
Exploration for
autonomous 3D
voxel mapping of
static indoor
environments with
depth cameras and
2D odometry

 Thomas Wohlfahrt

D
ru

ck
sa

ch
en

ka
te

g
o

ri
e

Technische Universität München
Institute for Media Technology
Prof. Dr.-Ing. Eckehard Steinbach

Deutsches Zentrum für Luft- und
Raumfahrt e. V.

Institute of Robotics and Mechatronics

Master-Arbeit

Exploration for autonomous 3D voxel mapping of
static indoor environments with depth cameras and

2D odometry

Author: Thomas Wohlfahrt
Matriculation Number: 03611145
Address: Steinickeweg 7

80798 München
Email: thomas.wohlfahrt@tum.de

Supervising Professor: Prof. Dr.-Ing. Eckehard Steinbach
Supervisors (DLR): Dipl.-Math. Christian Rink

Dipl.-Math. techn. Daniel Seth
Begin: 03.11.2014
End: 01.05.2015

thomas.wohlfahrt@tum.de

Abstract

This thesis focuses on the development of an autonomous exploration and 3D map-
ping algorithm for a mobile service platform in an indoor environment. The desig-
nated robot platform is the KUKA omniRob additionally equipped with eight Time
of Flight (ToF) cameras and the algorithm is developed and tested within the in-
stitute’s internal Mobile Robot Environment (MRE) simulator. The Simultaneous
Localization and Mapping (SLAM) problem is solved by a metaview registration
method, in which range measurements and their corresponding odometry estimate
are combined together by the Iterative Closest Point (ICP) algorithm. The algo-
rithm operates on the raw range measurement without any feature generation. The
result of the mapping process is a 3D occupancy grid map used for the autonomous
exploration tasks. An information gain and frontier-based exploration routine is
developed, based on a preceding discussion and analysis of literature on the subject.
The implemented strategy uses an iterative approach for exploring the complete
working space of the robot. Therefore, a collision free, traversable and reachable
space is defined. This thesis introduces a 2D exploration grid map as a projection
of the 3D occupancy grid map, which serves as an input for the given path planning
process. The experiments within the MRE simulation environment demonstrate the
applicability of the developed algorithm and give a critical analysis of existing as-
sets and drawbacks. An autonomously working exploration algorithm is developed
in this thesis, which provides a framework for further extensions and improvements
to facilitate future researches.

Keywords: mobile robot, 3D mapping, active simultaneous localization and map-
ping, SLAM, metaview registration, ICP, autonomous exploration, frontier-based
exploration, next best view planning, multi-view ToF cameras

i

Abbreviations

2D Two-dimensional

3D Three-dimensional

BFS Breadth-First Search

CML Concurrent Mapping and Localization

DLR German Aerospace Center (”Deutsches Zentrum für Luft- und
Raumfahrt”)

DoF Degrees of Freedom

EKF Extended Kalman Filter

FoV Field of View

ICP Iterative Closest Point

L3D Library Lib3D

LED Light-Emitting Diode

LSR Local Safe Region

LIDAR Light Detection and Ranging

MRE Mobile Robot Environment

NBV Next Best View

PMD Photonic Mixing Device

RAM Random Access Memory

RBPF Rao-Blackwellized Particle Filter

SLAM Simultaneous Localization and Mapping

SRT Sensor-Based Random Tree

ToF Time of Flight

ii

Mathematical Notation

x variable

x vector

X matrix

1 : k = 1, 2, ..., k

X1:k set of matrices X1:k = {X1,X2, ...,Xk}

R rotation matrix

T homogeneous transformation matrix

sx cartesian point with respect to coordinate system s

r robot pose vector r = (x, y, θ)T

wT r transformation matrix from r- to w-coordinate system (e.g. wx = wT r
rx)

th threshold value

lres grid resolution

iii

Contents

Contents iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Thesis Structure . 4

2 Related Work 5
2.1 Kalman Filter . 5
2.2 Particle Filter . 6
2.3 Graph-based Optimization . 7
2.4 Robot Exploration . 8
2.5 Frontier-based Exploration . 9
2.6 Information Gain-based Exploration 10
2.7 Polygon-based Map Representation 11
2.8 Greedy Mapping . 11
2.9 Sensor-Based Random Tree (SRT) Method 12
2.10 Next Best View Planning . 13

