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Abstract

This thesis is about the creation of a decider, which is able to evaluate decision trees
and utility tables. The decider enables the robot to decide by its own, which action
should be performed in the actual situation. Afterwards the decider is used for the
calibration process of time of flight cameras with non-overlapping field of views on a mobile
platform. A framework is the main objective of this thesis, which can be utilized for known
problems as Localization and Exploration in mobile robotics. Therefore, clear interfaces
will be designed, to ensure that the framework will be used in future works. After the
implementation of the decider a decision tree is designed containing the calibration’s
process. This tree must have clearly specified actions and states, which can be observed
by the robot itself. At the end the combination of the decision process with the calibration
will be evaluated.
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Zusammenfassung

Diese Arbeit behandelt die Erstellung eines Entscheiders, welcher in der Lage ist, Entschei-
dungsbäume und Nutzentabellen auszuwerten. Der Entscheider gibt dem Roboter die
Möglichkeit, selbstständig auszuwählen, welche Aktion in der aktuellen Situation für ihn
am besten ist. Dieser wird anschließend in der Kalibrierung von Tiefenkameras mit nicht
überlappenden Sichtbereichen auf einer mobilen Platform eingesetzt. Diese These zielt
darauf ab, ein Framework zu gestalten, welches für bekannte Probleme in der mobilen
Robotik eingesetzt werden kann. Das bedeutet, es müssen klare Schnittstellen definiert
werden, um zu gewährleisten, dass dieses Framework auch in anderen Teilgebieten ver-
wendet werden kann. Nach der Implementierung des Entscheiders wird ein Entschei-
dungsbaum ausgearbeitet, welcher den Ablauf des Kalibrierungsprozesses darstellen soll.
Dieser muss klar definierte Aktionen und erkennbare Zustände haben, welcher der Roboter
eigenständig analysieren kann. Abschließend soll der Entscheidungsprozess und dessen
Kombination mit der Kalibrierung evaluiert werden.
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1 Introduction

In the last decades the use of mobile robots in the industry has grown significantly. In
order to keep this process on track the research on this topic is getting more important.
This trend will lead to robots, which will be capable to do even more human tasks than
robots can do today.

Key elements of mobile robots are Localization, Exploration, Navigation and Simulta-
neous Localization and Mapping (SLAM) [36]. This thesis introduces an approach in
decision theory to improve the execution of these elements. The approach enables the
system to decide, which step should be the next. This selection depends on the present
situation and enhances the possibility to reach a better result. The result of this thesis
is a framework for decision making, which can select an action out of a range of actions.
Furthermore, the evaluation of decision trees and utility tables is possible.

All the key elements of mobile robots contain a perception of the environment. Moreover,
each key element consists of many steps and in the most steps the perception is funda-
mental. The environment is perceived by different kinds of sensors and the resulting data
can only be used if these sensors are calibrated [33]. In order to achieve an efficient and
autonomous calibration, this work combines the framework for decision making with the
sensor calibration. The development of this calibration is not a part of the thesis.

In this thesis the phrase camera is used similar to the phrase sensor, because Time of
Flight Cameras (ToF) are going to be calibrated. These cameras perceive depth data
instead of color information. The data from these cameras is used for the calibration [14].

According to Strobl, "camera calibration is the process of estimating the parameters of a
camera model" [33]. These parameters can be divided in two main classes. The intrinsic
parameters are the first component of a camera being calibrated. These describe the
sensor format, the focal length, the principal point and the lens refraction. They are
needed to correct the sensor data and to minimize the error of the camera [40]. In this
thesis the intrinsic parameters are already given by the manufacturer of the sensors.

The component of the calibration related to this thesis are the extrinsic parameters. These
contain the six Degrees of Freedom (DoF) of the camera, which describe the position and
the orientation of the camera frame. This transformation is necessary to have the ability
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of combining the camera data with an existing world model. This means the depth
points, which are generated by the ToF cameras, are converted in points in 3D. Then
this transformation is used to guarantee that all data stets have the same coordinate
origin. Without this information the relation between these data and a measurement
from another camera is difficult.

1.1 Motivation and Goal

The need for robots acting autonomously has increased significantly in the last years, since
there is a higher demand for robots. These robots are able to support humans in every
imaginable situation. Furthermore, the robots can help humans in a case of emergency.
These tasks can only be performed if the robot is able to decide what action should be
performed next. Therefore, autonomous decision making is an important part of modern
mobile robotics.

The idea of this thesis is to combine the theoretical approaches in decision theory in a
framework tested with the calibration of the ToF cameras. In this framework an agent is
implemented. Russell and Norvig define an agent with: "An agent is anything that can be
viewed as perceiving its environment through sensors and acting upon that environment
through actors" [30]. This means an agent is equal to a decider and able to choose the
next action out of a range. This decision process depends on the circumstances. At the
end an agent is going to be used in the calibration process of the robot.

This leads to the following subgoals of this thesis:

1. Implementation of an agent, which can evaluate utility tables.

2. Development and implementation of a decision tree to utility table converter.

3. Building up a decision making framework, which is expandable to the use of impre-
cise probabilities.

4. Developing a decision making model, consisting of a decision tree of the robot and
then the decision theory framework is used for the calibration process of a mobile
robot.
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1.2 Related Work

1.2.1 Calibration

The calibration of the ToF cameras can be divided in some subclasses, which are repre-
sented in Figure 1.1. This calibration as mentioned before consists of two main compo-
nents. The first component are the intrinsic parameters, which describe the intern camera
model. They are represented in the left branch of the tree in Figure 1.1. These parameters
are not the goal of this thesis and are given by the manufacturer of the cameras.

Many problems in mobile robotics are solved by a combination of several range cameras.
Their data can only be used if the transformation describing the position and orientation
of the camera is known. This transformation is the second component of the calibration
tree and is called extrinsic parameters. They are described in the right branch of the tree
in Figure 1.1. This transformation TT

C describes the position and the orientation, in
which T is the Tool Center Point (TCP)1 and C the camera [35].

There are two different common hardware approaches, which can be used to estimate this
transformation, refer to the left branch of extrinsic calibration in Figure 1.1. The envi-
ronment can be perceived by a vision based sensor, which only receives color information.
In this case two cameras are used to perform a pattern recognition. This technique is
called stereo, for further information see [33].

1The TCP is the point on the robot, where the camera is mounted. This point could be at the end of
a robot arm.

Calibration

intrinsic calibration extrinsic calibration

hardware configuration scene registration approaches

with movement

with pose
comparison

vision based sensor

depth based sensor

photogrammetric

self calibration

Figure 1.1: Calibration class tree
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In the second approach the six DoFs of the camera are determined by a depth based
sensor. This geometric information is used to estimate the pose of the camera [14]. This
thesis uses ToF cameras and the provided color information of the sensors is not used,
because the data is not used for visual representation. Furthermore, the resolution of the
sensor is not high enough for a feature detection approach. In this method edges or other
elements in a scene are detected in the visual data [15].

The calibration of the ToF camera is made by observing a calibration object and compar-
ing a created point cloud of this object with the depth image of the camera. This process
is called photogrammetric calibration [6]. Instead of this, the self calibration uses a static
scene. In this scene no object has to be known [40]. The photogrammetric calibration is
used in this thesis, because the result of the calibration can be better compared than in
an approach where the result depends on the environment [6].
The determination of the transformation can be made with two different techniques, refer
to the right branch of the extrinsic calibration:

1. Movement of the hand and observe the motion of the eye:

The underlying function of this technique uses the motion of the TCP from one
point to another and compares it with the motion, which is perceived by the
camera. These motions are represented by matrices in R4×4. Early solutions
of this problem separate the rotation and translation of the transformation,
according to [31]. Chen combined 1991 rotation and translation in the screw
theory [8]. In 1995 Lu and Chou introduce the eight-space formulation based
on quaternions, linearly optimizing using singular value decomposition [26].

2. Simultaneous estimation of the hand-eye transformation and the pose of the robot
in the world:

This method compares the pose of the camera in the world with the pose of
the TCP mounted on a robot in the world. This formulation was first used
by Wang 1992 for hand-eye calibration [38]. With quaternions Zhuang gets a
simple linear solution by using singular value decomposition [41].

For more information about these different approaches see [33].

This thesis uses a derivative of the second method, in which the pose in the world is
relative to a Calibration Body (CB). The pose is estimated with two laser scanners.

A method which combines the calibration process with the wheel odometry data was
introduced by Heng, Li and Pollefeys in 2013 [17]. The pose of the vehicle is estimated
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by combining the wheel odometry with the visual odometry. So the pose is more accurate
than in previous methods. Moreover, this approach calculates natural feature points on
the vision data and only requires the vehicle to be driven around to calculate the extrinsic
parameters [17].

