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ABSTRACT

Advanced mission concepts like On-Orbit Servicing or
Active Space Debris Removal require reliable relative
navigation to a possibly uncooperative target. As optical
navigation sensors, 3D-LiDAR scanners provide a three-
dimensional point cloud of the target. For 6-DOF pose es-
timation, the tracker algorithm must be provided with an
initial pose. This paper presents the prototype of a pose
initialization algorithm tailored for the boundary condi-
tions of spacecraft relative navigation. Test results based
on real LiDAR data are evaluated.

Key words: spacecraft relative navigation; pose estima-
tion; lidar.

1. INTRODUCTION

In a Low Earth Orbit the far range camera of a servic-
ing satellite spots its designated target: A science satel-
lite carrying expensive sensors for astronomical observa-
tions. It is adrift. Although its instruments are still fully
operational, a malfunction of its batteries has rendered
the scientific spacecraft widely useless. As the servic-
ing satellite draws nearer, its optical navigation sensors
determine the target’s relative position and thus it can
follow a precise approach trajectory. Soon, the distance
shrinks to tens of meters and the close range camera as
well as the LiDAR sensor begin to track the target’s full
6 degree of freedom pose. With that information, the ser-
vicer calculates an optimal angle for the final approach.
Adhering to that angle, it succeeds in grasping its target
using a robotic arm. The servicer successfully captures
its client satellite and replaces the defective battery unit.
The astronomical satellite may still have years of useful
operational lifetime.

This is how a so-called On-Orbit Servicing (OOS) mis-
sion [EKS08, SLW+09] could look like in the future.
Such missions have the potential to prolong a satellite’s
lifetime considerably before it has to be replaced. Finan-
cial savings could be substantial. A different concept -
Active Space Debris Removal (ADR) - aims not at repair-

ing defective satellites in space, but rather at de-orbiting
them safely and in a controlled fashion [BRD13]. For ex-
ample, this may become necessary if a critical malfunc-
tion prevents a satellite from de-orbiting itself as planned
or if some old upper rocket stage becomes a threat for
other satellites in the same orbit.

Both concepts have a thing in common: The need for reli-
able relative navigation with respect to a possibly inactive
target object. At large distances, only the relative direc-
tion of the target is considered, at a smaller distance, its
relative position is determined and finally, at close range,
its full six degrees of freedom position and attitude - its
pose - is calculated. Knowing about the target’s instanta-
neous attitude and motion is vital for preparing any dock-
ing or grasping maneuver. [BBR14]

Since the target’s position in orbit must be expected to
be only known roughly, optical navigation sensors are re-
quired to obtain real-time data about the target’s position
and attitude with respect to the servicing satellite. One
type of sensor well-suited for providing these data is a
Light Detection and Ranging (LiDAR) based scanner. By
means of the time of flight of laser pulses, it measures the
relative distance to the target. 3D-scanners use a mirror
system to periodically deflect the laser pulses. Thus, a
three-dimensional ”image” of the target is created. This
image can then be used to estimate relative position and
attitude. [RLB12, NTA+06]

The usual way of continuously calculating the target pose
from point cloud data is to use some variant of the It-
erative Closest Point (ICP) algorithm. Given two point
clouds of the same object, ICP iteratively minimizes the
average squared distance between the nearest neighbor
points, thereby calculating the coordinate transformation
with the smallest error [Rus01, SMFF07]. Here, one of
these point clouds is sampled from the reference model,
the other is provided by the LiDAR scanner. In the con-
text of real-time pose estimation, ICP constitutes a track-
ing algorithm. The current pose is estimated based on the
solution of the previous time step. Evidently, a method is
required that calculates the initial pose for the succeeding
tracking algorithm without any a priori knowledge of the
target pose.

