no elastic torque is available
parameters. First, we provide a formal definition of theo brake the link to zero velocity. In this situation, one may
problem. Then, we analyze the energetic behavior of thewitch to a different controller to reach the equilibriunhi§
elastic joint and how the equilibrium can be reached. Thisan be e.g. one of the other controllers described in thigwor
influences the design of each controller described hereaft¢-or reaching the equilibrium directly, it can be observeuirfr
. Fig. 2 that the system state must travel on the curve denoted
A. Problem formulation S.
Essentially, we seek to stop the elastic joint as fast as Next, the first model-based controller is described. For
possible, i.e. reach the equilibriufd 0] without violating clarity of presentation, we first consider the unboundeé cas
(4) and (5). Note that we are explicitly interested in exira® meaning the state constraint (4) is not active. Boundary
energy from the system and not in stopping at a desired gaadntrol is considered after describing every model-based a
state. The initial and final conditions for this problem are model-free controller.

q(0) =do, q(tf) =0 (9) C. Time-optimal control
©(0) = 9o, »(ty) =0, (10) The time-optimal solution for braking an elastic joint with
dynamics (7) is a standard problem in optimal control theory
13]. The switching curveS can be obtained when starting
t the equilibrium and applying = t+u,,., for one half

wheret; is the final time andey := [§o o] the initial
state. In order to meet the constraints while braking, thi
state must be located within a brakable Betln [14], this eriodic timeT'/2 = = /w, resulting in one half ellipse, see

set was determined for time-optimal braking. The respecti ig. 3 (upper left). The adjacent half ellipses are defined

analysis may be used to find the brakable set also for thg" starting a new half ellipse from every point of the first
other controllers described in this work. However, thisagg fb‘?/ g P yp

beyond the s<_:ope of the _present paper. Here’_ we assume th"’lﬁ’lease note that this choice does not alter the principlaviehof any
the mass-spring system is always brakable,agc B5. controller described in this paper.
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Fig. 3. Time-optimal (left column) and near-time optimagfit column) control law. In the upper row, the phase plar@esentation of the control laws
as well as an exemplary trajectory are depicted. The gragl, stdshed, and dotted lines represent ellipses centecem@timax, —umax, and the origin,
respectively. The motor and link velocities are depictedhi@ middle row, the system energies in the lower row. Thaxis indicates the timé‘;—T in
half-cycles of the system eigenfrequency.

ellipse, which physically means eigenfrequency excitatio In control, passivity is generally a desirable property due
Successively repeating this procedure provides the réngpin to being strongly related to stability and robustness. Next
ellipses of the switching curve. In order to hit zero velgcit we propose a modification of the time-optimal control law,
and deflection time-optimally, one must apply= v, if  which leads to suboptimality by means of braking time but
the current state is located bela%., above the switching monotonic energy decrease, i.e. the controller shows\gassi

curveu = —umax has to be commanded. The control lawbehavior.
can be formulated as
. ||
= | —— 15 . . .
's {Zumax (15) D. Near time-optimal & passive control

