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ABSTRACT

This paper presents a methodology of coupled spectral un-
mixing for multitemporal hyperspectral data analysis. Cou-
pled spectral unmixing simultaneously extracts the sets of
spectral signatures of endmembers and respective abundance
maps from multiple spectral images with differences in ob-
servation conditions and sensor characteristics. The problem
is formulated in the framework of coupled nonnegative ma-
trix factorization. A graph regularization that reflects spectral
correlation between two images on abundance fractions is
introduced into the optimization of coupled spectral unmix-
ing to consider temporal changes of the earth’s surface. An
alternating optimization algorithm is investigated using the
method of Lagrange multipliers to guarantee a stable conver-
gence. The proposed method was applied to dual-temporal
Hyperion images taken over the Fukushima Daiichi nuclear
power plant. Experimental results showed that the proposed
method can extract essential information on the earth’s sur-
face in a data-driven manner beyond multitemporal data
modality.

Index Terms— Coupled spectral unmixing, graph regu-
larization, change detection, multitemporal analysis

1. INTRODUCTION

Change detection has been an important task in multitempo-
ral remote sensing data analysis. Spaceborne hyperspectral
imaging systems are promising for monitoring and character-
ising the earth’s environment on a global scale owing to its
advanced ability for accurate identification and classification.
Several spaceborne hyperspectral imaging missions, such as
the environmental mapping and analysis program (EnMAP)
and hyperspectral imager suite (HISUI), are going to be op-
erational in the near future. An analysis of multitemporal hy-
perspectral data is expected to be useful for understanding
dynamic changes of the earth’s surface in details for a wide
range of applications, for example, disaster management, for-
est monitoring and precision agriculture. However, it raises
the demand for sophisticated algorithms to deal with the high
dimensional nature of the data as well as multitemporal data
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Fig. 1. Concept of coupled spectral unmixing.

modality due to the effect of atmospheric conditions, sensor
calibration and ground conditions, etc.

Supervised classification methods have been commonly
used for class-specific change detection using multitempo-
ral spectral images [1]; however, they usually require a large
amount of training samples to obtain an accurate classifier,
which often cost high in terms of human and economic re-
sources. Spectral unmixing has been actively developed as
a key technology in hyperspectral image processing to re-
trieve spectral signatures of endmembers and their fractional
abundance maps in a data-driven manner. When applied to
multitemporal data analysis, spectral unmixing is expected to
be useful not only for class-specific change detection [2] but
also for within-class change detection. However, few studies
have been carried out so far on multitemporal spectral unmix-
ing that uses spectral correlation between multitemporal spec-
tral images to improve the unmixing accuracy and robustness
against multitemporal data mismatch.

Multitemporal coupled spectral unmixing is defined as a
process that simultaneously estimates the sets of spectral sig-
natures of endmembers and abundance maps from multitem-
poral hyperspectral data in a data-driven manner. The bene-
fits of multitemporal hyperspectral image analysis based on
spectral unmixing are threefold: 1) data-driven information
extraction of the earth’s surface owing to rich spatial-spectral-



temporal data; 2) class-specific change detection; 3) within-
class change detection. This paper presents a methodology
of multitemporal coupled spectral unmixing for land-cover
change detection. Coupled spectral unmixing for multitempo-
ral hyperspectral data is formulated in the framework of cou-
pled nonnegative matrix factorization [3] using graph regu-
larization on spectral correlation between multitemporal data.
Experiments are conducted on the analysis of dual-temporal
Hyperion images taken over the Fukushima Daiichi nuclear
power plant in 2012 and 2014 to visualize the changes of land-
cover classes.

2. METHODOLOGY

2.1. Spectral unmixing based on nonnegative matrix fac-
torization

A linear spectral mixture model is commonly used for unmix-
ing problems owing to its physical effectiveness and mathe-
matical simplicity. A spectrum at each pixel is assumed to be
a linear combination of several endmember spectra. There-
fore, a hyperspectral imageX ∈ RB×P , with B bands andP
pixels, is formulated as

X = EAT +N (1)

whereE ∈ RB×M is the spectral signature matrix, withM
being the number of endmembers,A ∈ RP×M is the abun-
dance matrix,N ∈ RB×P is the residual, and the operator()T

denotes the transposition operation. Researchers have studied
many models and algorithms based on geometrical, statistical,
and sparse regression-based approaches searching for robust,
stable, tractable, and accurate unmixing [4].