In 2014 Fernandez et al. published a new approach for the extrinsic parameters, requiring
only to observe one plane from different viewpoints. This method uses the fact that the
most scenes consist of large planes and then compare these in each view to estimate the
pose of the sensors [12].

But these approaches depend on their surroundings, like the color information of the
camera or the planes which should extend over different views. This thesis tries to avoid
these dependencies, to ensure that this calibration process works in different environments
and additionally without the availability of color information.
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1.2.2 Decision Making

In 1713 the model of the expected utility was first mentioned in letters from Nikolaus
Bernoulli to Pierre Rémond de Montmort [11]. It describes the benefit an action is gaining
during the execution. Afterwards Daniel Bernoulli spent time on the expected utility and
formulated the St. Petersburg paradox. In this paradox the expected utility grows without
bound. He solved this problem by defining a utility function, which restricts the continued
growth of the expected utility. Furthermore, he laid the foundation of risk [3].

Thomas Bayes defined with the bayes theorem the fundamentals of conditional probabil-
ities [2]. Today there are two kinds of statisticians, the subjectivists and the objectivists.
The first argue that every personal contribution to the data is a benefit. So the use of
probabilities, which are estimated by a person should be used. The objectivists say these
probabilities increase the error and the usage of these probabilities should be avoided [13].
This thesis uses conditional probabilities and additionally it is a subjective approach.

Von Neumann and Morgenstern displayed the minimax strategy in their book "Theory of
Games and Economic Behavior". Every two-person zero-sum game with finite strategies
and the possibility of mixed strategies has one solution vector [37]. It is often mentioned
as the ground breaking text, which created the interdisciplinary research field of game
theory. Furthermore, they succeeded in expanding the utility theory with the possibility
of ranking.

The history of game theory and decision making coincides in many parts. Especially
because game theory could be seen as an abstract model of decision making [22]. In the
year 1950 the book of E. Lehmann introduced the phrase of "decision theory" [24].

However, today decision making is an academic subject of its own, it is used in many
fields like economics, statistics, politics and social science [16].

Decision making can be separated by the question, who is the decider. The first part
has an individual person and in the second part a group decides, which action should be
performed [23]. This thesis uses the individual person approach.

A separation under the available conditions is possible, too. So a decision can be made
under the conditions’ certainty, risk or uncertainty. Moreover, there is a combination out
of risk and uncertainty [27]. In this thesis the uncertainty approach is used. Hence, all
tasks, which are measured by the robot, have always some uncertainty.

Two kinds of uncertainty are distinguishable. The first contains the knowledge about the
laws of randomness and the second has no knowledge about them. This means in the
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first case are probabilities, which can be determined easily. In the second approach a
measurement is necessary to specify the probabilities, because the laws of randomness are
not known [10]. The used robot represents the second case, because there is no possibility
to determine the probabilities of the used system before the execution.

Moreover, decision making can be distinguished between normative and descriptive deci-
sion making. In the first one an agent has full information about all future states. The
second approach tries to describe, how humans behave [28]. This thesis uses a weakened
normative decision maker, since the robot tries to get as much information as possible.

If the probabilities of a state of nature can not be determined precisely, the algorithm can
use imprecise probabilities. This procedure replaces the single values of the probabilities
with intervals of them [1, 19]. This thesis does not use them, because of the occurring
complexity. But this thesis builds up a base, which is expandable to this approach.

Today there are different approaches to solve the modern problems in mobile robotics.
The calibration of the ToF cameras for example could be solved by an expert system,
which consists of different rules and a knowledge base [21]. But expert systems are not
used in this thesis, because the effort to sustain an expert system is higher than using a
decision maker.

This thesis uses sequential decision making. It relies on the statement that the problem
must be formulated as a sequence of independent decisions. This means the state of the
system defines, which actions are available. Sequential decision making is often used with
markov models. But in this thesis decision trees are used, because markov models have
no guarantee to determine [25].

Reinforcement learning is an approach to improve the execution of a task and an alterna-
tive to decision making. This is not used in this thesis, because of the circumstance that
good results will be only achievable if the number of repetitions is high [34].
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2 Fundamentals

2.1 Decision Making

A decision of an agent consists of two main components. At first there are the states Θ of
nature representing the actual states of the system. Every system has n states of nature
θi, i = 1, ..., n. An agent has to select between m possible actions. Therefore, the second
component are the available actions aj, j = 1, ...,m. These actions consist of different
steps, which will be performed by the robot if the action is selected [27]. Combined these
two in a table lead to a so called utility table, refer to Table 2.1. Each element u(aj, θi) of
this table describes how much utility this action gains, a higher value is therefore better.
For example has element u(a2, θ1) a higher value than u(a1, θ1). Therefore, the agent can
take action a2, to maximize its own gain, if the agent should know that the state of nature
is θ1 .

Table 2.1: Utility table

a
Θ

θ1 θ2

a1 1 4
a2 3 2

2.1.1 Bayes Strategy

A probability is called "a priori", if its value can be estimated before the utility table is
calculated. Each state θi of nature has a probability pi of occurrence. The sum of all
products of these probabilities pi and the utilities u(aj, θi) lead to the expected utility
U (aj) =

∑n
i=1 pi · u(aj, θi) for a defined action aj. The action which maximizes U (aj) is

the so called Bayes strategy [10].
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2.1.2 Maximize and Minimize Strategies

The order of the minimization and maximization specifies the name of the strategy. At
the beginning the row is evaluated and as result each row has one value. Afterwards for
each of these values the second execution is performed. The first execution defines the
first name and the second execution is the last name [10,27,29].

Minimax Strategy

The minimax strategy maximizes the minimum utility, this will be useful, if the best
action for the worst case is searched.

âl = max
i=1,...,m

min
j=1,...,n

u(ai, θj) (2.1)

The result of Equation 2.1 used with the Table 2.1 is u(a2, θ2) = 2. It is u(a2, θ2), because
the lowest value for the first action a1 is one and for second is two and the maximum of
them is the value of the second action a2.

Maximax Strategy

The maximum expected utility is maximized with the maximax strategy. The maximax
strategy will be used, if the highest possible gain is searched.

âl = max
i=1,...,m

max
j=1,...,n

u(ai, θj) (2.2)

The maximax strategy shown in Equation 2.2 has as result the utility u(a1, θ2) = 4 in the
Table 2.1.

Maximin Strategy

In loss tables the maximin strategy is used. The aim of it is to maximize the minimum
loss or in a utility table it minimize the maximum utility. This can be useful if the worst
action in a utility table is searched.

âl = min
i=1,...,m

max
j=1,...,n

u(ai, θj) (2.3)
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Equation 2.3 chooses out of each row the element with the highest value. The minimum
of these elements is the result of the maximin strategy. In Table 2.1 the biggest minimum
in the available actions is u(a2, θ1) = 3.
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2.2 Hardware and System

2.2.1 OmniRob

The used robot is the "omniRob" produced by KUKA, which can be seen in Figure 2.1.
It is an omnidirectional mobile robot, this means that it uses meccanum wheels. This
type uses several wheels on the brink of each of the four wheels. This small wheels are
mounted diagonal to the big wheel and enable the robot to drive in each direction, without
turning the big wheels’ axis [20]. The omnirob has several modifications from the German
Aerospace Center ("Deutsches Zentrum für Luft- und Raumfahrt") (DLR), this includes
for example the ToF cameras. These eight cameras are mounted around the ominRob.

Figure 2.1: The omniRob, with the DLR expansions. Source: DLR internal

2.2.2 Sensors

In this thesis two different types of sensors are used, both receive depth information.

ToF Cameras

This thesis describes a method to calibrate the extrinsic parameters of a Time of Flight
Camera (ToF). ToF cameras measure the time the light needs to travel from the camera
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Figure 2.2: The left picture contains the ToF camera, which is used on the omnirob.
Source: DLR internal
The Sick laser scanner is presented in the right picture [32].

to some reflecting object and back to the sensor. The time is then used to calculate the
distance. The sensors, which are used in this thesis, are pictured on the left in Figure 2.2.
These sensors have a resolution of 64 × 48, that results in 3072 points per camera. The
robot has eight of these cameras, which generate 24576 points per measurement. To ensure
the right position of these 24576 points in the world, the determination of the camera pose
must be precise. In Figure 2.3 the cameras’ Fields of View (FoV) are represented with
red pyramids. The volume of these solids can be seen by the cameras. Furthermore, this
figure shows the pose of the cameras at the robot.

Laser Sensors

The ToF cameras are calibrated by using the Sick laser sensors, which are already mounted
and calibrated by the manufacturer. They are represented on the right in Figure 2.2. This
sensor type only perceives data in a plain. But the precision is usually higher than with
ToF devices. The used laser sensor has a resolution of 541. This means it returns 541
distances to surfaces on the same level as the sensor. These laser sensors are mounted
horizontally at the used robot and are already calibrated by KUKA. In Figure 2.3 the
green lines, which are clearly visible in the lower right corner, are the laser beams of the
laser scanner.
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Figure 2.3: The FoVs of the ToF cameras are pictured with red pyramids. Green strips
show the laser beams, they are clearly visible in the lower right corner.