3 Fundamentals 15
3.1 Probabilistic Formulation of SLAM 15
3.2 Robot Odometry . 17
3.3 Range Sensors . 18
3.4 Multiview Range Image Registration 20
3.5 Map Representation . 21

3.5.1 Point Maps . 23
3.5.2 Occupancy Grid Maps . 24
3.5.3 Collision Space in Grid Maps 25

3.6 ICP Range Image Registration . 26
3.6.1 The Algorithm . 26
3.6.2 Overlapping and Noise . 27

3.7 Entropy-based Exploration . 27

4 Autonomous Exploration Process 30
4.1 Mobile Robot Environment . 30

iv

4.1.1 OmniRob Platform . 30
4.1.2 O3D100 Photonic Mixing Device 31
4.1.3 L3D C++ Library . 33
4.1.4 Simulation Environment . 33

4.2 System Overview . 34
4.3 Map Notation . 35
4.4 SlamICP Process . 35

4.4.1 Robot Pose Estimation . 36
4.4.2 Pose Refinement . 37
4.4.3 Occupancy Grid Mapping . 39

4.5 Exploration Process . 40
4.5.1 Projection to Ground . 42
4.5.2 Collision Space Generation . 44
4.5.3 Frontier Generation . 45
4.5.4 Application of Exploration Strategy 46
4.5.5 Path Generation . 48

4.6 Motion Control . 49

5 Experiments and Discussion 50
5.1 Example Exploration Process . 50
5.2 Exploration Performance . 54

5.2.1 Point Cloud Reduction . 56
5.2.2 Grid Resolution . 57

5.3 Major Drawbacks . 58
5.3.1 Metascan Misalignment . 58
5.3.2 Missing Map Segmentation . 61
5.3.3 Noisy Measurement . 62

6 Conclusion 63
6.1 Summary . 63
6.2 Future Work . 64

List of Figures 66

List of Tables 67

Bibliography 68

v

Chapter 1

Introduction

1.1 Motivation

For the last few decades, robots have increasingly infiltrated our everyday life. They
are used in assembly lines, as vacuum cleaners, for assisting surgeries or in many
other fields, since highly involved algorithms make this development possible.

With robots, it is possible to enhance and expand the physical abilities of humans
or to reduce the risk of human casualties in dangerous operations. Currently, au-
tonomous acting of robots in unknown environments is of very high interest, both
in the scientific and the economical aspect. The Google Self-Driving Car project
exemplifies the importance and the attention spent towards this field of research.
Furthermore, the number of robot-assisted surgeries grew from 80 000 in 2007 to
205 000 in 2011 and is still growing [BG10].

Another research topic investigates the ability of the human brain to represent the
environment and how this can be adapted towards mobile robotics. In 2014, the
Nobel Prize in Physiology or Medicine was awarded for ”Discoveries of cells that
constitute a positioning system in the brain”.1 This is a step towards a more intri-
cate understanding of the human internal mapping process and might be useful for
further development of mobile robots. However, in unknown environments and with
unsupervised operations, robots are still very limited in their capabilities. Detect-
ing dynamic obstacles and responding to unpredicted events seem very basic tasks
for human beings, but the development of algorithms for these tasks is particularly
complex and elaborate. Failures and misbehaviors of a robot might lead to serious
damage or even cost human lives and are therefore not acceptable. The creation
of reliable algorithms for autonomously acting robots is a very multi-layered and
sophisticated task.

1www.nobelprize.org/nobel_prizes/medicine/laureates/2014/ (Link: 25.03.2015)

1

www.nobelprize.org/nobel_prizes/medicine/laureates/2014/

The necessary tasks for a robot to act autonomously are:

1. Perceive the environment

2. Interpret the perceived data

3. Deduce a reasonable action to be performed

For the perception, appropriate sensors are needed, whereas for the interpretation,
a representation model has to be found on which further processing can be based.
For many navigation and localization algorithms, the processing of any interaction is
based on an appropriate map representation. Building its own map representation is
essential for an autonomous behavior of a robot and will be discussed in this thesis.

