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Subnanosecond kinetics of photoionized
carriers in n- and p-type germanium probed
by a far-infrared free electron laser
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Fast relaxation dynamics of photoexcited charge carriers in n- and p-type germanium crystals have been probed using far-infrared ps-
pulsed free electron laser emission. Different relaxation processes can be observed by an accurate analysis of the results of the pump-
probe technique, including intersubband, intraband and intracenter energy relaxation. The characteristic time constants lie in the broad
range from 30 ps up to a few ns depending on the pump intensity and doping concentrations.

Introduction

Intense short pulsed THz sources, such as infrared free-
electron lasers (FEL), demand fast, broad-band, wide-
dynamic-range detectors. Cooled germanium (Ge) pho-
toconductive detectors have been serving for decades
as one of the most sensitive and at the same time robust
THz detectors in spectroscopy and imaging for labora-
tory research as well as for astronomy and planetary
research [1]. So far the shortest response times in direct
detector operation are a few ns obtained with neutron
transmutation doped (acceptor concentration are above
10'5/cm3) and compensated (32-52%) Ge for frequen-
cies between 1.5 and 3.1 THz [2]. On the other hand, in
undoped Ge crystals (residual donor and acceptor con-
centration less than 10"/cm?) longer lifetimés for elec-
trons in lower excited states have been derived from
the submillimeter photoconductivity spectroscopy [3].
The question of fundamental limits in speed of Ge pho-
toconductive detectors requires a direct study of the
kinetics of free carriers as well as charge carriers
bound to an impurity. A time-resolved pump-probe
experiment, registering pump-induced changes in
probe transmission through a sample, at the free-
electron laser (FEL) FELBE facility of the Helmholtz-
Zentrum Dresden-Rossendorf has been used to deter-
mine relaxation dynamics of free holes and electrons in
germanium doped by gallium (Ga) and antimony (Sb).

Experimental

Different Ge crystals were grown and doped to typical
levels of ~ 10"/cm’. Samples with the wedged optical-
ly polished facets have cooled down to ~ 5-6 K in a
liquid helium flow cryostat. At such temperatures, im-
purity electrons are bound to their centers and can be
photoionized in the band state continuum by photons
with the energies exceeding the binding energy of a
particular impurity center. An FEL emission at 105 pm
(11.8 meV) providing photoionization of both antimo-
ny (n-Ge:Sb) and gallium (p-Ge:Ga) centers has been
used for pump-probe experiments (Fig. 1).
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Figure 1. Schematic band and discrete impurity level struc-
tures for n-type (a) and p-type (b) germanium. Arrows indicate

the FEL pump-probe optical transitions.
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Data analysis

The analysis of pump-probe experimental data taking
into account all relevant effects is crucial in order to
obtain correct results. Their study with regard to inten-
sity dependencies of the pump light, varying sample
temperature, as well as an external electric field on the
time-resolved pump-induced change of the probe
transmittance can reveal the physical principles of the
relaxation mechanism [4]. For a proper interpretation
of such signal we analyze a time-dependent pump-
probe signal in a convolution form of a Gaussian func-
tion, describing the FEL pulse shape, and a sum of ex-
ponential functions with a scaling factors describing
different contributions in the absorption by the sample:
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where fp is the time of maximum overlap between
pump and probe pulses, At is the full width at half max-
imum of the FEL pulse, «; and 7; are the partial contri-
bution and the time constant for a particular recombi-
nation process i. Analysis shows that for most cases a
two-exponential fit to the experimental dependences
S(1) is satisfactory (Fig. 2).
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Figure 2. Decay time constants derived from the experimental
pump-probe data for n-type (Si:Sb) (a) and p-type (Si:Ga) (b)

germanium as function of the FEL pump pulse energy.

The decay of free electrons in a moderately doped and
low-compensated n-Ge:Sb shows a good agreement
with the well-known cascade capture model [5] and can
be accurately described by a single-exponential decay.
The typical capture time is between 1 and 2 ns (Fig.
2a). At high pump intensities a better fit can be provid-
ed using a two-exponential function S(¢). The typical
time constants around of ~ 200 ps indicate on intraband
relaxation of highly excited free electrons in the con-

duction band, the process governed by intervalley elec-

tron scattering and intervalley phonon emission.

The degenerate valence band in a moderately doped
and low-compensated p-Ge:Ga leads to a strong intra-
band contribution to the relaxation times. That makes a
free hole capture time strongly dependent on excitation
and decreases with increasing pump power from ap-
proximately 4 ns to 1 ns (Fig. 2b). It decreases with
increasing pump energy and increasing compensation,
because of the higher concentration of Coulomb re-
combination centers. The weaker and faster, ;5 ~ 50
ps, contribution is likely for intersubband (light-to-
heavy hole subband scattering).

In conclusion, we have carried out and analyzed the
data offar-infrared pump-probe experiments for deter-
mination of key characteristics of fast relaxation pro-
cesses in doped germanium. The times for moderately
doped and low compensated samples lie in a few ns
scale for electronic capture and intracenter relaxation,
while intraband decay is an order of magnitude shorter.
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