2.3 L3D

The C++ Library Lib3D (L3D) was used for solving all robot tasks mentioned in this
thesis. This library is developed at the DLR Institute of Robotics and Mechatronics
and is still in development. It provides many tasks of a mobile robot as localization,
mapping, path planning and execution, sensor simulation and SLAM. Furthermore, it
offers methods to process data and contains an ICP algorithm to align different point
clouds, which is used in this thesis [4, 9].

2.4 Mobile Robot Environment

The Mobile Robot Environment (MRE) is essential for testing the L3D framework. The
result of this thesis was tested in MRE, which simulates the robot. This tool was developed
by the institute and is able to simulate the sensors and a mobile platform, which behave
like the robot in the real world. Furthermore, this software is used with the same interfaces
like the real robot is used, so there is nearly no difference between the real robot and the
simulation of it. This simulation was written to enable the developers fast testing of
their software without needing to start the whole robot system and build an up specific
environment. A part of the simulation is the visualization, which shows the robot in the
environment.
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The simulation tool consists of different parts, the following three parts are the most
important for this thesis:

1. Simulation of the ToF and laser sensors, the simulation of these sensors use a polygon
based model of the environment and calculates the distance from the position of the
sensor to the next polygon. A gaussian model is used to add noise to this distance.
The gaussian model based on the noise model given by the manufacturer.

2. Simulation of the mobile platform. This tool simulates the movement of the robot.
The simulated motion depends on measurements, which were made to determine the
precision of the robot’s translation and rotation. This means motion noise models
are used to simulate the robot as real as possible.

3. Visualization of the omniRob in the mobile laboratory in a viewer, represented in
Figure 2.4. The viewer enables a quick overview over the actual status of the system.

Figure 2.4: The omniRob is placed in the simulated mobile laboratory, presented in the
viewer.
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3 Concept

This chapter describes the underlying algorithms for the decision making library and the
calibration process.

3.1 Decision Making

This thesis separates decision making in two classes. In both types a decider or a so called
agent chooses the action performed next. The main objective of an agent is to pick the
best combination of actions to maximize its own gain. In the first type the decider knows
exactly all eventualities and what happens next. But this type is incompatible with the
real world, because the states in the future only have a probability of occurrence, which
can not be estimated definitely. The second type is oriented towards the real world, where
the possibility of an entering a state is not 100.0% distinct. This means, a decision is a
choice made between alternative courses of action in a situation of uncertainty [10].

3.1.1 Decision Tree

A decider can handle the uncertainty by using a decision tree, as depicted in Figure 3.1.
Such a tree consists of three types of nodes:

1. In random node a outcome is selected by chance. Each outcome of a random node
has a probability of occurrence. This value can be estimated or measured by many
repetitions. A random node is usually represented by a circle.

2. In a decision node the agent chooses a branch of the tree. It is represented by a
rhombus. The selection of an action in a decision node can produce costs, which
reduce the gain of this walkthrough.

3. The result nodes are the leaves of a decision tree. These nodes contain the result
gained by an agent in the case the node is entered. This node type is diagrammed
by a rectangle.
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Figure 3.1: Two lotteries are pictured as a decision tree. In both a coin toss game is
offered. The upper coin toss game has a higher venture and the lower game
has a lower venture. An agent can decide between these two lotteries.

The root is the start point of a tree. The path down to a leaf contains all decision and
random nodes, which are visited in this walkthrough.

The root of the tree is a decision node, which means that an agent can choose between
the actions playing this game with venture or without venture. In the first lottery, the
one with venture, an agent can win more than in the second. But it has the possibility to
lose, in contrast to that in the second lottery an agent always win. Therefore, the second
lottery has no venture. For instances an agent chooses "playing with venture" and attains
the random node "venture". In this node a coin is tossed and the corresponding outcome
is selected. In this example the outcome is head and the agent gain 16. If the outcome
is tail, the agent will lose 8. For the lottery without venture an agent will gain 8 if the
outcome is head else an agent will gain 4. This instance shows the function of a decision
tree and where an agent is able to decide which branch he should take [29].

3.1.2 Strategy

An agent tries to maximize its gain. Therefore, it tries to find the best action in each
decision node. The agent could use strategies to solve this problem. A strategy specifies
for each decision node, which action should be selected. The amount |s| of strategies is
calculated by Equation 3.1.

[h]|s| =
n∏

k=1

|dk| (3.1)
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In this equation the amount of actions in a decision node dk is |dk|. There are n decision
nodes in a tree. The product of all these amounts is the quantity of strategies |s|, since a
strategy is a permutation of all decision nodes’ outcomes.

In Figure 3.1 are two strategies, because the decision node has two outputs. The first
strategy contains only the decision "play with venture" and the second strategy the action
"play without venture".

Algorithm to determine the Strategies

The strategies are determined with an algorithm, which parses the tree and finds all
possible strategies. The amount of strategies can be calculated by Equation 3.1. For
example a tree has seven decision nodes and each of these nodes has two children, as
pictured in Figure 3.2. Based on Equation 3.1 this tree has 128 strategies . Moreover,
each strategy contains seven decisions, one for each decision node. This means for this
simple tree, all strategies have 128 · 7 = 896 decisions. The reason for this high number is
that a strategy saves all decisions for each decision nodes even if the corresponding node
is not entered. In a decision node a strategy decides, which action should be performed
and thus which child is the next. Therefore, the quantity of decisions in a strategy can
be reduced by removing the decisions of the tree, which are not reached by this strategy.
An easy example can show this approach. For instance an agent has to choose between
buying and not buying a car, shown in Figure 3.3. If he chooses the second action, he will
not have the possibility to choose the colour of the car. In the example explained above
with the seven decision nodes, the amount of strategies would be reduced to eight.

In addition to reduce the amount of single decisions in each strategy, the implemented
algorithm only saves the leaves of the possible paths through the decision tree. That is

Figure 3.2: The pictured decision tree contains seven decision nodes, no random nodes
and eight result nodes. It has 128 strategies based on Equation 3.1.
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Figure 3.3: The tree represents an agent’s process buying a car. An agent can decide
between buying and not buying a car. If it decides to buy the car, it will be
capable to choose the colour.

possible, because the paths between the root and the leaves are statically defined. There-
fore, the rest of the decisions are implicitly given by the leaves. These two approaches
save memory and enhance the performance, because in the example with seven decision
nodes only eight leaves have to be saved instead of 896 decisions.

It is possible to find all strategies of a tree by parsing the tree and searching for each
combination of actions. However, this approach is inefficient, because for each strategy
the whole tree has to be parsed. This can be avoided by a recursive algorithm. Such a
recursive algorithm starts in the root. The result of each visited node is the combination
of the children’s results. This means the algorithm walks down to a leaf and returns.
After this return the algorithm walks up the tree to the next intersection, which could be
the father of the leaf, too. In this node the algorithm start visiting the other children.
This is continued till all leaves are visited. Afterwards the algorithm returns to the root.
This process is pictured in Figure 3.4. The first entering steps of the algorithm are shown

Figure 3.4: The functionality of the recursive algorithm for the strategies are shown here.
The numbers on the arrows indicate the order of the execution.
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with red arrows, after that the arrow color switches to orange. The last entering steps
of the algorithm to find all strategies are shown in yellow. The numbers on the arrows
indicate the order.

The combination process, which is performed in the recursive algorithm differs for each
node type:

• Random node: The strategies do not contain the outcomes of a random node.
Therefore, all children must be visited to guarantee that all strategies are found.
This means in a random node a multiplication of the children’s results is performed.
Two strategies are multiplied, by combining each element of the first strategy with
each element of the second strategy. A combination of two strategy elements is
the concatenation of these elements, the order is not important. An element of the
strategy is a leaf or the last point which is reached with this strategy. In an example
with two children the first child has three strategies and the second four. The result
would contain twelve strategies. In the case a node has only one child, all the results
are copied. If there is more than one child, the results of the children are multiplied
consecutively.

• Decision node: The strategies of the children are all copied in a decision node,
because the children of this node contain the actions, which lead to them and there-
fore all children are needed. In an example with two children the first child has two
strategies and the second four the father would have six single strategies.

• Result node: A result node, as a leaf of the tree, is the start of a new strategy,
because this node specifies a range of actions, which lead to this leaf. This node
creates an empty strategy and adds an information to identify this node again.
Afterwards this strategy is returned to the father.

This means for one strategy, that the creation of it happens in a result node. New elements
can only be added to this strategy in a random node. This will be possible, if the other
children have strategies, which can be multiplied with this one. As mentioned before a
decision node only copies the whole strategy, without changing the elements.