At the institute, where this thesis is performed, the map building process for the
relevant robot is yet done manually by taking measurements of the real environment
and then modeling it with 3D computer graphics software like Blender.2 The des-
ignated goal of the present work is the execution of this task by the robot without
any human interaction. When the robot is switched on in a new environment, it
should be able to drive around in a well-defined manner to gather data and build
an internal 3D map representation. This map can serve as a basis for more involved
and dynamically reactive algorithms and for application in real world scenarios. The
whole process of an autonomous environment building can be split into three inter-
connected tasks: mapping, localization and path planning. They are the focus in
this thesis and a solution for a combined application of these tasks is presented in
the following.

1.2 Problem Description

In [TMM+06] the problem is defined in the following way: ”Autonomous robots
must possess the ability to explore their environments, build representations of those
environments, and then use those representations to navigate effectively in those
environments. This statement corresponds to the underlying problem in this thesis
and can be split into two parts:

1. Simultaneous Localization and Mapping: The process of building a map
of the environment while simultaneously localizing the robot in it. With the
help of sensor data, an appropriate mapping process and representation has
to be found. In literature this problem is abbreviated with SLAM and refers
to the task of making the noisy perception data manageable.

2. Exploration: Exploration defines the task of autonomous and active gath-
ering of information to acquire an accurate and complete model of the envi-

2http://www.blender.org/ (Link: 25.03.2015)

2

http://www.blender.org/

Figure 1.1: The different parts of robotic exploration [MWBDW02]: (I) classic
exploration, (II) SLAM, (III) active localization, (IV) integrated exploration.

ronment. The selected SLAM algorithm will be extended by the task of path
planning and following, in order to build a complete map.

The combination of these tasks can be considered an integrated approach, as can
be seen in Figure 1.1. These tasks have all been well studied in literature and the
following different sections are defined [MWBDW02]:

• Active Localization (Figure 1.1 III) comprises the task of finding control
actions to maximize the probability of a correct localization in an already
known map.

• SLAM (Figure 1.1 II) denotes the problem of mapping an environment and
localizing in it at the same time, as mentioned previously.

• Classical Exploration (Figure 1.1 I) refers solely on planning where to go
next, in order to get a complete environment model. Uncertainties in localiza-
tion and mapping are not considered explicitly.

• Integrated Exploration (Figure 1.1 IV) is a holistic approach, which com-
bines the previous tasks. The exploration task also fully includes mapping and
localization. The process of generating the next targeted exploration position
and path following also has to consider map inaccuracies and localization er-
rors. Therefore, a strategy has to be found for selecting a path, where a high
information gain can be expected. Additionally, this strategy should maximize
the probability of a correct localization as well.

All problems in Figure 1.1 are all well known and studied in literature, but for the
most part considered independently. This thesis wants to give a holistic outline and
solution proposal for the SLAM problem with an autonomous exploration strategy.
The main purpose of this work is to provide a working integrated solution for the
KUKA omniRob mobile robot platform to autonomously create its own map rep-
resentation. The institute’s internal L3D library already provides algorithms for
localization and path planning, but a model of the environment is needed in order
to use them. For the acquisition of environment data, the eight ToF cameras at-

3

tached to the sides of the top-cover of the robot are used. Furthermore, the robot
has an odometry sensor integrated, which gives an initial pose estimate about its
current location relative to its starting location. The use case is limited to indoor
environments and all movements will only be performed on a planar floor. Hence,
no elevations, slants or stairways are regarded in this thesis. These considerations
are left for future research work.

First, initial assumptions have to be made. The cameras are considered completely
calibrated and their positioning towards each other and the robot is known. Addi-
tionally, the space around the initial starting position of the robot must be obstacle
free within an adequate range. The region close to the robot cannot be perceived
in the used camera positioning setting. Therefore, the first movement is always
through unknown territory.

The mapping process requires the interaction of different tasks and processes. The
first step is the acquisition of sensor data and the creation of an internal map rep-
resentation. Thereafter, the map has to be analyzed and a strategy has to be found
in order to determine a next best position to increase the map coverage. The result-
ing model is supposed to be accurate and consistent and the exploration strategies
should be feasible within a limited magnitude of time and robot movements. Meth-
ods to cope with the sensor noise, have to be found and integrated. A simulation
environment is available and serves as a testing tool. The thesis is completed within
the time of six months.