_ Slgn(Q) \/ 2 . . 2 . .. .
Pis = — T Upax — (|4 = (2is — 1)tmax) To achieve passivity, we cannot select positive motor ve-
(16) locity in the left half of the area enclosed by the first switch
o _ ing curve, thex-axis andu,,.,, because the system may hit
uroc = sign(¢s = ¢)tmax, (47 and remain at a point on the line segmémt [—umax, Umax),
where is is the index of the switching curve located be-p = 0 as described in Sec. IlI-B and illustrated in Fig. 2.
low/above the system state agg, the deflection of the Thus, we choose: = 0 in this area. When applying zero
switching curve with same velocity as the link. velocity, the energy of the system remains constant and
The control law is depicted in Fig. 3 (upper left) whereenergetically passive behavior is achieved. In the phaseepl
the red area represents maximum velocity input and the bltiee system state travels on an ellipse centered around the
area minimum velocity input. In the phase plane, the blacérigin until the switching curveS is hit, see Fig. 3 (upper
solid line represents an exemplary braking trajectory. Theéght). The maximum motor velocity can then be commanded
according motor and link velocities are shown in the middi®ecause deflection and motor velocity have different signs,
figure. In the bottom figure, the spring potential enetdy which in turn results in overall energy decrease. For thietrig
link kinetic energyl’, and total system enerdy = U+71 are half of the area enclosed by theaxis, S and uy,.x, We
depicted. The overall system energy is being reduced as fastuld apply the control law (14) to reduce the system energy.
as possible. However, it is not decreasing monotonically, c However, then we must apply = u.... after entering this
Fig. 3 (lower left) at approx. 0.2 and 1.2 half cycles. In tharea, switch tou = 0 if ¢ < un.x and again command
first and third quadrant in the phase plane, energy decrease= un,.x after hitting the switching curve. This does not
i.e.V < 0according to (12), is always ensured. In the secondnly require many motor switchings, but may also result in a
and fourth quadrant, however, the system energy increadesg braking time. Therefore, we choose= 0 in this area.
when the current state is located within the area enclosed bye also select zero motor velocity for the remaining areas
the switching curve and the-axis. This is because motor enclosed by the switching curve, because then we can use the
velocity and elastic deflection have equal sign. This resulswitching curves of the time-optimal control law and only
in a non-passive behavior. apply slight modifications to achieve passivity. In summary
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Fig. 4. Model-free control law I, Il, and Il with exemplaryrdking trajectories.

the control law for near time-optimal control is given by In quadrants two and four, the motor velocity is set to zero,
i.e. the energy remains constant. This leads to an overall en
—sign(q)umax, @q¢ >0, ergetically passive behavior of the controlled oscillafidre
uNTOC = { SiIgN(@)Umax, @4 <0 A || > |@is], phase plane representation of the control law is illustrate
in Fig. 4 (upper left), the system energy for an exemplary
(18) initial state in Fig. 4 (lower left).
It is important to notice that the equilibrium can only be

The phase plane representation together with an exempldBached asymptotically with this control law, in other werd
trajectory is depicted in Fig. 3 (upper right), where théhe joint cannot be.stopped in f|n|t¢ time without fr|ct|_ongl
green areas represent zero velocity and the blue and red a@é&lamping effects if the system trajectory does not coicid
minimum and maximum motor velocity, respectively. FromWvith the first switching curve. In the controller presented
the timely evolution of the total system energy depicted ifext, we modify this model-free approach to achieve faster
Fig. 3 (lower right) it can be observed that passivity and/onl€nergy decrease.

slightly larger braking time in comparison to time-optimal
control are achieved. F. Model free control |1

The previous two control laws require full knowledge As mentioned in Sec.lll-B and Sec. I1I-D we want to avoid
of the dynamics. Next, we consider the case of unknowspplying maximum/minimum motor speed in the area en-

system parameters, i.e. link inertia and joint stiffnes® Wclosed by the first switching curve and theaxis. Generally,
only assume that the maximum and minimum values qfe have no information about the maximum deflection of

0, otherwise.

u = 6 are known. the switching curve because the mass-spring eigenfreguenc
is unknown. However, we know that its maximum width
E. Model free control | IS 2umax, Se€ e.g. Fig. 3 (upper left). Therefore, we can

apply maximum velocity and achieve energy decrease for

O eaceriy i 2 21 For smaler ink velocies, we hen choose
P : P - SY genireq y U= 0. In summary, the control law can be written as
motor velocity. Because the eigenfrequency is assumed to

be unknown, we cannot derive a switching curve to decide

. . —sign(q)Umax, ] >0,
on the control input in quadrant two and four. In quadrants e(@)tmax; - 4

one and three, however, there are no switching curves in the "M #11 ~ SIgN(¢)tmax, P4 < 0. A 1dl = 2umax,
previous two methods. Therefore, the control law for both 0, otherwise.
model-based and model-free controllers may be the same in (20)

these phase plane areas. To take this into account, folipwi

control law was proposed in [15]. The according phase plane representation is depicted in Fig

