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Abstract—In the literature, scene recognition from interfer-
ometric synthetic aperture radar (InSAR) images has been
mainly focused on the joint use of the backscatter intensity and
the coherence between interferometric image pairs. However,
the terrain height information residing in the interferometric
phase requires further exploration for classification purposes. In
this letter, taking the interferometric phase information into ac-
count together with the backscatter intensity, the whole complex-
valued InSAR image is exploited for feature extraction. In
addition, a new complex-valued phase-gradient InSAR (PGInSAR)
image is defined. A fractional-Fourier-transform-based feature ex-
traction, which was proposed for the classification of single-look
complex (SLC) SAR images, is adopted for InSAR and PGInSAR
images. For patch-based classification, an image database is gener-
ated from bistatic pairs acquired from the same terrain with three
different effective baselines. The supervised K-nearest neighbor
classification results show that InSAR outperforms SLC by 15%,
whereas PGInSAR introduces further 10% improvement over
InSAR or a total improvement of 27% over SLC. Moreover,
PGInSAR is found to be more robust to effective baseline changes
than InSAR, which makes PGInSAR a better candidate for feature
extraction.

Index Terms—Effective baseline, feature extraction, fractional
Fourier transform (FrFT), interferometric synthetic aperture
radar (InSAR), phase gradient.

I. INTRODUCTION

AUTOMATED recognition and classification of remote sen-
sing images is of great importance due to the huge vol-

ume of available data. Among various imaging technologies,
the weather- and daylight-independent sensing capability of
synthetic aperture radar (SAR) makes it a special candidate
for scene recognition. The inclusion of a second SAR image
acquired from a slightly different position and/or at a different
time, as in SAR interferometry, provides some complementary
information about the scene, such as the interferometric coher-
ence, the terrain height, etc. Such information can be expected
to enhance the recognition performance. Thus, in addition to
being in use for the derivation of the surface topography and the
observation of temporal surface change, SAR interferometry
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has recently found a new application area in scene recognition
and classification.

In literature, the research on the classification of InSAR
images has mostly focused on the use of interferometric co-
herence. In particular, the coherence of interferometric pairs,
together with the backscatter intensity, was found to increase
the accuracy of land-cover classification [1]–[4]. Furthermore,
multitemporal InSAR images have been widely utilized for
classification based on the temporal variation of the coherence
and the backscatter intensity [1], [5].

On the other hand, the terrain height information residing in
the interferometric phase requires further exploration [6]. There
are several studies that take the interferometric phase informa-
tion into account for boundary detection [6]–[8] and for damage
detection based on height changes [9]. Moreover, the phase-
gradient approach is studied for boundary detection [6] and for
the motion detection of glaciers in differential InSAR [10].

However, although some amount of research related to the
interferometric phase has been reported, not much has been
done to explore its potential in classification. Considering the
fact that man-made and/or natural land-cover scatterers may
differ in height (the interferometric phase) and backscattering
properties (the amplitude), the whole complex-valued InSAR
image was employed in our previous work to extract feature
descriptors for classification purposes [11]. In addition, based
on the fact that the gradient of the interferometric phase follows
how the surface topography changes throughout the scene
[12], a new complex-valued phase-gradient InSAR (PGInSAR)
image was defined and employed in feature extraction.

As a feature descriptor, first-order statistics were extracted
from the fractional Fourier transform (FrFT) of the images.
This method had been already proposed and found to be quite
successful in the classification of single-look complex (SLC)
SAR images [13]. In [11], by slightly modifying this method
for InSAR and PGInSAR images, a comparative study was
performed for SLC, InSAR, and PGInSAR, and the superiority
of InSAR and PGInSAR over SLC was presented.

In this letter, in order to further investigate the performance
of the proposed method in patch-based image classification for
different InSAR geometries, a database is generated with three
different InSAR acquisitions from the same site, particularly
with different effective baselines.

The rest of this letter is organized as follows. In Section II,
the relation between the terrain height and the interferometric
phase is explained through the InSAR acquisition geometry.
Section III introduces the proposed phase-gradient approach.
The FrFT-based feature extraction is presented in Section IV.
The image database and the classification results are given
in Sections V and VI, respectively. Finally, the results are
concluded in Section VII.
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Fig. 1. InSAR geometry.

II. INSAR IMAGING GEOMETRY

A 2-D SLC SAR image is represented as z = |z| · ejψ , with
its amplitude |z| and phase ψ. The amplitude depends on the
transmitter power, the distances of the scatterer to the trans-
mitter and the receiver, and the scene reflectivity. On the other
hand, the phase depends on the total distance that the signal
travels before being received by the receiver antenna. Hence,
the phase is mainly composed of two components: 1) the geo-
metrical phase due to the total distances between transmitter–
scatterer and scatterer–receiver (a deterministic component);
and 2) the object’s phase due to the coherent sum of many indi-
vidual scatterers, i.e., the scattering phenomenon on the ground
(a random component).