The importance of this pose initialization algorithm in



spacecraft relative navigation must not be underesti-
mated. It is true that the tracking algorithm is active
during the complete close range approach, and it is also
true that it constitutes a major factor for overall relative
navigation accuracy and performance. However, with-
out proper initialization the tracker will not work at all.
In that case, unreliable pose initialization may impede a
mission considerably. While a tracking algorithm may
provide a solution with bad accuracy (as long as tracking
is not lost) from time to time which is attenuated by the
navigation filter, a wrong initial pose can not be tolerated.
It may cause the tracker to converge to a local and com-
pletely wrong solution with corresponding consequences
for relative navigation. But reliability is not enough. Pose
initialization also has to be fast. In case tracking is lost
during close range approach, fast re-initialization may be
an important safety factor. And in scenarios that involve
a tumbling target object, fast pose initialization is simply
necessary. The tracker cannot work with out-dated initial
values.

The problem of estimating the pose of an object from a
scan point cloud is equivalent with calculating the trans-
formation between two point clouds representing the ob-
ject from different perspectives. This task is referred to
as range image registration. Usually, the term is associ-
ated with constructing three-dimensional models of real
objects based on range image data which give a partial
view of the object from different viewpoints. Following
the categorization of [SMFF07], fine and coarse registra-
tion methods can be distinguished. The former calculate
very accurate solutions based on initial transformations
(e.g. ICP). The latter do not need any initial informa-
tion and achieve a lower accuracy. The coarse type is
exactly what is needed for pose initialization. Common
methods include spin image, principal component anal-
ysis, genetic algorithms and RANSAC-based DARCES
[SMFF07]. However, at least without any adaptation,
these methods are only of limited suitability in the con-
text of spacecraft relative navigation.

This becomes clear when looking at the boundary condi-
tions of pose initialization.

• In this work, only uncooperative target objects are
considered. There are no markers (retroreflectors)
available for aid. Moreover, the target does not pro-
vide any information about its position (e.g. by
GPS) or attitude.

• Satellites often incorporate symmetries in their prin-
ciple shapes. Moreover, many flat and large areas
(e.g. solar panels) have to be expected.

• Since the target must be tracked in real-time with a
period of at most a couple of seconds, the scan point
cloud will be sparse. In general, not more than a few
hundred points are available. Naturally, the data will
be subject to noise. And since mainly scanning Li-
DAR sensors are considered in this work, the point
distribution will also be unstructured; there will be
no matrix-like ordering of the points. Additionally,

scanning the moving target takes a certain amount
of time, naturally, and therefore results in a distorted
point cloud. However, this effect can be assumed
negligible in the context of initial pose estimation.

• The scan point cloud covers the target only partially
(<50%) but is completely contained in the model,
i.e. in the model point cloud. There is only a single
target object to be considered. Therefore, no seg-
mentation of the scan data is required. LiDAR laser
beams that do not hit the target will simply never
return an echo.

• A low accuracy of the initial pose estimate can be
tolerated insofar the succeeding tracking algorithm
converges to the correct solution. An angular accu-
racy of ± 10 degrees and a translational accuracy of
15% of the target size are considered sufficient in
this paper.

• Since the target may be tumbling, pose initialization
should take at most a couple of seconds on space-
qualified hardware. It has to be considered that com-
puting power is strongly limited on board of a space-
craft.

• In contrast, reliability is highly important. If a solu-
tion is provided, it must be the correct solution. No
solution is preferable over a wrong solution.

Looking at the aforementioned coarse range image reg-
istration methods: Spin image is computationally ex-
pensive and strongly depends on point cloud resolution.
Principal component analysis requires a sufficient num-
ber of points and a large overlap. Genetic algorithms
also demand high computing performance. RANSAC-
based DARCES shows long processing times for large
point clouds and the accuracy depends on point cloud
resolution. Since in spacecraft relative navigation in-
volving LiDAR sensors the number of points are lim-
ited and compromise concerning accuracy can be made,
an approach oriented towards RANSAC-based DARCES
[CH99] looks the most promising.

This paper presents the prototype of a pose initializa-
tion algorithm which is tailored for the requirements
of LiDAR-based spacecraft relative navigation for OOS,
ADR and alike scenarios. The algorithm shows some
similarity with RANSAC-based DARCES, although it
differs from this concept in some major aspects. Test
results based on real LiDAR data obtained from simu-
lations with the the European Proximity Operations Sim-
ulator (EPOS) are given. Finally, future work to improve
the algorithm are indicated.