Over the last decade, nonnegative matrix factorization
(NMF) algorithms [5, 6] have emerged as useful unmixing
methods because they overcome the difficulty of absence of
pure pixels with straightforward implementation and math-
ematical flexibility to consider several constraints. Luet
al. presented a graph regularizedL1/2-NMF (GLNMF) that
takes into account sparse characteristic and the intrinsic man-
ifold structure of the data [7]. With a matrixW ∈ RP×P

representing the weight matrix of the graph, the optimization
is given by

min
E,A
∥X−EAT ∥2F + α

P∑
j=1

M∑
m=1

A
1/2
jm

+ β
P∑

j,l=1

∥aj − al∥22Wjl

s.t.E ⪰ 0, A ⪰ 0,

M∑
m=1

Ajm = 1

(2)

whereaj = [aj1, ... , ajM ]T , ∥ · ∥F denotes the Frobenius
norm, and the symbol⪰ denotes inequality component-wise.

The following update rules can be derived by the method of
Lagrange multipliers

Eim ← Eim
(XA)im

(EATA)im
(3)

Ajm ← Ajm
(XTE+βWA)

jm

(AETE+α
2 A1/2+βDA)

jm

(4)

D ∈ RP×P denotes a diagonal matrix whose entries are col-
umn sums ofW. There are many choices to define the weight
matrix W on the graph, for example, 0-1, heat kernel, and
dot-product weighting. When both spatial and spectral dis-
tances are considered to construct the graph, each element of
W is given by

Wjl = e

(
− d(j,l)

σd
−

∥Xj−Xl∥
2
2

σs

)
(5)

whered(j, l) denotes the Euclidean distance between thejth

and its neighboringlth pixel, andσd andσs are the parameters
for spatial and spectra distances, respectively.

2.2. Graph-regularized coupled sparse nonnegative ma-
trix factorization

We extend GLNMF to multitemporal spectral unmixing by
integrating the graph regularization on the temporal changes
of spectra into two unmixing problems in a coupled basis.
We assume that when the spectrum has changed, the abun-
dance fractions have also changed, and vice versa. In this
paper, we consider coupled spectral unmixing of two spec-
tral images denoted byX1 ∈ RB1×P andX2 ∈ RB2×P .
The two images are geometrically co-registered with the same
ground sampling distance but the band numbers can be differ-
ent to use multiple sensors. Consider a weight matrixWt ∈
RP×P with each elementWtjl corresponds to the similar-
ity betweenX1j andX2l. Graph-regularized coupled sparse
nonnegative matrix factorization (GCSNMF) can be formu-
lated as

minE1,A1,E2,A2
∥X1−E1A

T
1 ∥

2
F+∥X2−E2A

T
2 ∥

2
F

+α
∑P

j=1

∑M
m=1

(
A1

1/2
jm +A2

1/2
jm

)
+β

∑P
j,l=1(∥a1j−a1l∥22W1jl+∥a2j−a2l∥22W2jl)

+γ
∑P

j,l=1 ∥a1j−a2l∥22Wtjl+δ∥RE1−E2∥2F

s.t. E1⪰0, A1⪰0, E2⪰0, A2⪰0,
∑

m A1jm=1,
∑

m A2jm=1

(6)

whereE1 ∈ RB1×M1 andA1 ∈ RP×M1 are the signature
and abundance matrices of the first dataX1, E2 ∈ RB2×M2

and A2 ∈ RP×M2 are those of the second dataX2, and
R ∈ RB2×B1 is the relative spectral response function. In ad-
dition to the sparsity constraint and the spatial-spectral graph
regularization for each unmixing, the term with the parameter
δ is the temporal graph regularization. The update rules can



be obtained by the method of Lagrange multipliers

E1im ← E1im
(X1A1+δRTE2)im

(E1AT
1 A1+δRTRE1)im

(7)

A1jm ← A1jm

(XT
1 E1+βW1A1+γWtA2)

jm(
A1ET

1 E1+
α
2 A

1/2
1 +βD1A1+γDt1A1

)
jm

(8)

E2km ← E2km
(X2A2+δRE1)km

(E2AT
2 A2+δE2)km

(9)

A2jm ← A2jm

(XT
2 E2+βW2A2+γWT

t A1)
jm(

A2ET
2 E2+

α
2 A

1/2
2 +βD2A2+γDt2A2

)
jm

(10)

whereDt1 andDt2 denote diagonal matrices whose entries
are column and row sums ofWt, respectively.Wt is de-
signed as a diagonal matrix using the spectral angle distance
for the spectral similarity measurement. The abundance sum-
to-one constraint is implemented using a method given in [9].

After the initialization of all the matrices, they are alter-
nately optimized by Equations (7)–(10). In this paper, we
present a specific implementation of GCSNMF. Firstly, two
images are obtained by the same sensor, and thusδ is set to0.
Secondly, the two images mostly include the same endmem-
bers with spectral mismatch. Thirdly, the data is assumed to
contain all pure pixels of analyzed materials.