In SAR interferometry, the backscattered echo from the same
region is received from slightly different positions S1 and S2, as
in Fig. 1, and an interferometric image pair (z1, z2) is obtained.
For the case where S1 transmits and both S1 and S2 receive, the
phases of the two SAR images will be

ψ1 = − 2π

λ
(2R1)− ψobj1

ψ2 = − 2π

λ
(R1 +R2)− ψobj2 . (1)

Since the random object’s phase components may be as-
sumed to be identical for these two images, i.e., ψobj1 ≈ ψobj2 ,
interferometric phase ψint, which is defined to be the phase
difference between the two images, reflects the difference in
the sensor–scatterer distances of the two images, i.e., ΔR =
R2 −R1. Unlike the random phase of one SLC image, the
interferometric phase carries particular information about the
acquisition geometry as follows:

ψint = ψ1 − ψ2 =
2π

λ
ΔR ≈ −2π

λ
B sin(θ − β). (2)

Due to a nonzero baseline, even a point on the flat Earth
yields a nonzero interferometric phase. Then, a point at height
δh has an interferometric phase of

ψint = −2π

λ
B sin(θ0 − β)− 2π

λ
B cos(θ0 − β)δθ (3)

where the first term corresponds to the interferometric phase
measured in the absence of any topography, and the second term

corresponds to the flattened interferometric phase that reflects
the height variations in the scene relative to the flat Earth. Once
an interferogram is generated, it is flattened by removing the
first term, and ψflat is obtained.

Then, together with the knowledge of InSAR parameters,
such as baseline B, look angle θ0, and signal wavelength λ,
a change in the flattened interferometric phase corresponds to a
change in the terrain height according to the following relation:

δh = −δψflat
λR1 sin θ0
2πB⊥

(4)

where the effective baseline B⊥ = B cos(θ0 − β) is the projec-
tion of the interferometric baseline onto the direction perpen-
dicular to the line of sight. The height change that leads to a
2π change in the flattened interferometric phase is called the
ambiguity height, i.e.,

hamb =
λR1 sin θ0

B⊥
(5)

and it can be considered a measure of sensitivity to the topog-
raphy. From (5), a longer effective baseline yields a smaller
ambiguity height, which means better height sensitivity. How-
ever, for long baselines, the spatial decorrelation between the
two images should be also considered. As a measure of the
similarity between the two images, the complex correlation is
defined as follows:

ρ =
E [z1 · z∗2]√

E [|z1|2]E [|z2|2]
= |ρc|ejφc (6)

and its magnitude |ρc| is called the coherence.

III. PGINSAR IMAGE

In this letter, the complex-valued flattened InSAR image is
used for feature extraction, as previously proposed in [11].

The amplitude of the InSAR image is slightly modified such
that the geometric mean of the amplitudes of the two images is
used instead of their multiplication as

I =
√

|z1| · |z2| · ejψflat . (7)

On the other hand, the interferometric phase suffers from
being wrapped over principal interval [−π, π). Hence, the
observed phase contains 2π phase jumps and has to be un-
wrapped to retrieve the original phase. However, since the
whole complex-valued images are used in this letter for feature
extraction, not their phases, the challenging phase unwrapping
operation is avoided. In addition, the idea of an image gradient
is adopted for the interferometric phase. Taking the gradient
magnitude of the interferometric phase, the number of phase
discontinuities is reduced.

Considering the modifications in the InSAR amplitude and
phase, a new complex-valued PGInSAR is defined as

PG ≡
√

|z1| · |z2| · ej|∇ψflat| (8)

where |∇ψflat| is the magnitude of the interferometric phase
gradient in the range and azimuth directions. As it is, the
PGInSAR image phase can be considered to express how fast
the terrain height changes throughout a scene, whereas the
InSAR image phase is related to the absolute terrain height [11].
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As in [14], ∇ψflat is computed from the real (Ireal) and
imaginary (Iimag) parts of the flattened interferogram as

∇ψflat =
Ireal∇Iimag − Iimag∇Ireal

I2real + I2imag

(9)

by means of the relation ψflat = tan−1
(

Iimag

Ireal

)
and the chain

rule in the differentiation. Unlike the computation of the gradi-
ent directly from the wrapped phase ψflat, the real and imagi-
nary parts, which are usually continuous, yield a phase gradient
with less jumps [11].