Throughout this paper, the spacecraft that actively carries
out e.g. the OOS maneuver is denoted chaser. The client
spacecraft or the piece of space debris is called the target.
This terminology is generic and covers many mission sce-
narios where relative navigation is important. The com-
bination of position and attitude is called pose.
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Figure 1. Illustration of expressions related to scan and
model points used in this paper.

2. ALGORITHM

It is given a model of the target, usually a three-
dimensional mesh derived from a CAD-model, in the tar-
get frame, as well as a scan point cloud in the LiDAR
frame. The goal is to obtain the coordinate transforma-
tion between LiDAR frame and target frame. For rea-
sons that will become clear below, the target mesh is
sampled to obtain a point cloud of the model, hence-
forth denoted model point set or simply model set M :=
{m1,m2, . . . }. Similarly, the LiDAR data is called scan
point set or simply scan set S := {s1, s2, . . . }. In terms
of range image registration, a scan set is registered with
a model set, thereby calculating the transformation that
leads to the minimum error between both point sets.

The algorithm’s principle strategy involves choosing a
subset of scan points - a query (point) set Q :=
{q1,q, . . . }, Q ⊆ S - and identifying these very points
in the model point set, giving a match (point) set A :=
{a1,a, . . . }, A ⊆ M . With this correspondence given,
the transformation can readily be calculated, using e.g.
least-squares fitting [KSA87]. It is not necessary to de-
rive any features using neighborhood information or cur-
vature etc.. Figure 1 gives an overview of the terms used.

To find candidate match sets from query sets, we ask
”What is the most simple property of the query set which
can be found in the model set?” It is the distance between

pairs of points. In this paper, these point-pairs are called
segments. A segment is characterized by a length and
its associated two points. For example, a scan segment
{si, sj} has the length L{si, sj}. A segment represents
an unordered pair of points, i.e. {si, sj} = {sj , si}. As
indicated in Figure 1, scan segments, query segments,
match segments and model segments are associated with
the different point sets. The query set Q can be charac-
terized as a number of segments {qi,qj} with i 6= j and
i, j = 1 . . . |Q|. The segment lengths L{qi,qj} could
be interpreted as a table or matrix, where columns and
rows relate to the query points. This matrix can be con-
sidered characteristic for the query point set. Any set of
model points, i.e. any match set, which shows point-to-
point distances consistent with those of the query set, is a
candidate for correctly representing the query set in the
model. (Due to ambiguities because of geometry and
noise, a match set fulfilling this criterion can, but must
not be the correct solution.)

The statement that a model segment is consistent with
some query segment, i.e. that the lengths are similar, im-
plies some kind of tolerance. This is due to the finite reso-
lution of the model set and to the presence of noise in the
scan set. Therefore, while scan and query segments have
a definitive length only, model segments additionally are
assigned a minimum and a maximum length. This defini-
tion is used to keep this tolerance range generic. A query
segment is consistent with a model segment, if the query
segment’s length lies between minimum and maximum
length of the model segment.

Lmin{mh,mi} ≤ L{qj ,qk} ≤ Lmax{mh,mi}

The condition is henceforth abbreviated

{qj ,qk} J {mh,mi}

The width of the interval must be chosen according to the
resolution, possibly specific for each segment. Here, half
of the distance of a model point to its nearest neighbor
model point is chosen as an approximation of the point’s
local resolution. For a segment, the individual local reso-
lution of both points is subtracted from the actual length
of the model segment to obtain the minimum length, and
added to obtain the maximum length.

With this notation, given a query set Q with size |Q|, a
match set A with size |A| = |Q| is a candidate match set
if

{qi,qj} J {ai, aj} (1)

for all segments, ∀ i, j ∈ 1 . . . |A| with i 6= j.

In the following way, all candidate match sets for a given
query set are found progressively.