4 (upper middle). From the timely evolution of energy it
—sign(q)tme 0g >0 can be observed that the energy decreases monptoni_qa!ly and
UMFT = { max -7 (19) faster than for the previous controller. However, if thdiadi
0, otherwise velocity is|j| < 2umayx then the control law is identical with
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flag « false 015f-.8 My
while ¢ #0 A ¢ # 0 do 01f - -
{Set/resetlag} = 005 \
. . _ . 3 ”~ Umax
if || > 2umax A flag = false A g <0 then £ o £ 1
flag < true S -0.05 |
else ifflag = true A g > 0 then -0.1 ~Pmax .
flag < false -0.15} =
end if -0.2} ‘ %”7"’/" ‘ 1
{Determine control inpyt -1 0 L2 3 4
if ¢ >0 then q [rad/s]
uMFIIT < —Sign(q)tmax Fig. 5. Boundary control in case the maximum joint deflectiopax
else intersects the switching curves. An exemplary braking trajectory is
if flag = true then depicted for time-optimal (TOC), near time-optimal (NTO&)d model free
u PR n( )u (MF 1/11/11) control. The according motor velocities andhtely evolution
MEIIT BULG) Umax of energies are depicted in Fig. 6.
else
upprrr < 0 -
end if ? 2t ‘ ‘ —UToC
end if 2T
end while g
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the previous one. In the following, a further modificatiom fo
improving braking performance is presented.
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G. Model free control 111

If the initial link velocity is || > 2umax then the
system travels on an ellipse which has a larger distance to
+umax than the first switching curve if maximum/minimum
motor speed is commanded. In this case, one can continue
traveling with +u.,.x even if|¢| < 2umax and achieve faster
energy decrease. For the according control law, one has to
remember/save the the information about the initial véjoci
when braking is initiated or a new quadrant is being enterggly. 6. Motor and link velocities for the quasi-singular kireg trajectories
in the phase plane. In the sequel, this variable is derfbtgd shown in Fig. 5. Time-optimal control is depicted in the uppae near
The control law is listed in algorithm Alg. 1, an example intlme-optlmal in the middle, and the model free control in tbwer figure.
the phase plane is depicted in Fig. 4 (upper right).

In the example, we sdtag to 1 when entering quadrant _ - )
two because] < —2umax and applyu = —umax until we yelocny hgg to_be commanded to rea_ch the equmbr.lum. This
reach the first quadrant. When hitting the first quadfant IS exemplified in the phase plane trajectory from Fig. 5 and
is being reset. The fourth quadrant is being entered at the respective motor velocity in Fig. 6 (upper). Boundary
2umax Which means thaflag remains inactive and. = 0 control is only possible if the system reaches the condtrain
has to be applied. at|¢| < umax. Otherwise it is not brakable without violating

Another possible extension for the presented controlkers the maximum elastic deflection.

to command: = ¢ if |§| < umax in quadrant two and four. If ~ For the near time-optimal control law, we select the same
the motor travels with the same velocity as the link, then theoundary control. The deviation from the time-optimal law

deflection, in other words potential energy, remains theesanif that zero velocity is applied in the area enclosed by the
while the kinetic energy is being reduced until= ¢ = 0.  first switching curve, which results in passivity but in leng

If enough elastic torque torque is available, then thissnt braking time, see Fig. 6 (middle). In case the maximum
can lead to faster energy decrease than only choasiag) ~ €lastic deflection is known by the model-free controllers o

in quadrant two and four. However, the discussion of thi§an setu = ¢ as long asj > 0. This ensures no violation

N

velocity [rad/s]

!
N

0 0. 5

ks

extension is subject to future work. of the deflection constraint, see Fig. 5. Of course, if the
deflection constraint is unknown, then it may eventually be
H. Boundary control exceeded.