IV. FEATURE EXTRACTION BASED ON FRFT

In this letter, a nonparametric feature extraction method
previously proposed in [13] for the classification of SLC images
is adopted to InSAR and PGInSAR images [11]. In that method,
the feature descriptor is based on the simple statistics extracted
from the FrFT of the SLC image. The FrFT of a function f(ξ)
is defined as

FrFTα(ξ) =Aα · exp(jπξ2 cotα)

·
∫

exp
[
jπ(−2xξ cscα+ x2 cotα)

]
f(x) dx

Aα =
exp [−j (π sgn(sinα)/4− α/2)]

| sinα| 12
(10)

where α = pπ/2 is the transform angle, and 0 < |p| < 2 is the
transform order of the FrFT. If α = 0 or a multiple of 2π,
the FrFT corresponds to the identity operator, and for α = π/2,
the FrFT takes the standard Fourier transform [15]. For 2-D
images, the transform can be first applied to columns and then
to rows, or vice versa, due to the linearity of the FrFT.

Due to the chirplike nature of SLC and InSAR images, a
chirplet-based FrFT is expected to be well suited for transform-
domain representation. Controlled by the FrFT order, the
scaling performed in the phase captures the backscattering and
topographicbehaviors inSLCandInSAR, respectively [13], [16].

For a given image patch, 17 different FrFT operations are
performed with 17 equally spaced transform angles between
0 and π (i.e., Δp = 0.125), and for each of the transformed
images, three log cumulants (log mean, log variance, and log
skewness) are computed from its amplitude, yielding a feature
descriptor of length 51 [13]. However, for the InSAR and
PGInSAR cases, the exploitation of the whole complex data
is important in order not to ignore any contribution of the
interferometric phase information. Hence, the log cumulants
are computed for both the real and imaginary parts of the trans-
formed image and then appended to obtain a feature descriptor
of length 102 [11].

V. EXPERIMENTAL BISTATIC SAR IMAGE DATABASE

For patch-oriented classification, an image database of eight
different classes is generated. The classes in the database
are: C1—agricultural fields; C2—forest; C3—industrial area;
C4—mixed vegetation (forest and agricultural); C5—riverside;
C6—urban-1 (medium-density residential area); C7—urban-2
(high-density buildings); and C8—water body (lakes and ponds).

Each class consists of 50 scenes of size 200× 200 pixels. For
each scene, there exist three TerraSAR-X add-on for Digital El-
evation Measurement (TanDEM-X) image pairs acquired in the

TABLE I
INSAR ACQUISITION PARAMETERS OF THE DATABASE

bistatic operation mode with three different effective baselines.
That is, the whole database consists of 3 sets of 400 patches, with
each set corresponding to a different effective baseline. The
orbit direction, the look direction, the look angle, and the wave-
length are identical for these acquisitions. These parameters and
the corresponding ambiguity heights are tabulated in Table I.

The image patches are from the test site in Toulouse, France.
The spatial resolution is about 2 m, i.e., each scene corresponds
to an area of 400 m × 400 m on the ground. Google Earth
has been used as the ground truth during the generation of the
database. In Fig. 2, each class in the database is visualized by
a sample patch with its quick-look view of the SLC image,
together with the corresponding optical Google Earth image.

Due to the bistatic imaging (S1 transmits; S1 and S2 receive
within the same pass), the temporal baseline is quite short (on
the order of seconds), resulting in a low temporal decorrelation.
Fig. 2(c) illustrates the spatial decorrelation due to the nonzero
baseline with the probability density function (pdf) of the in-
terferometric coherence values estimated for each sample patch
and baseline. It can be seen that a longer baseline yields lower
coherence as expected, except for C1 likely due to the seasonal
agricultural activities. In addition, for Set 3, the sharp decrease
in the C2 coherence may be not only due to the long baseline
but also due to the presence of leaves in summer. For a given
baseline, C3, C6, and C7 have similar coherence values due
to the similar scattering mechanisms, and C5 and C8 have the
lowest coherence values due to the specular reflection on water.

VI. CLASSIFICATION RESULTS

In this letter, a supervised K-nearest neighbor classifier,
with a Euclidean distance and k = 1, is used. Four percent
of each class, i.e., 2 out of 50 patches, is randomly selected
as the training samples for the classifier. Each classification
experiment is repeated 100 times with different training sets,
and the average of the classification accuracy is reported.

A. Performance of SLC SAR, InSAR, and PGInSAR for Set 2

First, the classification performance of the SLC images, that
of the InSAR images, and that of the PGInSAR images are
compared for Set 2 (a medium baseline), and the results are
given in Fig. 3. It can be seen that InSAR is better than SLC
with a 15% enhancement in the mean accuracy. PGInSAR
introduces further improvement of 10% over InSAR or a total
improvement of 27% over SLC.