Let Q := {q1,q2,q3, . . . } be a query set of size |Q|.
Query points q1 and q2 are considered first, i.e. the first
query segment. All model-point-pairs, i.e. model seg-
ments with a length consistent with that of the first query
segment, have to be found. From each such model seg-
ment, a candidate match set is created. I.e.

{A|A ⊆M, |A| = 2, {q1,q2} J {a1, a2}}



But with only two points no coordinate transformation
can be calculated. The next query point q3, is now con-
sidered. The model point set is searched for all points
with distances to match points 1 and 2 consistent with the
distances of query point 3 to query points 1 and 2. For
every model point that fulfills this condition, a match set
is created. In other words, for each former match set of
size two, it can be found 0, 1 or more match sets of size
three.

{A|A ⊆M, |A| = 3,{q1,q2} J {a1, a2},
{q2,q3} J {a2, a3},
{q1,q3} J {a1, a3}}

Three points, a triangle, is the minimum to calculate a co-
ordinate transformation. Among these candidate match
sets are some that lead to a coordinate transformation
with sufficient accuracy for the succeeding tracking al-
gorithm. At this point, in principle, all these coordinate
transformations could be calculated and applied to the
whole scan point set to filter out the best solution by the
averaged squared distance sum.

But can that effort be reduced by identifying match point
sets, i.e. triangles that are likely to lead to wrong solu-
tions? For that purpose, the remaining query points are
considered. For each match set, a model point consistent
with the next query point is searched. As soon as one
is found, it is added to the match set and the next query
point is dealt with. If none is found, the whole match
set is discarded. The difference to the original first three
points should be emphasized. Match sets are not created
for each next model point that is consistent with the other
match points and the query set. The question is rather,
can one (or more) or none be found? Example: Given
A = {a1, a2, a3} which is consistent with the first three
elements of Q, try to find a m ⊂M that fulfills

{q1,q4} J {a1,m}
{q2,q4} J {a2,m}
{q3,q4} J {a3,m}
{q4,q4} J {a4,m}

If one can be found, a4 = m is added to the match set, ob-
taining A = {a1, a2, a3, a4}. Otherwise the match set is
discarded completely. This is executed until the remain-
ing candidate match sets have the same size as the query
set. The idea behind this is that a correct match set should
also be consistent with a larger number of query points,
for these very points are indeed present in the scan and
can thus be expected to be present in the model. A wrong
match set should, sooner or later, fail to pass this test.

The result is a considerably smaller number of candidate
match sets of which some may represent the match set
in the model with sufficient accuracy and which all have
the same size as the query set, fulfilling (1). There can
only be as many as or fewer than the original triangles,
i.e. match sets of size 3.

This routine, findCandidateMatchSets, is sum-
marized in Figure 2 as a Nassi-Shneiderman diagram.

Figure 2. Nassi-Shneiderman diagram of routine
findCandidateMatchSets.

The remaining steps are trivial and have already been in-
dicated. All candidate match sets are used to calculate the
transformation. Then these transformations are applied
to the whole scan set and the averaged squared distance
sums of the nearest neighbor points are calculated as er-
ror metric. The transformation with the smallest error is
reported as estimated pose.

Note that the size of the query set is critical in the rou-
tine findCandidateMatchSets. Since the real scan
data includes noise and a small fraction of outliers, a
query set that is too large will have all candidate mach
sets be discarded. If the query set comprises too few
points, a large number of candidate match sets will be
found and this will worsen performance. But how is
the optimal query size determined? A small change to
findCandidateMatchSets handles this problem.

A query size is chosen so large that no candidate
match sets of the same size can be found. Let C :=
{A1, A2, . . . } be a set of candidate match sets. In
findCandidateMatchSets, instead of discarding a
candidate match set A as soon as no more consistent
model points are found, the following cases are consid-
ered. If the candidate match set in question is as large
as the other candidate match sets in C, it is added to C.
If A is strictly larger, all other candidate match sets are
removed from C first, before A is added to C. How-
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Figure 3. Overview of used data structures.

ever, if it is smaller, it is simply discarded. The result is a
number of candidate match sets of equal size which rep-
resent the largest match sets consistent with the first |A|
query points in the query set that could be found. Check-
ing any of these match sets for another query point would
fail. In essence, as many of the original triangles as pos-
sible are discarded while keeping those with the highest
probability of being accurate ones. This approach works
because it is guaranteed that any point in the scan set is
contained in the model set. As a consequence, the candi-
date match sets are as large as or smaller than the query
set, |A| ≤ |Q|.

