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Abstract—We envisage a very high mobile terminal (MT)
density for future wireless networks which requires ubiquitous
high-definition network self-localization ability. Traditional net-
work localization contains two steps: ranging and localization.
The coherence between the two steps is not fully exploited. We
propose a direct signal domain particle filter for network self-
localization (DiPLoc). The key objective is to obtain the location
information directly from the received signal samples, i.e. the
waveform, avoiding hard decision in the intermediate step and
the ranging model approximation. The complexity of the proposed
DiPLoc is similar to the two-step approach. Both of the numerical
and experimental results show that, the DiPLoc outperforms the
traditional two-step approaches especially when the network is
dense.

I. INTRODUCTION

Ubiquitous localization in a wireless network is essential
for a wide range of applications, from situation awareness
of mass-market devices such as vehicular collision avoidance,
mobile crowd sensing and smart city [1], [2], to professional
multi-agent collaborations such as robotic swarm exploration,
disaster management and security applications [3]. In open
areas, localization is enabled through the global navigation
satellite systems (GNSS). In GNSS-denied areas, such as urban
canyon and public indoor, the terrestrial radio networks, e.g.
3GPP-LTE and DVB-T, are exploited to augment localization.
However, the accuracy of both satellite and terrestrial local-
ization is limited by the number of visible anchors (GNSS
satellites, base stations and access points) and the complex
propagation channel condition.

Due to the emergence of direct communication appli-
cations, such as car-to-car communication, smart city and
internet of things, we envisage ubiquitous mesh networks with
very high mobile terminal (MT) density for future wireless
networks. In these networks, MTs directly communicate to
the neighbors via short range and low power radio links,
also known as device-to-device (D2D) links. It has been
verified, for example in the WINNER 2 channel model [4], that
for the typical scenario of network localization applications,
the probability of having non-line-of-sight (NLOS) links is
exponentially decreasing along with the distance between the
transmitter and the receiver. The massive LOS links offer new
opportunities for network localization. Through cooperation,
an MT can estimate its own location relative to the neighbors.
This relative location information can be either fed directly to
some applications, e.g. collision avoidance, or fused with other
sensors to obtain more precise absolute location information.

A multi-agent application for the network self-localization is
illustrated in Fig. 1. p,, is the MT position to estimate, d,, ,
is the true distance between node u and node v, z,, is the
generic relative observation between node v and node v which
contain the position information.

Figure 1. A multi-agent application for the network self-localization

Though intensive research has been conducted on network
localization, e.g. in [5], [6], [7], [1] , the potential of these
networks is not fully explored. One of the main reasons is that
most research considers localization as a two-step problem:
distance estimation (ranging) and location estimation (local-
ization). Each step is optimized separately. In the first step,
the distance of each link is estimated by the receiver from the
received signal samples. For time-based localization, a delayed
replica of the reference signal is generated at the receiver side
and compared with the received signal in order to find the most
likely propagation delay. In practice, it is normally achieved
by calculating the cross-correlation and finding the maximum
peak of the correlation function [8]. For a multipath distorted
channel, a first peak detection has to be applied additionally to
prevent obtaining a peak from the multipath [9]. Alternatively,
a super-resolution algorithm, e.g. space-alternating generalized
expectation-maximization (SAGE) algorithm, can be apply
to outperform the peak detection-based algorithms [10]. The
super-resolution algorithm jointly estimates the multipath com-
ponents. The first detected path is considered as the geometry
line-of sight (GLOS) path and is used for the distance estimate.