The algorithm will act different, if the actual node is a random node and the whole
branch under this node does not contain any other decision nodes. In this case several
new strategies would be generated in this branch and then consecutively multiplied in the
random node. But these strategies do not have any new decisions, since a decision node
is missing. Therefore, these strategies are not used. In order to achieve this, a random
node, returns to the father a message. This message contains the information that the
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father should use its own action to build up a new strategy.

In the case the subtrees of this father have no decision nodes either and is no decision
node by itself, this father would behave like described above. He returns to its own father
the same message, because he has no strategies to add. If this signal is moved upwards
to the root, no strategies will be generated, because an agent must always reach a leaf by
a selectable action.

Example

Figure 3.5: A decision tree, which pictures a coin flip game. The game will start with the
possibility to select, if an agent wants to play this game or not. If it plays the
game, the coin is tossed and the result will define the next node. If the result
of the coin flip is head, an agent get a gain with a value of five. In the case
the result is tail, an agent can decide between two different coin flip lotteries.
If it decides to play the lower lottery, it has the possibility to win ten, if the
result is tail, otherwise if it is head, the gain will be four. In the other case
the upper lottery is played. If the random node "coin flip 3" has as result tail
then the gain will be eight, else the result is head and the gain will be nine.

A decision tree is illustrated in Figure 3.5. It represents a coin flip game, at the start the
agent has the possibility to play the game or not. If he is not playing the game, the gain
will be zero. In the case the agent decide to play the game, he has to pay three and then
the random node "coin flip" is reached. The coin is flipped and the outcome determines
which node is performed next. If the outcome is head the agent has no choice to make
and he would take the gain of five, which is presented in the rectangle. In the event of tail
the agent gets the possibility to decide between to different lotteries. Both actions to this
coin flip produce costs with a value of one. In the upper coin flip with the name "coin flip
3" the outcome with tail is eight and with head nine. If an agent takes the lower "play
again" action the "coin flip" will be reached and a coin is tossed. The result defines the
gain of the agent, if it is tail an agent would gain ten, otherwise he would gain four.
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This game has three strategies, to get this result the recursive algorithm from Section 3.1.2
is used. The algorithm starts in the root and enters the upper child in Figure 3.5. This
child returns the strategy containing the action "not play". Afterwards the random node
with the name "coin flip 1" is visited to calculate the strategies of this node the children
are entered. The lower child, which is reached with the event of head, returns to its father
that no actions are performed by this node or the children. Two strategies are the result
of the upper child, one is "play again2" and the second is "play again3". The strategy
"play again3" is created by the return of the random, which does not have any decision
nodes. This return of the random node contains the message that the father should use
the action which lead to the random node. The other action "play again 2" has the same
procedure. These two strategies are return to the first coin flip, where the result is copied.
This means the result of this first coin flip is the two strategies with the content ("play
again2") and ("play again3"). The result is returned to the father and in this decision
node with the name "start game" the strategies of the children are copied together. It
means that this tree has three strategies.

3.1.3 Conversion from Decision Tree to Utility Table

As mentioned in Section 2.1 every utility table has states of nature in the columns and
actions in the rows. The actions in the rows of the utility table are the strategies of the
decision tree. This means, a chosen action contains all decisions needed for this strategy.
The columns of the utility table contain the states of nature of a decision tree. They are
explained in the next section.

The conversion of a decision tree to a utility table offers the possibility to change the
probabilities of the states of nature, during the execution. Furthermore, this technique
will be useful if the probabilities for the states of nature are imprecise or are only known
lying within a specified interval. For further information of interval probabilities see [1,19].
In addition, it is easier to design a decision tree, because it is possible for the creator to
separate the single states and decisions. Therefore, the conversion is useful and needed
to guarantee the future use of this software package.

States of Nature of a Decision Tree

The states of nature of a decision tree represent all possible outcomes for all random
nodes in the decision tree. This is similar to the strategy, which is a combination of the



Chapter 3 Page 22 of 48

Table 3.1: Table for the states of nature for Figure 3.5 based on Equation 3.2

permutation nr.
state of nature c1 c2 c3

1 tail tail tail
2 tail tail head
3 tail head tail
4 tail head head
5 head tail tail
6 head tail head
7 head head tail
8 head head head

results of the decision nodes. The amount of states |n| of nature can be calculated with
Equation 3.2.

|n| =
m∏
j=1

|rj| (3.2)

A decision tree has m random nodes and in this equation |rj| is the amount of possible
outcomes of each random node rj. Equation 3.2 has the same rate of growth as the
Equation 3.1 of the strategies. For the same reasons as in Section 3.1.2 the amount of
these states of nature have to be reduced. Otherwise, the processing time growth is too
high.

The states of nature of a decision tree can be calculated with a recursive algorithm.
Without the optimization the result would be the permutation of all random nodes’
outcomes. The number of states of nature can be reduced by combining all states of
nature in which the difference can never happen simultaneously. This means the branches
under the outcomes of a random node, which do not happen in this state of nature are
not handled in it. For example in Figure 3.5 there are three random nodes, which both
perform a coin flip. The outcome of the first coin flip is called c1. The second coin flip
with the name "coin flip 2" is abbreviated with c2 and the random node named "coin flip
3" is c3. In this decision tree would be eight states of nature without the optimization.
These states of nature are represented by Table 3.1. The optimized algorithm combines
all c1 = head, because in this case the random nodes c2 and c3 are not entered anymore
and therefore the results of them are not important. In Table 3.1 this would be the rows
with the numbers from 5 to 8.

The amount of outcomes in a state of nature, can be reduced by just saving the ends of
the possible paths through the decision tree. That is possible, because there is only one
path between the root and the path end. Important to note is that these paths always
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end in a random node’s outcome. This implies that branches under random nodes, which
do not contain any other random nodes, change nothing at the states of nature.

As mentioned before the state of nature algorithm is similar to the strategy algorithm.
This means the states of nature are searched all at the same time to prevent the save of
the visit of a branch. The following recursive algorithm calculates the states of nature for
each node. It starts in the root of the decision tree and parses down to the leafs. The
states of nature of the decision tree is the result of the root node. The execution of this
algorithm differs for each node type:

• In a random node all states of nature are copied from the children, because the
outcomes of this node lead to the leaves, which specify one path for each state of
nature. In the case all children of a random node have no states of nature to add,
the random node will add for each child a new state of nature. This is the only
way to create new states of nature. For example with three children, where any has
three states of nature to return, the father would have nine states of nature.

• In a decision node the results of the children are multiplied, since the state of nature
does not define, which action will be selected by an agent. Therefore, the state of
nature have to cover all possible outcomes of this decision node and this is possible
by a multiplication. Two states of nature are multiplied by combining each element
of the first state with each element of the second state. The combination of two state
of nature elements is the concatenation of the elements, the order is not important.
The results of the children are multiplied consecutively for the case that there is
more than one child. In an example with two children each child has three states of
nature. The amount of states of nature in this example would be nine.

• A result node has nothing to add and returns without doing anything.

Probabilities of the States of Nature

A state of nature has a conditional probability and this value is given in the decision tree.
It is calculated by starting in the root of the decision tree. For performance reasons only
the leaves of possible outcomes for one state of nature are saved. These leaves are now
used to generate the path through the tree to them. For each new edge out of a random
node the edge’s weight is multiplied with the start value 1.0. This means all visited
random node outcomes are multiplied together to receive the conditional probability of
the state of nature. This is possible, because the random nodes directly under a decision
node are independent and all probabilities are conditional.
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Utility of a State of Nature with a Strategy

The utility of a strategy is the value of the gain received, by performing the actions, which
are possible in this state of nature. Therefore, a state of nature defines for each random
node, which outcome will be the next. Moreover, a strategy specifies for each decision
node, which action should be performed by an agent. So a combination of both leads to
exactly one way down the tree. This way can be seen in Figure 3.6. In the picture the
decisions of this path are red and the random node outcomes are blue. As a result, the
utility is the sum of all actions’ gains on this specified path and the gain of the reached
result node. Usually the action produces costs, but in the decision tree only one type is
presentable and that’s why the actions are gains too and therefore the values are negative.
The gain for the path in Figure 3.6 is the sum of the actions "play" and "play again3" with
the result node (9). This means the utility for this path is defined with −3+(−1)+9 = 5.

Figure 3.6: The decision tree shows the example that the state of nature is a combination
out of "tail1" and "head3" and the strategy is a combination out of "play"
and the "play again3". These combinations define the utility. It is reached,
with the decisions in red and the random node outcomes in blue.

3.1.4 Roll Back Analysis

The roll-back-analysis is used to find the best action. This is similar to the decision
criterion mentioned before. But it works on decision trees and do not need utility tables.
The algorithm works recursively and the behaviour differs for each node type:

• In a random node, the probabilities of occurrence for the outcomes are multiplied
with the corresponding results of the leaves. The final result of this random node is
the sum of these products.