In [14] the set of brakable states and the according tim?- . ' .
optimal trajectories were found for time-optimal brakingy o - Controller comparison and discussion
joints with limited elastic deflection. Quasi-singular sirnay In this section, we compare the controller performance
occur if the maximum elastic joint deflection is lower thanand comment on the applicability to nonlinear stiffness and
the maximum deflectiops max = 2 of the first switching bounded motor dynamics, and the extensibilitytddOF
curve. When hitting the constraint, one must applg ¢ and  elastic robots. Since the aim of this paper is to extendiexgjst
follow the maximum deflection until the switching curve ismodel-free and model-based braking controllers and dmescri
reached. After hitting the switching curve, maximum mototheir basic properties, the experimental verification isjesct



Linear stiffness & unconstrained deflection

two model-based controllers provide suboptimal, however,
feasible motor velocities if the system dynamics are being
linearized along the trajectory. For this we replace the
linear spring by the progressive, nonlinear torque/defiact
relationship of a FSJ mechanism [16]. The elastic torque for
this device is defined as

T5rss(p) = 68.7 (612.5<gaﬂam<a>> _ 612.5<¢¢m<a>>2 :
(21)
—TOC ] where we use,.x (o) = 10 rad. Alternatively, this could be
:T{TFOI?H | adjusted by a second motor. For sake of brevity we do not
1 take deflection constraints into account. For comparing the
controller performance, we select the same initial cooddi
as in the unconstrained, linear case. The results are ddpict
in Fig. 7 (lower). In this example, one can observe that
all model-based and model-free controllers show the same
principle behavior regarding braking time and passivity as

0 0.5 1 15 2 25 3 35

Linear stiffness & constrained deflection

0 02 04 06 08 1 12 14 16

Nonlinear stiffness & unconstrained deflection
40 . . . :

—F0C in case of linear stiffness. A full analysis and experimenta
R e verification are still to be done in future research.
= \ TMEHL ¢) Limited motor dynamics: For analyzing the influence
22\ of limited motor acceleration on the braking performance, w
SPU R : ] assume that the motor has the PT1 dynamics
% 05 1 - TR 2 i 25 3 I 1
= I (22)

Fig. 7. Timely evolution of system enerdy for all controllers in case of WhereT,, is the time constant and the new motor speed.
linear stiffness and unconstrained elastic deflection ¢gpginear stiffness Furthermore, we add white noise with 1 kHz frequency
ggﬁetéggrr:d(?(:\)llv;()).ntrol (middle), and nonlinear stiffness andonstrained an(_:i 10-_6 W/Hz power spectral d_ensi_ty to the link velocity,
which is e.g. larger than the noise in the DLR Hand Arm
System [7]. To determine the influence of limited motor
acceleration on the final braking time we choose the 95 %
to future work. rise time of the motor speed to be 5, 10, 15, 20, and 25 %
a) Performance: For comparing the performance of theof the half periodic time of the mass-spring system, i.e.
different algorithms, we start with the same initial coratis  approx.7;, = %g, x = {5, 10,15, 20, 25}. For linear joint
for all cases. In Fig. 7 (upper) the total system energy ovetiffness, unconstrained elastic deflection, and 25 % motor
time is illustrated for the unconstrained, linear case and iacceleration time the timely evolution of total system gyer
Fig. 6 (middle) for the constrained, linear case. The timeV is depicted in Fig. 8 (upper). It can be observed that the
optimal solution is of course the fastest, however, thegner model-free controllers and the near time-optimal congroll
does not decrease monotonically. The near-time optimate not strictly passive anymore. This is because the motor
control law ensures passivity and is only slightly slowearth velocity and elastic deflection have the same sign in quadran
the time-optimal scheme. The methods without parametero and four until the motor reaches zero velocity, c.f. Fig
knowledge are passive, but show inferior performance anfl This leads td” > 0 according to (12). Due to the bang-
only asymptotic convergence. For the selected initial condpang structure of the time-optimal control law, oscillago
tions the schemes proposed in this work show better perfafow remain at the end of the braking motion. For avoiding
mance than the one described in [15]. However, as alreadyese, a different controller such as a well-tuned position
explained, the model-free approaches are identical in cageéntroller could be activated if most of the system energy
of boundary control (constrained case), andijif< 2uma.c.  was removed as well as the elastic deflectiorand link
Among the model-free controllers, no. Ill performs besteThvelocity ¢ go below a certain threshold, and ..
only drawback comes rather from the implementation side. The influence of motor acceleration capability on the final
By storing the information about the initial velocity, it is braking time is depicted in Fig. 8 (lower). Here, we define
assumed that the trajectory travels on a certain ellips@ideit the final braking time as the time that is required until 95 %
the switching curve in the phase plane. If external torquest the initial energy was removed from the system. It can
act on the joint, e.g. by a collision or coupling effects fronbe observed that increasifi, generally results in larger
other joints in multi-DOF robots, then the system state capraking time. While for the model-based controllers the
be brought to the area enclosed by the first switching curvgifference is only moderate, it is significant for the model-
leading to an undesired motor input. free controllers, because the system trajectory has to pass
b) Nonlinear elagticity: The model-based controllers quadrant two or four with zero energy decrease one more
described in this work were developed for joints with lin-time.
ear elasticity. If nonlinear joint stiffness is presentesh d) Extension to n-DOF: Up to now, the described
controllers will clearly not perform as good as the optimatontrollers were suited for 1-DOF elastic joints only. For
solution, which has to be found by solving a new optimabraking a multi-DOF robot, intuition tells that simultaneso
control problem. However, we may now analyze whether thieraking of every joint results in a stopping motion of the