The data matrixX1 is considered as the reference data and
the endmember matrixE1 is estimated by vertex component
analysis (VCA) [8]. The endmember matrixE2 is initialized
as[E1 r], wherer ∈ RB is a mean vector of the residual be-
tween the two images, i.e.,X2−X1, with all negative compo-
nents replaced by a very small positive value. The abundance
matricesA1 andA2 are initialized by the fully constrained
least-squares (FCLS) method [9]. During the optimization of
GCSNMF,A1 andA2 are optimized by Equations (8) (10),
respectively. For the spectral signatures, only the last column
vector ofE2 is updated as a virtual endmember signature that
explains spectral mismatch between the two images. Class-
specific changes of land cover can be visualized by compar-
ing multitemporal abundance maps. All the parameters in the
cost function are empirically set taking a balance of the regu-
larization terms.

3. EXPERIMENT

The proposed method is applied to dual-temporal Hyperion
images taken over the Fukushima Daiichi nuclear power plant
on 29 April 2012 and 25 May 2014. The hyperspectral data
cubes with composite RGB images are shown in Fig. 2. At-
sensor reflectance data that include atmospheric effects are
used with 197 effective bands. The first image taken on 29
April 2012 is used for the reference to extract endmembers.
In this experiment, totally six endmembers are extracted by
VCA and labeled by human as three types of man-made ma-
terials, vegetation, soil, and water. When applied to at-surface
reflectance data, a spectral dictionary is useful to make this
labeling process automatic. The proposed coupled spectral

1 km Fukushima Daiichi 
nuclear power plant

Fig. 2. Hyperion images taken over the Fukushima Daiichi
nuclear power plant on (left) 29 April 2012 and (right) 25
May 2014, respectively.

unmixing method is compared with the conventional individ-
ual spectral unmixing methods, i.e., FCLS and GLNMF. Note
that the same endmember signatures are used for all methods.

Fig. 3(a) shows the unmixing results on the first image ob-
tained by the three methods, whereas Fig. 3(b) shows those on
the second image. The last row images are composite RGB
images using abundance maps of man-made materials, veg-
etation, and soil for red, green, and blue, respectively. Fig.
3(c) shows the difference maps of abundances with RGB im-
ages visualizing class-specific changes. For example,ma-
genta, green, orange, andpurple indicate the changes from
vegetation to man-made, from soil to vegetation, from soil to
man-made, and from vegetation to soil, respectively. In the
FCLS results, large abundance errors of water appear in the
land area as a result of the strict sum-to-one constraint. In the
results obtained by FCLS and GLNMF, there are too much
abundance increase in vegetation caused by data mismatch
due to atmospheric effects. The proposed method mitigated
this error owing to the temporal constraint. In addition, the
results obtained by the individual spectral unmixing methods
show too much abundance increase of man-made materials in
the Fukushima Daiichi nuclear power plant and the urban area
located on the northwest part of the power plant, although
they have just partly changed rather than largely. The pro-
posed method shows stable and reasonable results on these
areas. Accordingly, the proposed method seems to achieve
the accurate spectral unmixing and its robustness against tem-
poral data mismatch. In the RGB image of abundance differ-
ence obtained by GCSNMF, trees that have been cut down
to increase the number of water storage tanks in and around
the power plant can be clearly visualized asmagentaandpur-
ple pixels. The increase of vegetation may be because of the
growth of weeds owing to seasonal difference as well as the
yearly expansion of the abandoned farmland in the restricted
area.
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Fig. 3. Unmixing results of data acquired on (a) 29 April 2012 and (b) 25 May 2014, and (c) their difference images obtained
by FCLS, GLNMMF, and GCSNMF from left to right. Abundance maps of man-made materials, vegetation, soil, and water,
and composite RGB images using abundance maps of man-made materials, vegetation, and soil for red, green, and blue,
respectively, are shown from top to bottom. The figure can be best viewed with 200% zoom.

4. CONCLUSION

This paper present a coupled spectral unmixing method for
multitemporal hyperspectral data analysis. The proposed
method introduces a graph regularization on spectral changes
into the optimization of multitemporal spectral unmixing in
a coupled basis in order to improve the unmixing accuracy
and robustness against multitemporal data mismatch. The
proposed method has been applied to dual-temporal Hyper-
ion images taken over the Fukushima Daiichi nuclear power
plant and successfully visualized class-specific changes of
land cover. Coupled spectral unmixing is expected to be a
powerful tool for multitemporal spectral data analysis en-
abling data-driven extraction of essential information on the
earth’s surface that cannot be obtained from a single im-
age. Our future work includes investigation on numerical
validation and application to multisensor data.
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