1.3 Thesis Structure

In chapter 2, the relevant existing literature is analyzed and different solution ap-
proaches for the respective problem are presented. The most important theory
topics, required to understand the underlying problem, are explained in chapter 3.
The implemented algorithm for solution of the SLAM and exploration problem is
explained in chapter 4. Additionally, the development environment with and used
tools are mentioned. The implemented algorithm is further demonstrated and dis-
cussed in chapter 5, where a complete exploration process is demonstrated and the
individual performance aspects are analyzed. Finally, the results and conclusions of
this thesis are summarized in chapter 6. This chapter also presents possible future
works and enhancements.

4

Chapter 2

Related Work

In this chapter, an overview in robotic mapping is given and some important de-
velopments in this field are presented. As stated by [MWBDW02], the integrated
exploration approach is divided into the interconnected parts localization, mapping
and motion control. The first two are related to as the SLAM problem and many dif-
ferent proposal solutions have been presented in the last two decades. This problem
has often been referred to as a solved problem, but as soon as the aspects large-scale
mapping, processing time and robustness are considered as criteria, very different
and involved approaches have been developed. Each approach focuses on optimizing
on of the mentioned aspects.

The first task in this thesis is to find an appropriate SLAM approach in order to
generate a map representation of the environment by the interpretation of sensor
data and locate the robot in it. The second task is the integration of the SLAM
approach into an appropriate exploration routine, in order to fulfill the designated
task of an autonomous and robust map building process. In the following, important
approaches are pointed out and evaluated for the application in this thesis.

2.1 Kalman Filter

A first proposal solution to the SLAM problem in mobile robotics was introduced
in 1986 by Hugh Durrant-Whyte [DW88] and Randall Smith et al. [SC86]. They
presented estimation techniques to draw relationships between landmark locations
and robot poses by using the Extended Kalman Filter (EKF) [Kal60]. Furthermore,
they proposed methods to manage geometrical uncertainties with successive obser-
vations. A landmark can be seen as a specific or significant point in the environment
detectable by a sensor.

Smith et al. [SSC90] further refined their idea and stated a foundation of feature-
based mapping with point landmarks and known data association. This was the

5

birth of a powerful statistical framework to solve the simultaneous mapping and
localization problem. From this point on, the abbreviations SLAM (Simultaneous
Localization and Mapping) or CML (Concurrent Mapping and Localization) are used
for the robotic mapping problem [T+02]. Moreover, different approaches and strate-
gies for solving the SLAM problem were published. Leonardo et al. [LDW91] used
extracted line segments from sonar sensor data, Gonzales et al.[GOR94] used laser
data instead and Ayache et al. [AF88] even built visual 3D maps from a stereo
camera system.

The convergence property had been an unsolved problem so far and the large com-
putational complexity, which, for the EKF grows quadratically to the number of
landmarks in the state vector, constrained the further development to a temporary
halt. The focus has been on either localization or mapping as isolated problems
[DWB06]. In 1995, Durrant-Whyte et al. [DWRN96] presented a convergence proof
and clarified the structure of the SLAM problem. The break-through was the con-
sideration of the mapping and localization problem as one interleaved estimation
process. The EKF algorithm is still widely used in contemporary applications. Still,
the quadratic growing complexity, proportional to the number of landmarks, is a
major shortcoming. One way to cope with this effect is to divide the map into
individual sub-maps or to apply approximations [GN01].

In this thesis, the raw camera data is used for the mapping and exploration process
and no features or landmarks are extracted. The EKF assumes a known data as-
sociation for every iteration step, whereas this is not achievable for the operation
on the raw depth measurement. A robust feature extraction and data association
is necessary for the deployment of an EKF method, therefore it is not suited as a
solution to the SLAM problem in this thesis.