To speed up routine findCandidateMatchSets a
combination of pre-calculated data structures is used (see
Figure 3). So-called segment trees play an important
role. Note that the term segment in ”segment tree” has
a slightly different meaning than the segments, i.e. point-
pairs as used throughout this paper. In short, a segment
tree is a data structure that efficiently stores intervals for
fast lookup. The tree can be used for rapidly reporting
all intervals stored in the tree that contain some value
[dBCvKO08]. And this is precisely what can speed up
the correspondence search. Each model segment has a
minimum and a maximum length, in other words, it rep-
resents an interval. Each scan/query segment has a single
definitive length. To find a model segment that is consis-
tent with some scan or query segment, such a tree can be

used to report all model segments fulfilling the condition

{qj ,qk} J {mh,mi}

One tree - here called main tree T - stores all model
segments {mi,mj}, i 6= j, i, j ∈ 1 . . . |M |. Each
model segment in the main tree is associated with pre-
cisely two model points. And each model point is as-
sociated with another segment tree, called a subtree in
this paper. The subtree of model point 1 T(m1) stores
all model segments that start (or end) at point 1, i.e.
{m1,mj}, j 6= 1, j ∈ 1 . . . |M |. Finally, two ta-
bles are stored for minimum and maximum model seg-
ment length, These tables are basically the matrices
Lmin{mi,mj} and Lmax{mi,mj} for all segments. Fig-
ure 3 gives an overview of the data structures. How
can these data structures accelerate the search? To see
this, let’s consider another example. A query set Q :=
{q1,q2,q2} is given, as well as a corresponding match
set with the two first match points A := {a1,a2}. Ac-
cording to findCandidateMatchSets, all model
points mi have to be found that are consistent with the
already found match points and with the query set, which
is equivalent to the conditions

{q1,q3} J {a1,mi}
{q2,q3} J {a2,mi}

Instead of going through all points, T(a1) is used to
rapidly provide us with all model segments that have
a1 as one of their points and fulfill the first condition
above. The segments’ other points are the very mi that
fulfill the first condition. The second condition is ap-
plied to these segments by looking up minimum and
maximum segment lengths in the tables. The main tree
is used for first search, when there haven’t been deter-
mined any match sets yet. Considering L{q1,q2}, the
main tree reports all model segments fulfilling condition
{q1,q2} J {mi,mj}.

But there is another possibility to speed up the corre-
spondence search. The query points can be ordered
in such a way that the overall number of necessary it-
erations is minimized. To see this, assume a situa-
tion where findCandidateMatchSets returns can-
didate match sets with the same size as the query set. To
recapitulate: The first match point corresponds to the first
query point, the second to the second, etc.. If the order
of query points is changed prior to the search, the rou-
tine will return candidate match sets with an accordingly
changed order so that query and match points are still as-
sociated correctly. So, the order of processing the query
points can be chosen freely without altering the result.
The principle job of findCandidateMatchSets is
to discard ”bad” match sets. The earlier in the search
(early meaning small match sets) wrong candidates can
be discarded, the fewer consistency checks have to be
carried out later in the search when match sets are al-
ready large. The probability of discarding a match set is
higher, if there are only few possible model segments in
the subtree for the query segment in question. By order-
ing the query points such that the query segment with the



lowest number of possible model segments occurs first,
the query segment with the second lowest number second
etc., the number of overall consistency checks is mini-
mized for a given query set. The main tree can easily be
used to report only the number of model segments. Thus,
the reordering can be done efficiently.

To account for this semantically: From a query set Q :=
{q1,q2, . . . } a query sequence Q̃ := (q̃1, q̃2, . . . ) is
created by reordering. Respectively, the correspondence
search takes a query sequence and returns a number of
candidate match sequences Ã := (ã1, ã2, . . . ).