In the second step, a non-linear estimator uses the distance
estimates of multiple links as the measurements’ and solves
the location equations. In order to fuse the estimates from
multiple links, the error distribution of the distance estimate
need to be modeled intermediately. In practice, a weighting
scheme is normally applied, e.g. in the weighted least square
algorithm. In this case, a Gaussian model is assumed for the



ranging error. For example, based on the estimated signal-
to-noise ratio (SNR), the Cramér-Rao bound (CRB) or the
Ziv-Zakai bound (ZZB) can be calculated to lower bound
the variance of distance estimate and used as the weight for
each link. However, even with the weighting scheme, the
coherence between the two steps is not fully exploited. A
wrong correlation peak could be acquired in the first step due
to the distortion by the noise or multipath. Consequently, a
large error in the location estimate may occur. [11] proposed a
high-dimension likelihood parameter fitting to reduce the error
from the intermediate step. However, these algorithms require
a training data set and are computationally costly. Recent
research has been conducted to further investigate the co-
herence between ranging and localization for non-cooperative
localization. A non-parametric algorithm, mostly a particle
filter, is applied directly on the signal domain, e.g. in [12]
and [13] for GNSS-based localization and in [14] for terres-
trial localization. However, for a multipath scenario, the non-
parametric maximum a-posterior (MAP) estimator becomes
computational intractable, due to the high dimensional state
space.

In this paper, we extend the direct signal domain localiza-
tion into a D2D network with massive low power and short
distance links. The raw received signal samples is taken as
the measurements to derive the joint likelihood function of the
location estimate with single channel tap assumption. Based
on the derived likelihood function, we propose a direct signal
domain particle filtering algorithm for network localization
(DiPLoc). The key motivation is to obtain the location infor-
mation directly from the received signal samples, avoiding the
ranging model approximation. Particles are randomly initiated
for each MT within the position a-priori information. Each
particle is considered as a location hypothesis and generates
delayed replicas of the reference signal according to its dis-
tances to the neighbors. In the update stage, the weight of
particle is calculated directly from the inner-products of the
replicas and the received signals. The proposed DiPLoc is not
an MAP estimator for a multipath scenario. However, it takes
every peaks of the correlation function as soft hypotheses and
prevents making hard decision in the intermediate step. The
massive links jointly support the right hypothesis and reject the
wrong ones with high probability. In the DiPLoc, multiple links
are inherently weighted by the overall likelihood. Therefore,
the DiPLoc preserves as much information as possible from
the signal domain to the location domain. More importantly,
the cross-correlation can be seen as a group of inner-products
between the received signal and the signal replicas with a
shifting delay window. From this viewpoint, each particle
hypothesis in the DiPLoc can be considered as a realization of
the shifted window. Therefore, the complexity of the DiPLoc
is comparable to a simple cross-correlation-based estimator.

We verify our proposed DiPLoc with both numerical and
experimental results. For the numerical simulation, the moving
network scenario (D2) of the WINNER 2 channel model is
applied. We investigate the non-cooperative and the anchor-
free network localization with different numbers of nodes. In
the non-cooperative case, a single MT locates itself in an
anchor network. In the anchor-free case, none of the nodes
in the network knows its location, and they estimate the
relative geometry of the network in a distributed fashion. We
compare the two-step algorithms: correlation-based and super-

resolution-based with the single-step DiPLoc. In both cases,
the DiPLoc outperforms the two-step approaches when the
number of neighbors increases. For the experimental results,
we conduct a measurement campaign with a dynamic meshed
network and exploit the measurement data for anchor-free
localization. First we compare the distance estimate through
cross-correlation with the CRB and the ZZB. We find out that
even though the ZZB is a relatively tight bound, it cannot
substitute the ranging variance in practice due to the multipath,
bias, inaccurate SNR estimate and outliers. We further compare
the ZZB-aided traditional particle filter and the DiPLoc. The
DiPLoc significantly outperforms the traditional particle filter
and achieves the accuracy below one meter for most of the
time. With the theoretical analysis, the numerical simulation
and the experimental results, we can conclude that the DiPLoc
we propose is more suitable for network localization, in
particular for dense networks.