2.2 Particle Filter

Another successful approach to solve the SLAM problem is the Rao-Blackwellized
Particle Filter (RBPF) [DDFMR00]. In order to represent probability distributions,
sampling is used, and each particle represents its own path trough the environment.
Montemerlo and Thrun [MTKW02] used this theory to develop and implement
the FastSLAM algorithm. With an efficient tree structure, for the occupancy grid
map representation, the update step of the SLAM posterior could be performed
in O(P · log(N)) time complexity, where P is the number of particles and N the
number of landmarks. In contrast to the O(N2) update time of the EKF algorithm,
considerably more landmarks could be handled. To decrease the number of required
particles, FastSLAM 2.0 [MTKW03] uses the most recent measurement in order
to create a more exact estimated pose distribution. The process of sampling the
distribution is called importance sampling. It enables the effective generation of
samples for an arbitrary probability distribution. The FastSLAM algorithm provides

6

a powerful way to solve the correspondence problem on an easy way because each
particle represents its own position path and map. Non-linearities in robot motion
models do not have to be linearized like in the EKF algorithm [MTS07].

The particle filter also enables the use of raw sensor data to build grid-maps of the
environment in a robust manner [GSB07]. For the integrated exploration approach
combining mapping, localization and exploration, Stachniss et al. present the use
of the RBPF [BSG05]. Goal of the whole exploration process is to minimize the
entropy of the robot trajectory and occupancy grid map for each particle. Each
particle represents the environment for a specific trajectory estimate. The explo-
ration strategy focuses on a trade-off between information gain and the active closing
of loops in the environment, in order to reduce the localization error. The traveling
costs are proportional to the state certainty of all traversed grid cells. A loop occurs
if a robot returns to a past location, after having discovered new terrain for a while.

For the 3D case, the use of a particle filter has some considerable drawbacks. Each
particle has to represent the world with its own 3D map and therefore, a lot of
processing power and Random Access Memory (RAM) is needed. Jochen Welle et
al. solved the problem by introducing a specific data structure called DeltaOctree,
which describes the evolution of the particles by a specific tree structure [WSBC10].
The particles with a common history share map parts, and the amount of necessary
particles is kept to a minimum.

This approach states an attractive solution for the SLAM problem in this thesis. But
considering the missing availability of the DeltaOctree structure for the realization
in software and the high implementation effort for combining this approach with
an appropriate exploration strategy, this method is not in the scope of this thesis.
In order to make the mapping and exploration process processable on a regular
PC, only one single 3D occupancy grid map is used in this thesis as an environment
representation. The focus is on the realization of a complete autonomous exploration
process within the cope of six month and the deployment of an applicable and
testable framework for future work. Therefore, only one memory saving 3D octree
data structure is applied for the map representation and only one single pose estimate
is performed.

2.3 Graph-based Optimization

Lu et. Milios [LM97] presented a different approach to SLAM. In order to solve
the Full-SLAM problem, they constructed a sparse graph of soft constraints, con-
sisting of observed corresponding landmarks and the different robot poses. In this
information-theoretic approach, distinct range scans are aligned and by global non-
linear optimization, a very accurate consistent map could be built. This stands in
contrast to the filter-based approaches of the EKF or particle filter SLAM strate-

7

gies. Drawbacks are the increasing complexity proportional to the amount of mea-
surements. Later publications referred to this approach as Graph-based SLAM or
Graph-SLAM [GKSB10, TBF05]. This method is very common in current applica-
tions, but mostly for offline optimization. A further extension of this algorithm is
the sparse extended information filter (SEIF) [TLK+04], in which the update steps
can be performed in constant time regardless of the number of gathered features.

Andreas Nüchter describes an approach for a globally consistent range image reg-
istration for 3D data with 6 Degrees of Freedom (DoF) [Nüc09]. In the first step,
the ICP algorithm applied to the raw sensor data is used to merge the scans into
one common coordinate system. This process, called registration, is erroneous due
to the accumulation of small alignment errors. These errors surface in case loops
are detected. Therefore, in the second step, a graph is build out of the robot’s
pose relations. The accumulated error is then distributed over the loops by global
relaxation in order to acquire a consistent map representation.

The SLAM system from Henry et al. [HKH+10] for RGB-D cameras like the Mi-
crosoft Kinect is a recent graph-based approach. The graph building process is
supported by feature matching methods for the RGB images like SIFT or SURF
and is called Frontend. The loops are closed and relaxed in the Backend by a global
pose graph optimization algorithm like g2o [GSKB11]. This approach combines the
visual features with a depth information-based shape alignment.