The F-measures show that InSAR considerably improves
all class accuracy values compared with SLC, except for C5
and C8, which is likely due to the specular reflection in these
classes. PGInSAR performs the best among all, and the biggest
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Fig. 2. Classes in the bistatic SAR image database: C1—agricultural fields; C2—forest; C3—industrial area; C4—mixed vegetation; C5—riverside; C6—urban-1
(medium density); C7—urban-2 (high density); C8—water body. (a) Quick-look views obtained from the amplitude of the master SLC data. (b) Optical Google
Earth images as the ground truth. (c) PDFs of the interferometric coherence values computed with a 4× 4 averaging window for three different baselines. Blue
curve: Set 1 (a small baseline). Green curve: Set 2 (a medium baseline). Red curve: Set 3 (a long baseline).

Fig. 3. F-measures and mean accuracy of SLC, InSAR, and PGInSAR (Set 2).

TABLE II
CONFUSION MATRIX FOR PGINSAR (SET 2) IN PERCENTAGE

improvement is achieved for scenes with natural structures such
as C1, C2, and C4. The improvements for C3, C6, and C7 are
faint due to the strong phase discontinuities present, even in
PGInSAR.

Fig. 4. Comparison of the Gabor- and FrFT-based feature descriptors (Set 2).

For a detailed assessment of individual class accuracy values,
the confusion matrix for PGInSAR is tabulated in Table II.
It can be seen that the misclassifications are mostly observed
within the following groups: 1) C1–C2–C4; 2) C3–C6–C7; and
3) C5–C8, which seems to be quite reasonable.

In addition, the FrFT-based feature descriptor is compared
with a Gabor-based descriptor (with three scales and four orien-
tations), which is a well-known multiscale approach capturing
the textural information. The F-measures are given, together
with Kappa coefficients κ and standard deviations σκ, in Fig. 4.
The FrFT-based PGInSAR feature descriptor yields the best
performance with the highest κ and the smallest σκ. Moreover,
it seems to be more uniform over all classes than other feature
descriptors.

B. Performance of InSAR and PGInSAR for Sets 1, 2, and 3

As the second experiment, the impact of the effective base-
line is studied for the InSAR and PGInSAR images. As shown
in Fig. 5(a)–(c), for each effective baseline, PGInSAR is better
than InSAR. However, with the long baseline, for which the
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Fig. 5. F-measures for InSAR and PGInSAR for (a) Set 1 (a small baseline),
(b) Set 2 (a medium baseline), and (c) Set 3 (a long baseline).

Fig. 6. F-measures for (a) InSAR and (b) PGInSAR for the three different
baselines.

number of fringes and phase discontinuities increase, PGInSAR
can no longer perform better than InSAR for C2, and similarly,
the improvement is less for C1 and C4.

Furthermore, Fig. 6(a) and (b) shows how InSAR and
PGInSAR react to different effective baselines in terms of
classification accuracy, respectively. In this figure, it can be seen
that, for C2 and C4, the long baseline yields better accuracy
despite the low coherence in C2. For C3, C6, and C7, the
medium baseline is found to be the best among all. For C5 and
C8, the small baseline results in better accuracy. That is, the
behavior of a class differs under different effective baselines,
as expected. Additionally, the effect of the seasonal changes
between acquisitions should be considered. Nevertheless, it
is important to note that the PGInSAR feature descriptor is
less affected by the effective baseline than the InSAR feature
descriptor since the phase discontinuities are reduced compared
with InSAR.

VII. CONCLUSION

In this letter, complex-valued InSAR and newly defined
PGInSAR images have been used for image classification,
where the InSAR phase is related to the absolute height of the

scene and where the PGInSAR phase rather reflects how fast the
height changes throughout the image. As the feature descriptor,
log cumulants are extracted from the real and imaginary parts
of the FrFT coefficients of the complex-valued InSAR and
PGInSAR. Classification results show that InSAR and
PGInSAR improve the mean accuracy by 15% and 27% com-
pared with SLC, respectively.

In addition, the impact of the effective baseline on the clas-
sification performance of the InSAR and PGInSAR images is
investigated through three interferometric pairs acquired from
the same site with different effective baselines. For each base-
line, PGInSAR achieves better classification performance than
InSAR since the phase discontinuities are reduced. Moreover, it
has been observed that, for scenes containing natural structures
with smooth phase changes, PGInSAR considerably improves
the classification accuracy compared with InSAR. However, the
gain of PGInSAR may remain faint for scenes containing man-
made objects with abrupt phase changes and even for natural
scenes with long baseline acquisitions. The behavior of a class
may differ under different baselines, but yet PGInSAR is more
robust to the changes in the effective baseline than InSAR.
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