The improvements and changes made to
findCandidateMatchSets above, are sum-
marized in the Nassi-Shneiderman diagram de-
picted in Figure 4. The improved routine is called
findCandidateMatchSequences. Note that the
ordering of query points is done as a pre-step for the
correspondance search and is therefore not depicted in
the diagram.

There is one final piece missing. How is a query set cho-
sen from the scan set? In [CH99], the authors suggest
for their RANSAC-based DARCES approach to choose
points that form a triangle as small as possible above
some edge length threshold. Thereby, they reduce the
volume of possible candidate points in the model. But,
by using the pre-calculated data structures, our algorithm
works differently and is not subject to such restriction.
Moreover, in spacecraft relative navigation, the target will
always be some kind of satellite. As already indicated in
the introduction, such satellites have a relatively simple
major shape, usually some primitive like a cube or prism.
This implies large and flat surface areas. If the first three
initial query points are chosen to form a small triangle,
there is an enormous number of possibilities to place this
triangle on the aforementioned flat faces and thus an enor-
mous amount of possible match sequences at this stage of
the correspondence search. For these reasons, a different
approach is followed here. The idea is to cover the ma-
jor shape of the target uniformly, implying query points
that cover ideally the whole volume of the scan set. A
sampling method well-suited is farthest point sampling
[ELPZ97]. For the algorithm in this paper, the sampling
is started with a random initial scan point to allow mul-
tiple major iterations of the algorithm without using the
same query set over and over again. The next sample is
chosen to be the scan point with the largest distance to
the initial point. The following sample has the largest
distance to both already sampled points and so forth.

Now all parts necessary to assemble the complete al-
gorithm are available. It is summarized in the Nassi-
Shneiderman diagram depicted in Figure 5 as routine
estimatePose. The input is formed by a scan point
set and a model point set. First, the query set is ob-
tained from the scan set by farthest point sampling with
a random initial point. This query set is then reordered
into a query sequence for optimal performance of the fol-
lowing routine findCandidateMatchSequences.
This routine returns a number of candidate match se-

Find all model segments that are consistent with query 
point 1 and 2.

For each candidate match sequence:

Find all model points consistent with match point 
1 and 2 in the candidate match sequence and 
with query point 3. Create a candidate match 
sequence for each of those points.  

INPUT: model point set, e.g. model segments and 
query sequence

RESULT: candidate match sequences of length 2

RESULT: candidate match sequences of length 3

For each candidate match sequence:

While match length <= query length:

Search one model point that is 
consistent with the points in the match 
sequence and the next query point.

(At least) one model point 
found?

True False

Discard 
the 
match 
seq..

Append the 
model point 
to the match 
sequence.

RESULT: candidate match sequences with 
greatest length found so far

OUTPUT: all candidate match sequences with the 
greatest length that could be found

ROUTINE: findCandidateMatchSequences

Longer match 
seq. found 

before?
True False

If match seq. 
strictly longer, 
discard all other  
match seq. .

Add match 
sequence to 
solutions.

Figure 4. Nassi-Shneiderman diagram of routine
findCandidateMatchSequences.

quences as large as or smaller than the query sequence.
The transformations between query sequence and each
candidate match sequence is calculated by least-squares
fitting [KSA87]. For each of these transformations, the
RMS value of the averaged squared distance sum be-
tween scan point set and model point set is calculated as
an error metric. The very transformation with the small-
est error is chosen as the estimated pose, provided that
the error is below some threshold. If this is not the case,
the whole process is repeated with a different query set.

3. ALGORITHM VERIFICATION

In this section, the algorithm is tested with point cloud
data obtained by real LiDAR sensor hardware. The data
represent one test trajectory from a larger test campaign
conducted by the German Aerospace Center (GSOC) in



findCandidateMatchSequences

Figure 5. Nassi-Shneiderman diagram of routine
estimatePose.