The cameras used in this thesis can only perceive depth data and no RGB images.
Furthermore, no feature extraction process is performed. Therefore, the present
cameras are not well applicable for the RGB-D SLAM strategy. The approach from
Nüchter [Nüc09] is well suited for this thesis. It uses raw range data and works
for the 3D case. As a drawback for the mapping process, every time a loop is
detected, the whole graph can change. The 3D occupancy grid map, which is used
as a basis for the exploration process, would have to be rebuild completely after
each optimization step. Therefore, the SLAM approach in this thesis is based on
3D range scan alignment by ICP without the relaxation of the pose graph.

2.4 Robot Exploration

With the help of an appropriate SLAM algorithm, the robot is able use the acquired
data from the odometry and depth image sensors to construct an internal map rep-
resentation and to locate itself in it. But the sensors have a limited range and the
whole map can normally not be perceived from one point of view. Moreover, there
can be obstacles which are covered by other obstacles and hence cannot be detected
by the sensors. In order to generate a holistic global map autonomously, the robot
has to decide where to go next to perform a new measurement of the environment.
One easy solution would be to drive the robot around in the environment guided by a

8

human. This solves the problem of obstacle avoidance and the decision making pro-
cess of calculating a next best target pose, but also contradicts a fully autonomous
behavior of the robot. To establish a self-governed robot, reasonable algorithms for
these tasks have to be found.

Yamauchi B. defines exploration as ”the act of moving through an unknown envi-
ronment while building a map that can be used for subsequent navigation” [Yam97].
The act of deciding where to go next is referred to as exploration strategy and its
goal is to ”generate a complete or nearly complete map in a reasonable amount of
time”.

This means, that not only the information gain of a new pose has to be considered,
but also the cost of going there. Reasonable indicators for the cost are both, the
necessary traveling time and also the probability of a correct localization of the
robot. A random walk through the environment can therefore also be understood
as an exploration strategy, but it is very likely not to be the optimal solution. As
time goes by, this strategy might also cover the whole environment eventually, but
in this thesis, a more target-based approach is presented.

The exploration task itself is related to well-known problems in literature like the
illumination, the shortest watchmen or the art gallery problem [HBAB10]. The art
gallery problem refers to the real-world problem of guarding an art gallery, with as
little necessary guardians as possible. It has been proven by Cheval [Chv75], that a
map, consisting of n polygons, can always be fully be monitored by bn/3c watchmen.
The problem of finding the minimum number of needed watchmen for an arbitrary
map constellation is proved to be NP-complete and requires knowledge about the
whole environment. Furthermore, it relates to tasks like inspection, tracking or
surveillance of environments.

Many different approaches to the autonomous exploration problem have been pro-
posed in the last two decades. Most of them are based on 2D maps [AG05, FO05,
BATP10, SHB04], where the robot is only targeted for the use in a planar envi-
ronment. Some line of research also focuses on the use of 3D maps for the ex-
ploration task [AC10, JSPB07, SNH03]. For integrated exploration approaches,
the uncertainty in localization in their exploration process is considered as well
[MWBDW02, TMM+06]. Whereas another research field deals with the strategic
cooperation of multiple robots, in order to explore one interconnected environment
[BMF+00, WSB08]. In this thesis, the robot is also limited to planar environments,
but the exploration process is based on a 3D occupancy grid map representation.

2.5 Frontier-based Exploration

Yamauchi [Yam97] introduced the popular frontier-based exploration approach for
grid maps. The state of each cell in the grid map is divided into either free, occupied

9

sensor reach

unknown areafrontiers

selected frontier

Figure 2.1: Frontier-based exploration. The separation between perceived and un-
known environment is called frontier. After an evaluation process, a target position
is selected.

or unknown, and it depends on the cell’s probability of being occupied. In case
the probability value of the cell equals the initial state, it is considered unexplored.
The frontier cells are those free cells, which posses a neighboring unexplored cell.
Connected frontier cells are combined to frontier regions, which, after surpassing a
certain size, are interpreted as frontiers to unexplored area. Many of the proposed
exploration strategies are more or less based on the generations of these frontiers.
In Figure 2.1, the frontier-based exploration is visualized exemplarily. Out of the
possible frontiers, a target position is chosen, based on a specified strategy. Often,
sampling and arbitrary selection procedures are used in order to make the decision
process assessable.