Linear stiffness & PT1 motor dynamics

denotedty. For a full n-DOF robotic manipulator, it is
ZNTOC then possible to make use of the forward kinematics to
a0 ML combine the state estimation of each joint. One may predict
MFTIL the final Cartesian positiokpo;:, € R® and orientation

'\.,‘.-.\ Rpors, € R**® of a particular point of interest (POI)
10 oo ] along the robot structure as well as the according braking
N N - trajectory & po; (t) and Rpoy(t), wheret € [to,#s]. Here,
0 1 2 s 4 5 the estimated final time of the entire robot is the worst
™ case braking time of all joints, i.et; = max(t;),i €
{1,...,n}. Letan obstacle in the environment be represented
by a set of Cartesian points denotéy,s. The distance of
a POI on the robot structure with positianpo; to the
iy S obstaclé can be determined by = min_dist(zpor, Xobs),
. where the functiommin_dist can e.g. be realized with the
GJK algorithm [17]. Given the full braking trajectory, it is
‘ possible to estimate the smallest distance during stopping
1;9 . 1[5; 20 25 |CZ _ . i dis ~
1T,,/1T, (%) namely dwin = min(min_dist(zpor(t), Xobs)),t € [to, ty].
If dnin > 0, then the robot will most likely not collide

Fig. 8. In the upper figure, the timely evolution of systemrggel is i i i isi i ¥ . <
depicted for a mass-spring system with linear stiffnesfounded elastic against the ObJeCt’ while a collision will occur dhni, < 0.

deflection, PT1 motor dynamics, and noise in the link vejodit the lower For the braking controllers considered in this paper, the

figure, the influence of limited motor dynamics on the finalkimg time  closed-loop link trajectory can be derived relatively siynp

is illustrated. Ther-axis indicates the ratio of motor acceleration time andThe analytical solution for the time-optimal controller is

one half the periodic timé.57}, of the oscillator, they-axis the ratio of . . .

the braking timet s, for limited motor dynamics and the braking timg,  described in [13], the solutions for the other control lawe a

for unlimited motor acceleration. omitted for brevity. In the following, we exemplarily defiue
how the braking trajectory estimation of a single joint can
be extended to the-DOF case.

entire robot. For achieving this, the 1-DOF controllers may

be implemented in the multi-DOF a) joint space, or byA. Example

decoupled space. For our analysis, we choose a double pendulum with

In [14] we proposed a decoupling-based control schemgo links weighingm; = ms = 4 kg and having length
which decouples both the dynamics and control region, i.¢, — j, = 0.5 m. The spring stiffnesses are setitg; =

the motor velocities, for enabling SISO control in modal coy;;, = 400 Nm/rad, the maximum motor velocity iSu,ax
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ordinates. Because the approach is model-based, it ishixe>s5|22]T rad/s, the initial conditions ar®, = [00]" rad,

to implement the time-optimal or near time-optimal control; - — 00| rad, andg, = [44]" rad/s, i.e. two times the
law, which will most likely show a better performance thanmotor velocity.

the model-free control laws. For braking the robot, we use the decoupling approach