• The result of a decision node is the highest value of the children.

• In a result node the result value is the contained value.



Chapter 3 Page 25 of 48

Figure 3.7: The simple tree provides a lottery, which has the possibility to play a high or
low risk lottery in the case an agent lost the first one.

With this method the decision tree in Figure 3.1 has for the first action "play with venture"
four and for the second action "play without venture" six, in the case the coin flip is fair.
This means an agent, who always wants to maximize its own gain would take the second
action "play without venture".

This best strategy can be used to walk through a decision tree. In the decision nodes the
strategy defines which action should be taken and in the random nodes the nature decide
what happens [29].

3.1.5 Decision Criteria

After the conversion of a decision tree into a utility table, the decisions criterion can be
used to determine the strategy, which should be performed by an agent. In Section 2.1
different decision criteria are described.

Figure 3.7 presents a decision tree, which contains a lottery. The lottery has a chance to
win of 0.1 and to lose the probability is 0.9. In the case an agent wins the gamble, it has
to choose between getting now eight gain or in a year twelve. If an agent loses the lottery,
it can decide between playing a high or a low risk lottery. If it chooses the high risk
lottery, the probability to win twelve will be 0.3 and in case of losing the gain, it will be
three. But if it selects the low risk lottery, it will be able to win six with a probability of
0.8. If an agent loses the low risk lottery, the gain will be two. This lottery was designed
to show the difference between the various decision criteria.

This lottery pictured as a decision tree in Figure 3.7 can be converted by the algorithm
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Table 3.2: The utility table is the conversion of Figure 3.7. It contains the different states
of nature and all possible and useful strategies.

state of nature e(6)c(12) e(6)d(3) f(2)c(12) f(2)d(3) won

probability 0.216 0.504 0.054 0.126 0.1

play low risk,get now 6 6 2 2 8
play low risk,get next year 6 6 2 2 12
play high risk,get now 12 3 12 3 8
play high risk,get next year 12 3 12 3 12

presented in Subsection 3.1.3. The result of this is shown in Table 3.2. It contains
strategies, states of nature, their probabilities and the corresponding utilities between a
state of nature and a strategy. The labels of the states of nature are the leaves’ labels,
which can be reached by this state. The actions’ labels are the combination of decisions,
which will be performed if the strategy is selected.

Bayes Criterion

The Bayes criterion is exemplified here with the example out of Table 3.2. The algorithm
shown in Subsection 2.1.1 is applied on the data of this table. Therefore, each row
element is multiplied with the probability of the corresponding state of nature and after
that all rows are summed up. Then the row with the highest value is selected and the
action of this row shows the strategy, which should be performed. This approach uses the
probabilities to get the strategy, which has the best gain depending on the probabilities.
In the Table 3.2 the algorithm would select the last action with the name "play high risk,
get next year".

Minimax Criterion

The maximization of the minimum utility is called minimax criterion. It selects the
minimum of each row, this means after that each action has one value and then the
maximum of these values is taken. This method tries to maximize the lowest value. It is
a pessimistic approach and in the Table 3.2 the result would be "play high risk, get now".
This strategy guarantees that the value is never smaller than three.
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Maximax Criterion

The maximax criterion is an optimistic approach, which maximizes each row and then
selects the action with the highest value. This can be useful, if the strategy with the
highest gain is searched. In the Table 3.2 the maximax criterion would return the action
with the name "play low risk, get next year". Usually the result should be "play high
risk, get next year". But both strategies have twelve as result. Therefore, the algorithm
takes the first of them, which is "play low risk, get next year".

Maximin Criterion

In the case, a cost table is used instead of a utility table, a maximin criterion is used.
This criterion is similar to the minimax criterion. The only difference is the temporal
order. This criterion selects the highest value in a row and then minimize these values.
It can be used to show the action, which should never be selected. For the Table 3.2 the
maximin criterion’s result is the strategy with the name "play low risk, get now".
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3.2 Calibration

The part of the calibration, which is treated in this thesis, are the extrinsic parameters.
Explained in Subsection 1.2.1, the extrinsic calibration is the precise determination of the
camera frame’s pose, relative to a known point. In the used case this known point is the
TCP. This transformation TCP to camera TT

C is the result of the ToF calibration.

The transformation TT
C is represented by a matrix in R4×4. The TCP describes the pose

where the camera is mounted. This point could be at the end of a robot arm or in the
present case at the center top of the robot, refer to Figure 3.8. This figure shows the
transformation represented by a red arrow from the base of the robot to the top of the
center BT

T . This point is the TCP point of the cameras. The transformation TT
C is

pictured by a blue arrow, which starts at the TCP and points towards the camera frame.
These two transformations combined in BT

C enable the robot to merge different data
sets from different cameras into on coordinate system. This will be possible, if the camera
transformation BT

Cn is known for all n cameras.

The primary idea of the calibration in this thesis is scanning the known calibration object
with laser scanners and estimating the pose of this calibration object. Afterwards the

Figure 3.8: The blue vector describes TT
C and the red vector contains BT

T , with
B = robot base, T = TCP point and C = camera frame.
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camera perceives the calibration object and estimates the pose of it, too. The difference
of this two pose estimations is the transformation, which is added to the old calibration
matrix of the camera, to receive the new wanted transformation TT

C . The big advantage
of this appraoch is the independence of the odometry. In contrast to that usual methods
utilise the odometry to determine the pose of the robot in the world and compare that
pose to the estimated pose of the camera [7].

3.2.1 Calibration Body

As described before there are different approaches to calibrate sensors on a mobile plat-
form. In this thesis a photogrammetric calibration is used. Therefore, a new calibration
object was created, which should enhance the calibration process.

The calibration body has to meet some criteria, which are described below:

1. Sensors do not perceive all materials equally well. This results in a demand of a
good perceptible material.

2. The calibration body must have a wide base to enable the estimation of the pose
with the laser sensors.

3. The depth image of a ToF camera must be filled up with the calibration body. This
is necessary to guarantee as many data as possible used for the calibration process.

4. In order to find the rotation of the object in three DoFs the faces on top of the
calibration body should point in different directions.

5. The weight of the body should be as low as possible.

These requirements result in a body with a wide base and a top body with faces, which
point in different directions. The represented calibration body shown in Figure 3.9 is
made out of styrofoam, because white styrofoam is well perceptible by the sensors. The
base of the body is 15.0 cm high and at the front 1.0 m width. The back of the calibration
body has a width of 1.5 m to increase the probability that the laser sensors of the robot
see the left and right side of the base.

The cameras only see the top of the calibration body, therefore the body needs three
faces which are orthogonal to each other. But this is not suitable, since three faces,
which are orthogonal to each other build up a corner. This is a problem, because the
ToF measurement can not be performed well in corners, since the influence of bouncing
light is too high. Therefore, two faces, the bottom of the top and the main background,
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Figure 3.9: The calibration body is made out of styrofoam. The base is at the front 1.0
m width and at the back 1.5 m. The height at the back is 65 cm and at the
front the calibration body is 15 cm. In the middle of the calibration body is
a prism. This prism enables the detection of three different faces.

are orthogonal to each other. But with two faces the determination of only two DoFs
is possible. To enable the detection of the third DoF a prism is added in the center of
the background. The depth of the prism is 35.0 cm and the width is 1.0 m. This top
layout enables the robot to determine the pose of the calibration object. The distance of
the camera to this calibration object is deliberately chosen to ensure that the sensor only
perceives the calibration object.

3.2.2 Laser Measurement

The Sick laser sensors, which were described in Section 2.2, are used to find the trans-
formation from the laser sensors to the calibration object laserT

CB pbl (CB, pbl (pose
by laser)). The laser makes a measurement and receives a plain of data points. After-
wards the amount of data is reduced with the knowledge of the estimated transformation

laserT
CB pbu (pbu (pose by user)), which comes from a user. The result points should

only contain the calibration object. They should not contain walls or other objects in the
environment. The ICP is used to align these data sets. It calculates the distance between
the points and tries to minimize this distance [4,9]. After about 100 iterations the result
is the transformation CB pbuT

CB pbl. This matrix transforms the estimated pose to the
location, which is measured by the laser sensors. With this transformation it is possible
to calculate the transformation laserT

CB pbl by multiplying laserT
CB pbu with CB pbuT

CB pbl.
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(a) A ToF camera’s depth image (b) The depth data of the ToF camera

Figure 3.10: The (a) picture represents the depth data. A brighter pixel means the point
is closer to the camera. A darker pixel is therefore further afar. In the (b)
picture the data out of the depth image was converted in a point cloud. In
both data sets the wall behind the calibration body is clearly perceptible.
The wall is shown on the right side in both pictures. This wall is filtered
away to enhance the ICP algorithm.