II. FRAMEWORK OF NETWORK LOCALIZATION AND
TRACKING WITH OFDM SIGNAL

A. Problem Formulation

We consider a network with B + M nodes (set: K),
including B BSs (set: B) and M MTs (set: M). A node v is
considered as the neighbor of MT w if MT u can communicate
and make ranging measurement with it. The neighboring node
set of MT w at step k is defined as ng). The neighboring
MT and BS set of MT wu at step k are defined respectively
as M) = MﬂK&k) and B =B ﬂKqSk). The position of a
node u at step k is defined as

T
o = [o,0] "

The node position and the velocity at step k are described by
a state space model. A BS is assumed to be stationary with a
known position, i.e.:
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The state transition of MT u from step k — d,, to step k is
described as a linear stochastic process:
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Ty is the time between a single step and azu is the variance
of the continuous acceleration which can be determined based



on the application. We assume in general the state updates of
all the MTs are asynchronous and the number of steps from
the last updates to the step k are:

T
5:[...,5%...] , Yu € M @)
MT wu requests radio-based measurements from a generic
neighbor v, which contains the relative position information
of both nodes

A — b (xx W) veRd @

The hgk,), is the observation function which depends on the
measurement method and wgf,), is the observation noise.

We define the following notations of variable v (can be
scalar, vector or matrix):

1. vy is the collection of variables of nodes u, Vu € V.

2. v(&=9) ig the collection of variables of all the MTs at
the individual last updating time k — §,,, Vu € M.

3. v(d) is the collection of delay-dependent variables for
all the MTs with the individual delay §,,, Vu € M.

4. v(@b) is the variable collection from step a to step b.
For simplicity, we omit the subscript M when a variable is
a collection of all the MTs without any ambiguity. With the
notation above, the global state of all the MTs is defined as

T T
<(F) — [ 7(ng)) )] , YV € M. 9)
The transition function of all MTs is:
x®) =A(8)xE&=9) 4 p(k=9) (10)
v AN (0,Q(0)) - (11)
The global observation vector is:
2B — [k (xw),w(k)) , (12)

The localization problem can be solved independently at each
step by a maximum likelihood (ML) estimator, i.e.

%x®) = arg max p (z(k)|x(k)) , (13)
x(k)
or by a Bayesian tracking filter, i.e.
%k — arg(gpt fopt (p (X(k)|z(1:k))) . (14)

The optimization function foy can be calculating the mean
(minimum mean square error (MMSE)) or the mode (max-
imum a-posterior (MAP)) of the posterior filtered density
p (x®|z{1:¥)) By applying the Bayes’ rule, the posterior
filtered density can be rewritten in a recursive fashion:

P <X<k>|z<1:k>

X p (Z<k> ‘Xac)) P (x<’<> ‘X<k76>) P (X<k76>|z<1:k76>) . (15)

The three components in the right side of (15) are: the a-priori
for state prediction:

p (x99 ; (16)

the likelihood for state update:

p (2@ ®); (17)
and the last-step posterior for sequential calculation:
P (X(k75)|z(1:k7(§)> . (18)

As assumed in (4), the state transition of each agent is
independent, i.e.

P (X<k>|x<k—a>) _

k) | (k—du
p(xPlE) a9
ueM
Therefore the prediction step of a distributed Bayesian estima-
tor can be easily implemented. In contrast, a marginalization
is required in the update step due to the cooperation between

MTs:

p (#91) = TT » (s7x9)

ueM

= 1o (s [ o (sl ) p (] ) .
ueM
(20)

The marginalization brings a high complexity into a distributed
Bayesian estimator. Research has been conducted to solve it.

n this work we focus on the conditional likelihood
D (zgk) |ng)7 x]% )) derived directly from the waveform.

B. OFDM Waveform for Localization

We assume the localization signal is modulated with
OFDM technique because of the flexibility for resource al-
location and the inter-subcarrier interference-free property. In
general, the ranging signal can apply other modulation scheme
as well. For a single link v, an OFDM signal is transmitted
from a node v and received by an MT wu. The transmitted
OFDM symbol is expressed as:

1 N-—-1
Su(t) = —= Y Spel?mleent @1
\/N n=0

fsc is the subcarrier spacing, n is the subcarrier index, N is
the number of subcariers, and S,, is the information symbol
carried by each subcarrier. The received signal can be modeled
as a noisy discrete copy of the s(¢) with a propagation delay

7, and a complex path gain «,, i.e.:
r,(iT) = a,8,(iT — 7,) + w(iT), (22)

w(iT) ~ CN (0,02/2) is the thermal noise for each sample
from the receiver’s frontend. 7" is the sampling period. We
assume the signal propagating with the speed of light co, i.e.