If control in joint coordinates is considered, then theyroposed in [14]. The modified controller is depicted in Fig.
model-free controllers | and Il can easily be implemented, \ye select the time-optimal control law for SISO braking
while care has to be taken for the third controller (seg modal coordinates. We seek to predict how far the robot
above). For the model-based methods, one has to lineariggyyes in the initial direction of travel and at which positio
the dynamics and approximate the "eigenfrequency” of thg il stop. When initiating braking, we therefore detemai
respective joint required to describe the switching curvgpe final and maximum link positions in the decoupled space.
because the real system eigenfrequencies obtained by-eiggher transformation to original space we obtain an estemat
value computation cannot be assigned to a particular joiffpr the maximum and final position of the entire robot.
However, the performance and stability analysis/#eDOF  The |ink velocities and positions are depicted in Fig. 10
robots goes beyond the scope of this paper and is subject(gbper left) and Fig. 10 (upper right). In the latter figure,
future research. the estimates of maximum and final link position at the very
IV. BRAKING DISTANCE ESTIMATION fist instant of brak?ng are depicted, whiqh agree well wit_h

] ] the real values. This means that we obtain a feasible braking

Up to now we were interested in how fast we can decreaggstance estimation for this robot. The behavior of the tobo
the system energy to achieve effective braking. For avgidinguring braking as well as the braking distance estimation ca
unwanted contacts with obstacles or humans, it is furthegisg pe seen in the attached video.
more beneficial to know at which position the robot will stop The braking distance prediction takes the mass and stiff-
and even more which trajectory it will take until stands#ll  ,oss matrix into account only. A good estimation can be
priori knowledge of the braking distance may then be usegcomplished if the system dynamics show only a small
to initiate braking such that no possibly hazardous colfisi geyiation while braking. For the the results presented i Fi
occurs. , i , . 10 (top row), the eigenfrequencies varg91 % and2.055 %

Let us consider the final braking timg; as well as for the first and second decoupled coordinate, respectively
the link trajectoryg;(t),t € [to.ts:] of each joint with However, the estimation will deteriorate if non-negligibl
indexi € {1,...,n} can be predicted at start of braking,

30f course, several obstacles and POI on the robot structang e
2Certainly, proof has to be found in future work. considered. Furthermore, other obstacle representati@ysbe used.
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Fig. 9. Decoupling-based braking controller includingKimg distance estimation.

velocity [rad/s]
position [rad]
o
S

(1]
(2]

velocity [rad/s]

position [rad]

(3]

[4]
Fig. 10. Double pendulum link velocities (left) and pogitso(right). In
the upper row the joint stiffnesses are constant, in the lowe they are
nonlinear. In the right column, the estimated maximum andl fposition
are depicted which were determined at the first instant dfibga

[5]
[6]
Coriolis torques are present and/or the mass and stiffness
matrix vary significantly. This is the e.g. the case for jeint 7]
with nonlinear stiffness. Figure 10 (lower row) shows résul
when having a nonlinear torque/deflection characteri2tlg (

in both joints. While braking is accomplished, we obtain a 8]
poor braking distance estimation at braking initiation.rOu
future research will therefore include the estimation af th
timely evolution of the system dynamics in order improve [9]
the presented prediction method.

V. CONCLUSION [10]

In this paper, we analyzed and compared different strate-
gies to brake an elastic robot joint. We proposed a modifi-
cation of the time-optimal control law to achieve passivity11]
and presented two modifications of a model-free control
law originally introduced in [15]. For the two model based12]
and three model-free controllers we derived the boundary
control in case of limited elastic deflection. Given the same
initial conditions, we compared the performance of eaci3]
controller by means of final time and passivity, and discdsse
extensibility to n-DOF elastic robots. Finally, the braking [14]
trajectories were found for estimating the braking diseanc
of each controller. The results were applied to a double
pendulum with linear joint elasticity. Given the initialasé [15)
only, we were able to provide a good estimate for the
maximum and terminal position. Being aware of the braking
distance enables to initiate braking such that no possibjyg)
dangerous collision may occur. Our future work will conside
the extension of the braking controllers and braking distan

estimation to generat-DOF manipulators. [17]
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