3.2.3 ToF Measurement

In this step the ToF cameras measure the pose of the calibration object. In order to
achieve this, the sensors perform a measurement. The cameras return a depth image
shown in Figure 3.10a. Each pixel of this image pictures a depth value. A white pixel is a
point, which is near to the camera and a black pixel is far away. This image is converted
in a point cloud shown in Figure 3.10b.

In the depth image and in the point cloud are points, which belong to the wall behind
the calibration body. These parts are represented by the black area in the depth image

Figure 3.11: The point cloud used for the ICP algorithm. The wall on the left side behind
the calibration body was filtered away.
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and the points on the left in the point cloud in Figure 3.10. These points are filtered
away under the condition that all points, which belong to the calibration body have to
be in a radius of 1.0 m. This used transformation laserT

CB pbl, which describes the center
of this circle, was calculated in the last section. The resulting point cloud is pictured in
Figure 3.11.

The ICP is used to align the filtered data from the camera with a point cloud model of
the calibration body. The pose is given by the laser scanners laserT

CB pbl. This means,
the ICP returns a transformation CB pbToFT

CB pbl(pbToF (pose by ToF camera). It is
the difference between the pose of the calibration object from the laser laserT

CB pbl and
the pose of the calibration body ToFT

CB pbToF . This transformation is applied on the
transformation TCPT

ToF . The transformations are presented in Figure 3.12. This pictures
shows the transformation baseT

TCP in red and the transformation TCPT
ToF and TCPT

laser

in blue, the lower sensor is the laser sensor and the upper sensor is the ToF camera. The
estimated transformation from the laser laserT

CB pbl and from the camera ToFT
CB pbToF to

the template are green. The upper arrow starts in the ToF and ends at the point, where

Figure 3.12: The yellow transformation surrounded by a green circle represents
CB pbToFT

CB pbl. It is the difference of the lower green transformation, which
shows the point, where the laser scanner believes the CB is and the upper
green arrow. This transformation points at the location, where the ToF
camera measured the CB. The difference is the correction of the ToF cam-
era’s calibration matrix. Both sensors have a blue calibration matrix and the
transformation between the robot’s base and the TCP is red.
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the template will lay if the calibration is right. The lower arrow represents the real pose,
which was measured by the lasers before. The difference between these transformations
can be used as correction of the ToF camera’s calibration matrix. It is represented by a
yellow arrow in Figure 3.12. Both yellow arrows are surrounded by a green circle. These
arrows correct the pose of the ToF camera.
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4 Implementation

The implementation of the algorithms, which were described in Chapter 3, is explained in
this chapter. First the decision maker is exemplified and after that the use of the decision
maker in the calibration is explained.

4.1 Decision Maker

The decision maker or agent decides, which action should be chosen in a decision node.
This concept is implemented by first parsing an input file with the file format Graph
Modelling Language (gml) [18]. This file format is used, because it is human readable.
Additionally, the software "yEd", which is able to change trees easily is available and the
complexity is limited to graphs [39]. For example other formats like GraphML, often used
to save graphs, is twice as big as a gml file. Furthermore, GraphML has a lot of functions,
which are not necessary for a decision tree [5].

After generating the tree out of the gml file, the states of nature of the tree are found by
the algorithm in Section 3.1.3 and are put in the new generated utility table. Afterwards
all strategies are searched with the algorithm out of Section 3.1.2. The utility table is
completed by the utilities. Each of them consists of a strategy and a state of nature. This
utility value is the sum of all action utilities or costs and the value out of the result node.
This can be used for finding the best decision with different decision criteria. These criteria
describe the behaviour for choosing an action in a utility table, referred to Section 2.1.2
and Subsection 2.1.1.

After the selection of the best strategy an agent performs it. Therefore, the execution
starts in the root node and in all occurring decision nodes the strategy defines, which
action will be selected. In the random nodes, the implemented agent has to check the
state of the system to decide the path the execution should follow. This execution is
performed by an agent, which provides a function with the name "startActing()". It
parses the tree and handles the results of the random nodes. The implementation of
possible future agents is supported by setting up an easy agent interface, which only has
one virtual function. This function has the name "performAction()" and takes only the
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name of the action or the name of the random node and the type of the actual node. It
returns the result of this node, in a random node this is the outcome, which represents
the state of nature and in a decision node the actions name is returned.

An implementation of this agent only has to overwrite this one function and define for
the names in the random nodes, what the system has to perform. For example the used
agent for the calibration process can handle inputs like "isCalibrated" or "init". The first
one is the name of a random node. The "performAction()" method returns as result the
outcome of this random node. The second input can be an action name and this one
could start the init process of the robot, which is needed for the calibration.

4.2 Use in Calibration

The approaches, which were developed above are used to calibrate the ToF cameras of
the omniRob. In order to achieve this a decision tree was constructed, which contains
different decisions and observing processes. This decision tree is represented in Figure 4.3.
The creation of this tree consists out of three iterations, which will be exemplified in this
section.

4.2.1 First Iteration

At the beginning a simple decision tree was designed, which is capable to do a simple
calibration. This tree is pictured in Figure 4.1. This tree has no decision nodes with more
than one decision, it was designed to test the calibration process and the capability of the
framework for decision making. But the actions of the decision nodes can be executed by
the robot and the outcomes of the random nodes can be recognized by the system. In

Figure 4.1: First iteration of the decision tree for the calibration process. It contains no
decision nodes with more than one child and only two observing processes,
which are named "laser" and "isCalibrated".
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this figure the decision tree starts with the decision node "start", this is the starting point
for the agent and at this point the agent only has the option to choose the init process.
This selection will not produce any costs. In this init process the intern state is prepared,
which contains the distance between the ToF camera and the body. This distance is
necessary to ensure, that the full advantage of the camera’s FoV is used. In the next step
the agent performs a laser measurement and the random node with the name "laser" is
reached. In this node the data from the laser measurement is evaluated and as described
above the calibration body’s pose is tried to estimate with these data. The result of
the ICP, which describes the correction of the user’s estimation to the laser’s estimation,
contains additional data. These data allow the algorithm to determine the quality of the
measurement. This quality is then used to decide, which outcome of the random node
occurred. For example, the quality is "good" and therefore the corresponding decision
node is entered. In this decision node the agent has no option at all and can only start
the measurement of the ToF cameras. Afterwards, the same procedure as for the laser
is performed. But the result will define if the data is used or not. In this example the
output is "true", which means that this camera is now calibrated. In this example the
result was "good", but for the case the ICP results are not good, the calibration would
stop, with the result "lost".

The evaluation of the measurement’s quality is realized by using the result of the ICP.
The implementation of the ICP algorithm returns some parameters after calculating the
needed transformation to correct the data. These parameters contain the number of
correspondences, which were found between this two data sets, and the mean error between
them. Out of this two parameters the determination of the quality is possible.

4.2.2 Second Iteration

In the first iteration the agent has no choice at all. This can be changed by adding a
new branch to the tree as pictured in Figure 4.2. This branch is appended at the point,
where the laser measurement is evaluated. This means, it will be possible to distinguish
between a good and a bad estimation for the case the object was not found with the ICP.
If the ICP parameters indicate that the alignment did not work well, the bad outcome
will be selected. In this node the agent can decide, if he tries to calibrate or to relocate
the pose. In the relocation the robot tries to find a better pose than before by evaluating
the laser data. After this relocation the laser measurement is performed again. If the
result is bad again, the agent can only choose between stopping the calibration process
or try to calibrate with the bad starting point.
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Figure 4.2: Decision tree for the calibration process in the second iteration. The tree has
the "bad" case included and can handle this situation.

4.2.3 Third Iteration

At least the laser’s result designated "lost" must be processed. In this case the ICP does
not find the calibration body. Usually this means that the execution of the calibration
must be stopped and a human actor must place the calibration body at a better pose.
This can be avoided by performing a random shift. By chance this movement can improve
the pose of the robot and enable a calibration. After this motion a laser measurement
is performed and the same actions as before in the Second Iteration are now performed.
There is only one difference. In the decision node "lost" an agent has to choose between
making a calibration or stopping the execution.
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Figure 4.3: The decision tree provides the calibration for the ToF cameras. It is able to
handle the "lost" scenario. In this case an agent makes a random shift and
then relocates itself.
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5 Test

The goal of this thesis is the creation of a framework for decision making. This framework
is tested in this chapter. At the end the framework for decision making is combined with
the calibration process.

5.1 Evaluation of the Decision Making Process

The evaluation was made with the decision tree out of the Second Iteration, because the
tree of the third iteration generates a table with 99 strategies and 30 different states of
nature. It would not fit in this thesis. So the tree of the Second Iteration is converted
in a utility table with the algorithm, presented in Subsection 3.1.3. The algorithm’s
result is presented in Table 5.1. The first rows contain the states of nature, which are
generated in Subsection 3.1.2. A presented state of nature, as defined in Section 3.1.3, is
the combination of random nodes’ outcomes.