—pP| /co. (23)

Hence the received waveform contains information of the
euclidian distance between the transmitter and the receiver.
Therefore, the MT u can use the received waveform as the
observation to estimate its position. It is worth to mention
that for the propagation time based ranging, the clock offsets
from different MTs can lead to a bias. However, it can be
eliminated with multiple-way time measurements, e.g. the
round-trip delay estimate we applied in [15]. We will discuss

Tv = HPT(Lk)



in detail about extracting the position information from the
waveform in Section III and IV. Although the phase of the
waveform might contain some information about the relative
velocity, i.e. the Doppler shift, we do not further exploit this
information in this paper. Therefore, the waveform observation
only directly contributes to the relative position. The velocity
is indirectly filtered out by the transition function.

III. TwO-STEP NETWORK LOCALIZATION

Most state-of-the-art localization algorithms contain two
steps: ranging, i.e. distance estimation from the waveform;
and localization, i.e. position estimation with the pre-estimated
distance. For the ranging step, an ML estimator is normally
applied:

d, = argmaxp (r,|d,)
d

v

N1
= arg min Z lr, (iT) — a8, (iT — d,, /co)|?
dv 520
N-1
= arg max R{a}, Z ei2mnfsedv/eo g G¥y (24)
dy n=0

R,, is the received single on subcarrier n. We further define

N-1
fld)y &Y e?mnled/op, g (295)

n=0

For the non-coherent case, i.e. the phase of «, is unknown,
(24) can be modified with

d, = argmax |f(d,)]| . (26)

v

(26) is the cross-correlation between received and transmitted
signal and in practice obtained by the signal acquisition and
sub-sample refinement. The distance estimate is associated
with the strongest peak of the cross-correlation function . For
a multipath distorted channel, a first peak detection has to be
applied additionally to prevent obtaining a peak from the mul-
tipath. Alternatively, a super-resolution algorithm, e.g. space-
alternating generalized expectation-maximization (SAGE), al-
gorithm can be apply to outperform the peak detection-based
algorithms. The super-resolution algorithm jointly estimates
the multiple paths. The first detected path is considered as the
geometry line-of sight (GLOS) path and used for the distance
estimate. Once the MT u collects sufficient distance estimates
from its neighbors, it takes these estimates as the observation,
i.e. the zgk) in (20), and runs an ML position estimator with
approximated observation models:

pu = argmax [ 5 (dlpu.p. ). @

Pu veK,

The observation likelihood is usually modeled with Gaussian
distribution

5 (dlpusp0) ~ N (D, =Dl 02) . @8)
02 is the auxiliary parameter and can be approximated from
measurement set or derived from some estimation bounds, e.g.
Cramér-Rao bound (CRB) or the Ziv-Zakai bound (ZZB) [16].

A block diagram of the two-step localization can be found in
Fig. 2.
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Figure 2. Block diagram of the update step in two-step localization

However, with the parametric likelihood model, the coher-
ence between the two steps is not fully exploited. A wrong
correlation peak could be acquired in the first step due to
the low signal-to-noise ratio, distortion from the noise and the
multipath. Consequently, a large error in the location estimate
is not avoidable. Recent research attempts to acquire high-
definition localization by high-dimension likelihood parameter
fitting. However, these algorithms require a training data set
and are computationally costly.

IV. DIPLoC: DIRECT SIGNAL DOMAIN PARTICLE
FILTERING FOR NETWORK LOCALIZATION

Instead of exploiting the distance estimate we propose to
directly use the raw received signal samples, i.e. the waveform,
as the *observation’. The key objective is to obtain the location
information directly from the received signal samples, avoiding
the ranging model approximation. The distributed particle filter
fits to this objective naturally.