Oberpfaffenhofen, Germany, for EADS Astrium (now
Airbus Defense and Space) which provided the LiDAR
sensor, the target mockup and simulated approach trajec-
tories. The test campaign involved the European Proxim-
ity Operations Simulator (EPOS) located at GSOC.

3.1. Setup

Figure 6 gives an overview of the EPOS laboratory. The
main elements of the facility are two standard industrial
robots, one of them mounted on a linear real. Each robot
has six Degrees of Freedom (DOF). Along with one DOF
of the linear rail, 13 DOF are available for simulating
the relative position and orientation of two spacecraft in
Rendezvous and Docking (RvD) scenarios. A real-time
control system allows conducting Hardware-in-the-Loop
(HiL) tests with real sensors and true-to-scale satellite
mockups. A 12 kW daylight spotlight provides realis-
tic illumination conditions concerning power density and
sun-resembling spectrum. [BWMT10, TB11, TB12]

For the test case trajectory, a mockup of the target satel-
lite was mounted to the flange of robot 2 and the LiDAR
sensor breadboard to the flange of robot 1. Figure 7 gives
an impression of this configuration. During the test, the
robots are controlled according to a simulated approach
trajectory such that the relative motion between sensor
and target is identical to the simulated motion, just like it
is expected to occur during an OOS mission in space.

Figure 6. Layout of EPOS facility.

The EPOS simulator shows a translational accuracy of
< 2mm (3σ) and a rotational accuracy of < 0.2 deg (3σ)
[TB12].

The topmost photo in Figure 8 allows a closer look at the
true-to-scale target mockup. It consists essentially of two
parts: The main body is formed by a prism with a hexag-
onal base. And a cylindrical docking boom is mounted
along the central axis of the main body. The overall
length along this central axis is approximately 2.2m, the
main body measures roughly 1.5m from solar panel to
opposite solar panel and 0.8m from hexagon to hexagon.
The mockup’s surface consists of materials with realistic
optical properties compared to a real satellite. Note the
high symmetry of the target. Rotating it around the cen-
tral axis through multiples of 60 deg results in the same
silhouette, save for some small details.

Figure 8 also shows the rendered mesh of the target
mockup and the derived model point set.

Figure 9 depicts the scanning LiDAR sensor breadboard
as it is mounted to the flange of robot 1. The 4 ns wide

Figure 7. Look into the EPOS laboratory hall.



Figure 8. Photo, mesh and model point set of target
mockup.

laser pulses are reflected by a single gimbal-mounted mir-
ror, which oscillates in both axis with different frequen-
cies to generate a scanning pattern of more or less par-
allel lines on the target. The wavelength of the laser is
1550 nm and the pulse repetition rate 30 kHz. For the
trajectory considered in this paper, the mirror frequen-
cies were chosen such that the sensor field of view was
scanned completely about three times per second.

An exemplary scan set is shown in Figure 10. Only the
points are included that represent the target. All other
points like the floor or the walls of the laboratory have
been removed. This was done for the complete test tra-
jectory and accounts for the actual situation in space. The

Figure 9. LiDAR breadboard mounted to robot flange.

number of scan points varies between about 600 and 900.

The 400 scan sets belong to a 130 s long trajectory.
The distance between chaser and target varies only lit-
tle around 8m. Figure 11 shows the target’s reference
position over time with respect to the sensor. The target
is tumbling slowly combined with a spin about the princi-
ple axis. Figure 12 shows the target’s reference attitude in
euler angles over time. Taking into account the rotation
order ZYX for the diagram, the spin about the target’s x-
axis and the tumbling motion mainly present in the other
axes is clearly seen.

The pose estimation results in the subsequent subsec-
tion have been created with a desktop computer (Intel
Core i5 780 @2.8 GHz, 8 GiByte RAM, Windows 7 Pro-
fessional) using the following parameters. Poisson-disk
sampling was used to obtain a model set of 301 points
representing the target mesh. This is precisely the model
set depicted in Figure 8. The size of the query set was 15.
As a minimum value for the averaged squared distance
sum 0.015m2 was chosen.