The names of these states of nature are a concatenation of the leaves’ labels, which can
be reached by the combination of these outcomes. For example, the third column of the
upper table represents the state of nature with the name "(6)(2)". In the case this state
happens, the name shows the labels of the leaves, which will be reachable. In Figure 4.2 it
is clearly visible that the leaves "(6)" and "(2)" are reachable over the outcome "bad1" in
"laser". Afterwards "(2)" is reached over "isCalibrated2" with the result of "true". The
walkthrough will end in leaf (6), if the second "laser" measurement has the result "lost2"
and additionally the random node "isCalibrated5" returns true. This example describes
the creation of the states’ names.

The first columns of the table in Table 5.1 contain the actions’ names. They describe the
actions, which were generated in Subsection 3.1.2, these actions are the strategies of the
decision tree. The names of the strategies are the last decisions, which an agent selects
in a walkthrough. For instance the third row of both tables contain the same action
named "calib1,calib2". This name contains the last two decisions, which will be selected,
if this strategy is taken. For reasons of space the word "calibration" is abbreviated with
"calib" in the tables. Refer to Figure 4.2 an agent can reach the actions "calibration1"
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and "calibration2" over two paths. Both ways begin in the node "start" and separate in
the random node "laser". In the nodes after this separation the last decision is made.
This would be "calibration1" in "good" and "calibration2" in "bad". There is no decision
necessary for the result node "(-2)".

The utilities are calculated by using the algorithm shown in Section 3.1.3. The decision
tree can be parsed to get these values. During this walkthrough an outcome can be selected
for each node, because in a random node the state of nature defines the next node and
in a decision node the strategy specifies the next node. The utility in the second column
and the third row of the upper table has a value of four. For this value the state of nature
"(6)(-1)" and the strategy "calib1,calib2" are used.

Table 5.1: The result of the conversion, shown in Subsection 3.1.3. The first rows contain
the states of nature and under each state of nature the corresponding proba-
bility is labelled. The name of a state of nature consists of the leaves’ labels,
which can be reached with this state. The actions’ names are in the first col-
umn under the probabilities, each name represents one path through the tree,
because the name is the last actions’ names, which can be performed in this
walkthrough.

state of nature (6)(-2) (6)(5) (-7)(-5) (6)(2) (6)(-5) (-7)(5) (6)(-5) (-7)(2)

probability 0.023 0.038 0.011 0.012 0.02 0.02 0.006 0.006

calib1,calib2 4 4 -9 4 4 -9 4 -9
calib1,calib3,stop1,calib5 -5 -16 -16 -1 -16 -16 -8 -1
calib1,calib3,calib4,calib5 -5 2 -8 -1 -8 2 -8 -1
calib1,calib3,stop1,stop2 -5 -16 -16 -12 -16 -16 -12 -12
calib1,calib3,calib4,stop2 -5 2 -8 -12 -8 2 -12 -12

state of nature (-7)(-2) (10) (0) (6)(8) (-2) (-7)(-5) (-7)(8)

probability 0.012 0.479 0.119 0.093 0.1 0.003 0.05

calib1,calib2 -9 8 -2 4 -3 -9 -9
calib1,calib3,stop1,calib5 -5 8 -2 5 -3 -8 5
calib1,calib3,calib4,calib5 -5 8 -2 5 -3 -8 5
calib1,calib3,stop1,stop2 -5 8 -2 5 -3 -12 5
calib1,calib3,calib4,stop2 -5 8 -2 5 -3 -12 5

The Bayes criterion is used on this Table 5.1 and the result is "calib1, calib3, calib4,
calib5". In contrast to that the other criteria, like maximin and maximax would take
"calib1, calib2", because the result node with the label "(10)", has in all strategies the
value eight. The criterion minimax would take "calib1, calib3, calib4, calib5" too.
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5.2 Combination with the Calibration Process

In this section the calibration process is compared with and without the decision making
framework. Both tests are made under the same conditions and show the advantages of
the new approach.

5.2.1 Previous State

This work implemented an autonomous calibration process, which enables the robot to
react to the results of different measurements. Before this work the robot has no possibility
to detect a bad measurement and handle this situation. The table in Table 5.2 shows the
translational errors of the calibration process in millimeter before the decision making
framework was used. The translational error is the translational difference between the
real pose and the calculated pose of the camera. The angular error of a ToF camera
is linked to the translational error and therefore it is not shown in this thesis. The
columns contain the translational errors for each ToF camera. The rows represent a test
walkthrough of a ToF calibration for all eight cameras. The last column in Table 5.2
contains the translational errors’ averages of a test. The averages of the translational
errors of a camera are presented in the last row. For example the first test shows a good
calibration process, where the error’s average of all cameras is 69.0 mm. The average of
the average of all cameras is shown in the lower right corner of the table. This means the
average translational error of all cameras is 184.3 mm.

Table 5.2: This table presents the state before the decision making framework is used. The
values are the translational errors in millimeter for each camera and test. A test
is a complete calibration walkthrough. The last row contains the translational
errors’ averages for each ToF camera and in the last column the translational
errors’ average of each test is shown.

Without Decision Making:

Test Nr.
ToF Nr. 1 2 3 4 5 6 7 8 Average per test

1 49.4 90.4 125.1 62.0 93.8 79.2 25.7 26.6 69.0
2 50.7 84.4 100.5 804.1 93.1 28.1 28.7 42.4 154.0
3 49.3 154.5 99.5 654.0 96.9 144.7 34.2 85.7 164.9
4 49.0 83.7 94.3 35.4 88.0 204.0 24.7 1564.0 267.9
5 52.1 59.2 105.2 103.6 183.1 23.3 50.5 90.7 83.5
6 49.5 79.1 134.8 84.9 110.9 118.0 156.8 562.0 162.0
7 50.27 70.9 97.0 1767.0 74.7 1418.0 287.0 96.6 482.7
8 50.7 37.5 93.3 94.7 202.6 91.8 284.0 98.6 119.2
9 50.7 106.1 94.6 71.0 193.4 28.1 326.5 59.7 116.3
10 49.1 43.3 141.3 72.7 91.1 67.9 1272.3 48.6 223.3
Average per ToF 50.1 80.9 108.6 374.9 122.8 220.3 249.0 267.5 184.3
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5.2.2 With the Decision Making Framework

The use of the decision making framework enables the robot to decide, which action should
be performed next depending on the current circumstances. In Table 5.3 the translational
error of the ToF cameras is presented. The error is like before the translational difference
between the real and the calculated pose. This table has the same rows and columns
layout as the table presented in Subsection 5.2.1.

The difference between the table in Subsection 5.2.1 and Table 5.3 is the absence of
high errors. This means due to the decision process the agent is able to detect a bad
laser measurement and then repeat this step to improve the precision. For example the
translational error in test with number seven and camera four in Table 5.2 is 1767.0 mm,
in contrast to that the highest value in Table 5.3 is 404.3 mm for camera six in test
number two.

The approach presented in this thesis tries to detect bad laser measurements and the
corresponding detection of the pose of the calibration body. If the estimation of the
CB’s pose is bad, the whole calibration of the actual camera will be wrong. Therefore,
the detection of this scenario is useful and the results prove the enhancement of the
calibration process.

Table 5.3: The table represents the state with the decision making framework. The trans-
lational errors in millimeter are shown for each ToF camera and test. This
value shows the difference between the real pose and the pose calculated by
the calibration process. A complete calibration walkthrough is called a test. In
the last column the translational errors’ averages of each test are shown and in
the last row are the translational errors’ averages for each ToF camera.

With Decision Making:

Test Nr.
ToF Nr. 1 2 3 4 5 6 7 8 Average per test

1 52.2 36.4 137.7 75.1 232.9 21.5 160.3 30.0 93.3
2 49.5 94.9 252.6 62.3 223.3 404.3 59.2 42.1 148.5
3 50.7 164.0 88.7 59.4 89.2 16.4 42.7 37.2 68.5
4 48.7 96.9 94.4 70.2 258.2 401.6 147.0 57.8 146.9
5 50.8 44.3 257.0 68.9 88.7 38.1 290.3 36.7 109.4
6 50.3 62.3 256.4 60.9 96.3 23.3 81.5 36.5 83.4
7 48.5 53.8 146.6 118.3 82.0 17.8 80.8 19.3 70.9
8 50.9 91.7 147.8 61.8 90.6 38.6 306.0 70.9 107.3
9 51.4 160.1 229.4 64.0 186.2 27.2 266.6 35.4 127.5
10 54.0 45.0 94.8 101.5 100.5 97.8 37.9 37.3 71.1
Average per ToF 50.7 84.9 170.5 74.2 144.8 108.7 147.2 40.3 102.7
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6 Conclusion and Future Work

The goal of this thesis was to create a decision making framework, which contains an agent,
which is able to evaluate utility tables and decision trees. This includes the conversion
of a decision tree to a utility table. In addition an agent’s interface should be provided.
The implementation of these aims was shown in this thesis and an evaluation was made.