Particles are drawn for each MT from the position a-priori
density function. As we discussed previously, the prediction
step of a distributed particle filter is easy to implement. Here,
we focus on the update step. In the update stage, each particle
is considered as a location hypothesis and generates delayed
replicas of the reference signal according to its distances to
the neighbor’s position or position hypothesis. The weight of
each particle is calculated directly from the inner-products of
the replicas and the received signals. The inner products can
be also taken from the pre-calculated correlation function. We
refer to this approach as the direct signal domain particle
filtering for network self-localization (DiPLoc). Comparing
with the traditional two steps localization, the DiPLoc takes
every peaks of the correlation function as soft hypotheses and
prevents making hard decision in the intermediate step. The
likelihood of the position of MT wu given received signals
Tk, from all neighbors v € K, with the single channel tap



assumption is

p(rz, | puspx,) = [ p(rv | Pupo)
veK,

R, . -
x exp< SR (I, pul) - 2|Ry|2>
veK, v

(29)

where |R,| and |S,| can be interpreted as the magnitude
of received and transmitted signal respectively. For a non-
coherent estimator, the likelihood is approximated as

p(rx, | Pu,PK,)

R, -
OCGXP(Z| \/ilf(lpy—pull)—QRVP) , (30)

vekK, |SU‘

Each MT runs a particle filter locally to approximate its
marginal posterior filtered density

Py
p (xF200) ~ 3 wfs® - x). G
p=1

For a distributed particle filter, similar to the belief propagation
algorithm, MTs have to exchange their particle clouds (belief)
with multiple inner iterations in a single update step [6]. The
optimal number of iterations L depends on the topology of
the network. We look into the weight updating scheme for the
p" particle of MT « at step k. The initial weight for inner
iteration is set to the value from last step contributed with the
current observation from the BSs

Wl = w0 T p (r 1 9)) (32)
beB,
0D
(k1) Wup 33)
u.p P, (k1
Zr:l w7(ia7” )

At the iteration [

> wlp (v 1P p) G4

wh = (35)

After iteration L, wi(f,), = wgf]’,L). The iterative calculation of

DiPLoc algorithm from step k£ — 1 to k is shown in Algorithm
1.

Algorithm 1 DiPLoc algorithm from step kK — 1 to k
for inner iteration [ =1to L do
for MT v =1 to M in parallel do
receive particles from neighbor Vv € M,
for particle p =1 to P, in parallel do

if [ =1 then
Xl = %) Eq. (4)
wi Y = WY Eq. (32), 33)
else
w5 wD Eq. (34), (35)
end if
end for

resample if needed
broadcast particles
end for
end for

A block diagram of the update step of the DiPLoc can be
found in Fig. 3.
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Figure 3. Block diagram of the update step in DiPLoc

The massive links jointly support the true hypothesis and
reject the wrong ones with high probability. In the DiPLoc,
multiple links are inherently weighted by the overall likeli-
hood. Therefore, the DiPLoc preserves as much information
as possible from the signal domain to the location domain.
More importantly, the cross-correlation can be seen as a group
of inner-products between the received signal and the signal
replicas with a shifting delay window. From this viewpoint,
each particle hypothesis in the DiPLoc can be considered as a
realization of the shifted window. Therefore, the complexity of
the DiPLoc is comparable to a simple cross-correlation-based
estimator.