3.2. Results

In Figure 13, the distance error between estimated posi-
tion and reference position is given as a histogram, along

Figure 10. Example of a scan set.



Figure 11. Reference position with respect to LiDAR.

Figure 12. Reference attitude with respect to LiDAR. (Ro-
tation order ZYX)

with mean, maximum and minimum values.

Respectively, Figure 14 shows the distribution of the de-
viation between estimated attitude and reference attitude.
The figure shows the absolute value of the Euler angles,
again including mean, maximum and minimum values.
The target’s symmetry is removed from Euler angle X.
Multiples of 60 deg are subtracted. Thus, the Euler angle
X error always lies between 0 deg and 30 deg.

The processing time is given in Figure 15. This time in-
cludes all steps of the algorithm presented in this paper.
However, it does not include any pre-processing steps re-
quired for calculating the segments, the tree data struc-
tures and the segment tables. In a real mission, these cal-
culations would be carried out beforehand.

The algorithm requires about 27 MByte of memory, in-
cluding the data structures.

Figure 13. Position error distribution.

Figure 14. Rotation error distribution.

3.3. Discussion and Possible Improvements

Considering the size of the target mockup, the position
error (Figure 13) is of a reasonable magnitude. Even the
few outliers with roughly 28 cm can still be tolerated.

The angular errors (Figure 14) differ distinctly for the
different Euler angles. Looking at the angles Y and Z,
a mean error of 5 deg is absolutely acceptable for pose
initialization. But there are also few but distinct outliers
at about 20 deg. Most likely, these are cases where the
initial sampling of the scan set leads to a query set with
many inaccurate scan points. Generally, such outliers
could be reduced by decreasing the threshold for the aver-
aged squared distance sum, thereby increasing the num-
ber of major iterations. But this would also lead to an
increased processing time. Looking at the distribution,
there are only very few outliers with such large angular
errors, which relativizes the problem. The angular error
around the X axis is a different matter. It seems that the
angle around this axis cannot be determined at all. The
error is distributed uniformly between 0 deg and 30 deg.
The reason is evident: The target shows a certain symme-
try around its x-axis. Due to the hexagonal shape, there
are ambiguous orientations. Apparently, the algorithm
is hampered by these ambiguities and doesn’t even find
one of the ambiguous orientations correctly. Although
symmetries are a principle problem all range image reg-
istration algorithms show to some degree [SMFF07], here
this is definitely a point for improvement. However, we
are confident that the succeeding tracking algorithm eas-
ily converges to one of the ambiguous orientations about
the x-axis.

Figure 15. Processing time distribution.



Figure 15 shows the processing time distribution. Note
that in the overall majority of tests, processing times lie
somewhere below 200ms. However, there are very few
outliers with very large processing times up to 800ms.
The possibility of especially noisy scan data cannot be
excluded. Considering the prototype status of our algo-
rithm, these values are satisfactory.

In general, the next steps should involve increasing the
algorithm’s performance further. This has two aspects:
The initial pose can be calculated faster or, by setting a
smaller threshold for the average squared distance error,
the accuracy can be increased while keeping processing
time constant.

We see potential in improving the implementation itself.
The algorithm involves many layers of hierarchical loops
where small optimization can have large effects. Execu-
tion could also be accelerated by decreasing the number
of model segments without reducing the resolution of the
model set. This could be achieved by carrying out a vis-
ibility analysis. What point-pairs cannot be scanned to-
gether at all? For example, the segments of points on
totally opposite sides of the target could be excluded.

4. CONCLUSION

Reliably and rapidly calculating the initial pose of a tar-
get in spacecraft relative navigation is an important step
in any OOS, ADR or similar mission. The paper has
presented the prototype of an algorithm that calculates
this initial pose estimate based on 3D-LiDAR point cloud
data. The algorithm determines scan-point/model point
correspondences by comparing point-pair distances. This
is accelerated by sophisticated processing of tailored data
structures. Tested with real LiDAR hardware at the EPOS
facility, the prototype algorithm shows promising results.
Average angular errors of 5 deg and position errors of 10
cm are achieved in a mean processing time of about 70
ms.
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