During the development of the framework several recursive algorithms were evolved, which
detect the strategies and the states of nature of a decision tree. Moreover, they determine
the states’ of nature probabilities and the utilities. The algorithms were used to convert
a decision tree in a utility table.

After the implementation and testing of the decision making framework, the combination
with the ToF calibration was made. The evaluation of this combination shows that the
calibration’s result on its own is not precise enough to improve the pose estimation of the
camera. However, the decision making framework improves the stability of the calibration
and enables an autonomous detection of bad measurements and defines the behavior for
such cases.

In a future work a new calibration process could be designed and combined with the
decision making framework. This approach could use better laser sensors to improve the
lasers’ pose estimation. Furthermore the utility tables could use imprecise probabilities.
This technique could describe states, which probabilities can not be expressed with one
precise value. Moreover, a reinforcement learning approach could be added to improve
the decision trees, which are created by a user. This can be done by randomly trying
other strategies to control the utilities of the decision tree. The check can be done by
evaluating the results of this random walkthrough.

The decision making framework could be used in different problems in mobile robotics.
For example in a case, where a robot should make a coffee and bring it to someone. During
the execution of this tasks a person could walk in the way of the robot. Now a programmer
could handle all possible situations with several if-clauses or he uses a decision making
framework, which provides the tools to enable the robot to decide by itself, what to do.



Bibliography

[1] Thomas Augustin. On decision making under ambiguous prior and sampling informa-
tion. In S. Moral G. de Cooman, T. Fine and T. Seidenfeld, editors, Proceedings of the
Second International Symposium on Imprecise Probalitities and Their Applications,
page 9–16, 2001.

[2] Mr. Bayes and Mr. Price. An essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to
john canton, amfrs. Philosophical Transactions (1683–1775), 1:370–418, 1763.

[3] Daniel Bernoulli. Exposition of a new theory on the measurement of risk. Econo-
metrica: Journal of the Econometric Society, 1:23–36, 1738.

[4] Paul J. Besl and Neil D. Mckay. A method for registration of 3-d shapes. IEEE
Transactions PAMI, 14(2):239–256, February 1992.

[5] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and M Scott
Marshall. Graphml progress report structural layer proposal. In Graph Drawing,
pages 501–512. Springer, 2002.

[6] Claus Brenner, Jan Boehm, and Jens Guehring. Photogrammetric calibration and
accuracy evaluation of a cross-pattern stripe projector. In Electronic Imaging’99,
pages 164–172. International Society for Optics and Photonics, 1998.

[7] Andrea Censi, Antonio Franchi, Luca Marchionni, and Giuseppe Oriolo. Simul-
taneous calibration of odometry and sensor parameters for mobile robots. IEEE
Transactions on Robotics, 29(2):475–492, 2013.

[8] H.H. Chen. A screw motion approach to uniqueness analysis of head-eye geometry.
In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE
Computer Society Conference on, pages 145–151, 1991.

[9] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range
images. Image and vision computing, 10(3):145–155, 1992.

[10] Herman Chernoff and Lincoln E Moses. Elementary decision theory. Courier Dover
Publications, 2012.

44



[11] P.R. de Montmort. Essai d’Analyse sur les jeux de Hazard. Quillau, 1713.

[12] Eduardo Fernandez-Moral, Javier González-Jiménez, Patrick Rives, and Vicente Aré-
valo. Extrinsic calibration of a set of range cameras in 5 seconds without pattern.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, September 14–18, 2014, Chicago, Illinois, USA, September 2014.
IEEE.

[13] David Freedman. Some issues in the foundation of statistics. In Topics in the Foun-
dation of Statistics, pages 19–39. Springer, 1997.

[14] Stefan Fuchs and Stefan May. Calibration and registration for precise surface recon-
struction with time-of-flight cameras. International Journal of Intelligent Systems
Technologies and Applications, 5(3):274–284, 2008.

[15] Theo Gevers, Joost Van De Weijer, Harro Stokman, et al. Color feature detection.
Color image processing: methods and applications, 9:203–226, 2006.

[16] Sven Ove Hansson. Decision theory. Royal Institut of Technology(KTH), 1994.

[17] Lionel Heng, Bo Li, and Marc Pollefeys. Camodocal: Automatic intrinsic and
extrinsic calibration of a rig with multiple generic cameras and odometry. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, November 3–7, 2013, pages 1793–1800, Tokyo, Japan, November 2013. IEEE.

[18] Michael Himsolt. Gml: A portable graph file format. file format, University Passau,
2010.

[19] Nathan Huntley. Sequential decision making for choice functions on gambles. PhD
thesis, Durham University, 2011.

[20] Bengt Erland Ilon. Wheels for a course stable selfpropelling vehicle movable in any
desired direction on the ground or some other base, April 8 1975. US Patent 3,876,255.

[21] Peter Jackson. Introduction to expert systems. Addison-Wesley Longman Publishing
Co., Inc., 1990.

[22] Anthony Kelly. Decision making using game theory: an introduction for managers.
Cambridge University Press, 2003.

[23] Soung Hie Kim and Byeong Seok Ahn. Interactive group decision making pro-
cedure under incomplete information. European Journal of Operational Research,
116(3):498–507, 1999.

45



[24] Erich Leo Lehmann. Some principles of the theory of testing hypotheses. Springer,
1950.

[25] Michael Lederman Littman. Algorithms for sequential decision making. PhD thesis,
Brown University, 1996.

[26] Ying-Cherng Lu and J.C.K. Chou. Eight-space quaternion approach for robotic hand-
eye calibration. In Systems, Man and Cybernetics, 1995. Intelligent Systems for the
21st Century., IEEE International Conference on, volume 4, pages 3316–3321, 1995.

[27] R. Duncan Luce and Howard Raiffa. Games and decisions: Introduction and critical
survey. Courier Dover Publications, 2012.

[28] Ariane Motsch. Entscheidung bei partieller Information. Gabler Verlag, 1995.

[29] Howard Raiffa. Einführung in die Entscheidungstheorie. Oldenbourg Verlag, 1973.

[30] Stuart Russell and Peter Norvig. Artificial intelligence a modern approach. Learning,
2(3):4, 2005.

[31] Yiu Cheung Shiu and S. Ahmad. Calibration of wrist-mounted robotic sensors by
solving homogeneous transform equations of the form ax=xb. IEEE Transactions on
Robotics and Automation, 5(1):16–29, 1989.

[32] Sick. Sick Laser Sensor S300 Standard, 2010.

[33] Klaus H. Strobl. A Flexible Approach to Close-Range 3-D Modeling. Dissertation,
Technische Universität München, München, 2014.

[34] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT
Press, 1998.

[35] Henry F Thorne. Tool center point calibration apparatus and method, October 10
1995. US Patent 5,457,367.

[36] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, MA, 2005.

[37] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior.
Princeton University Press, 1947.

[38] C-C Wang. Extrinsic calibration of a vision sensor mounted on a robot. IEEE
Transactions on Robotics and Automation, 8(2):161–175, 1992.

[39] Roland Wiese, Markus Eiglsperger, and Michael Kaufmann. yfiles-visualization and
automatic layout of graphs. Springer, 2004.

46



[40] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[41] Hanqi Zhuang, Zvi S Roth, and Raghavan Sudhakar. Simultaneous robot/world and
tool/flange calibration by solving homogeneous transformation equations of the form
ax= yb. IEEE Transactions on Robotics and Automation, 10(4):549–554, 1994.

47



Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original work.
Where other sources of information have been used, they have been indicated as such and
properly acknowledged. I further declare that this or similar work has not been submitted
for credit elsewhere.

Kempten, 20. March 2015

Maximilian Denninger

Authorization

I hereby authorize the university for applied sciences Kempten to publish the abstract of
my work on e.g. printed media or a website.

Kempten, 20. March 2015

Maximilian Denninger

48


	Introduction
	Motivation and Goal
	Related Work
	Calibration
	Decision Making


	Fundamentals
	Decision Making
	Bayes Strategy
	Maximize and Minimize Strategies

	Hardware and System
	OmniRob
	Sensors

	L3D
	Mobile Robot Environment

	Concept
	Decision Making
	Decision Tree
	Strategy
	Conversion from Decision Tree to Utility Table
	Roll Back Analysis
	Decision Criteria

	Calibration
	Calibration Body
	Laser Measurement
	ToF Measurement


	Implementation
	Decision Maker
	Use in Calibration
	First Iteration
	Second Iteration
	Third Iteration


	Test
	Evaluation of the Decision Making Process
	Combination with the Calibration Process
	Previous State
	With the Decision Making Framework


	Conclusion and Future Work
	Bibliography