V. RESULTS
A. Numerical Results

We run numerical simulations with the multipath envi-
ronment generated from the WINNER 2 channel model [4]
to verify our proposed DiPLoc algorithm. We first test the
DiPLoc in non-cooperative network localization case from
with different number of nodes. Only one of the nodes is an
MT, the rest nodes are the BSs. DiPLoc is compared with
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DiPLoc is compared with two-step algorithms: strongest/first correlation peak
detection and super-resolution algorithm (SAGE). the AWGN case is used as
a benchmark.

two different two-step algorithms: correlation-based first peak
detection and SAGE-based first path detection algorithm. The
90-percentile of the position error is depicted in Fig.4. We
can see that when number of nodes increases, the DiPLoc
starts outperforming the two-step algorithms. The reason is
that for massive links, the multipath effect is more likely to
be averaged out and the link quality evaluation becomes more
important. We also test the anchor-free case, i.e. all of the
nodes are MTs. They try to estimate their relative position
in the network. DiPLoc is again compared with two step
algorithms: strongest/first peak detection, and SAGE-based. An
estimator in AWGN scenario is also tested as the benchmark.
In order to assess the relative positioning performance, the
estimated network position is aligned back to the ground truth.
The error 90-percentiles are shown in Fig.5. Similarly to the
non-cooperative case, DiPLoc outperforms the others in a
massive link scenario.

B. Experimental Results

We also conduct a measurement campaign and use the
measurement data to verify our DiPLoc algorithm. The system
parameters is similar to [17]. In the measurement, fully meshed
six nodes, five stationary nodes and one moving node, makes
radio-based measurements in a round-trip delay manner in

Figure 6. Measurement campaign: fully meshed six nodes: five stationary
nodes and one moving node. The ground truth of the moving node is obtained
from the tachymeter. Distance of each node pair is measured with the round-
trip delay.

order to eliminate the impact of the asynchronous clocks. All
the links are pre-calibrated in the lab with cables to compensate
the processing time. None of the nodes knows its position,
hence an anchor-free scenario. The ground truth of the nodes is
obtained from the tachymeter. Two different distributed particle
filter is tested, namely two-step strongest peak detection and
the DiPLoc. For the two-step algorithm, ZZB is used to
evaluate the performance of each link. The moving/stationary
information is not available for the nodes. Fig.6 shows the
setup of the experiment. Fig.7 the absolute distance estimate
error obtained from the strongest correlation peak detection
the CRB and the ZZB based on the estimated SNR. The error
from multipath, bias and outliers is visible in the plot which
leads to the ranging error diverging from the bounds. In Fig. 8
the estimated trajectory from the DiPLoc (green) is compared
with the ground truth trajectory (magenta). Optimal coordinate
system alignment is applied for the comparison since it is
an anchor-free scenario. In Fig.9 the root-mean-square error
of the DiPLoc is compared with the traditional particle filter
which utilizes the ZZB as the auxiliary parameter. We can find
that the ZZB-aided particle filter does not converge and the
DiPLoc converges to the true trajectory in a few steps. With
the result from both numerical simulation and the experimental
measurement, we can conclude that the DiPLoc algorithm
we proposed is more suitable for network self-localization,
especially when the network is dense.

VI. CONCLUSION

In this paper, we investigate the network localization prob-
lem. We envisage a very high MT density for future wireless
networks which requires ubiquitous high-definition network
self-localization ability. Traditional network localization con-
tains two steps: ranging and localization. The estimated inter-
node distance as the observation for the localization step.
The coherence between the two steps is not fully exploited.
We propose to use directly the raw received signal samples,
i.e. the waveform, as the ’observation’. The key objective is
to obtain the location information directly from the received
signal samples, avoiding the ranging model approximation. We
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design a direct signal domain particle filter for network self-
localization (DiPLoc). The DiPLoc takes every peaks of the
correlation function as soft hypotheses and prevents making
hard decision in the intermediate step. More importantly, the
cross-correlation can be seen as a group of inner-products be-
tween the received signal and the signal replicas with a shifting
delay window. From this viewpoint, each particle hypothesis
in the DiPLoc can be considered as a realization of the shifted
window. The inner products can be also taken from the pre-
calculated correlation function. Therefore, the complexity of
the DiPLoc is comparable to a simple cross-correlation-based
estimator. Both the numerical and experimental result shows
the DiPLoc outperforms the traditional two-step approach
especially when the network is dense. Considering the low
complexity and the high estimation accuracy, we can conclude
that the DiPLoc is a promising algorithm for self-localization
of the future network.
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