The exploration strategy in this thesis also follows the frontier-based approach, but
the selection process of target positions is based on the data from a 3D occupancy
grid map. The path planning and frontier extraction is also performed on a 2D
grid map. Additional collision spaces and sampling areas are defined in the present
proposal to integrate the consideration of the robot’s geometry and to reduce the
processing time. Furthermore, due to the special sensor assembly, this approach has
to be adapted appropriately.

2.6 Information Gain-based Exploration

In [MSW01], Moorehead et al. present an approach, where the selection of target
poses is based on several distinct information resources. The environment is di-
vided into a discrete grid, where every cell is associated with an information vector
g ∈ [0, 1]n. Every entry is defined by a simulated measurement and resembles a
different source of information. The final expected information gain is the weighted
sum of all entries in g. A sequence of traversable cells, including the positions,
where a measurement of the environment shall be performed, defines the path from
the current to the target location. The specific gain of a path is defined by the

10

combination of various criteria. It includes the expected information gain at the
measurement points and the time, which is needed in order to drive through the
path, take the observations and perform the planning. Calculating the path with
the maximum information gain can be considered infeasible and its complexity re-
sembles that of the NP-hard prize-collection salesmen problem. This is the reason
for proposing a sub-optimal but processable strategy, where only the next measure-
ment point is considered and the gain for every reachable point is calculated. For the
implementation of the information gain in this strategy, the entropy of the cells is
used. This approach is similar to the one used in this thesis. But the calculation of
information gain in this thesis is based on a simulated measurement with 3D range
sensors. Robot poses are sampled and evaluated in therms of information gain.

2.7 Polygon-based Map Representation

The exploration strategy proposed by González-Baños und Latombe [GBL02] is
also frontier-based, but uses a polygon-based map representation. They use different
categories of edges, where the separation lines between known and unknown area are
defined as free edges. Sampling is used to determine the next robot pose and every
possible sample must be in direct line-of-sight with a free edge. In the evaluation
process, the potential visibility gain is calculated by the amount of visible area
outside the explored region. A trade-off between the path-length to the target
position and its information gain determines the value of a possible pose candidate.
If no free edge surpasses a certain threshold, which serves as a selection criteria, the
exploration terminates. The polygon-based map representation allows an efficient
way of representing a 2D environment, but a prior line segmentation algorithm has to
be performed on the raw sensor data. In this thesis, the map is represented by a 3D
occupancy grid and no feature extraction algorithms are applied. But the sampling
process for selecting new target poses is based on the same principle. Furthermore,
the absence of any possible pose candidates conforms to the termination criterion
as well.

2.8 Greedy Mapping

In [KTH01], Tovey and Koenig propose a greedy mapping strategy, where the robot
always targets the closest not yet visited location until the complete map is explored.
The environment is represented by a graph, where the vertices resemble robot poses
and the edges the connection between them. They prove the existence of an upper-
bound of O(|V | log |V |) edge movements as a worst case scenario, where |V | is the
number of vertices in the graph. Furthermore, they show that even this easy ap-
proach is not exceptionally far away from an optimal exploration strategy. No long

11

(a) SRT-Ball (b) SRT-Star

Figure 2.2: The SRT models from [OVFT04].

therm planning is performed, but for many cases, sufficient results can be achieved.
The exploration proposal in this work also resembles a greedy approach. The dis-
tance to the selected frontier is the main criterion. But the exact pose in front of the
frontier is generated by sampling and an information gain evaluation. This method
is implemented to reduce the number of necessary environment recordings.

2.9 Sensor-Based Random Tree (SRT) Method

The basic principle of this method, proposed by Oriolo et al. [OVFT04], is to only
drive the robot into regions it already has explored and which are in nearby sight, in
order to avoid collisions. The target pose has to be within the current sensor reach
of the robot and no intercepting collision must be present.

In the first step, the region around the robot is perceived, which is limited by the
range of the sensors. For the 2D-case, these areas are modeled as a ball for the
conservative, or as a star for the optimistic case and are depicted in Figure 2.2. In
case of the ball, one obstacle already limits the range of the Local Safe Region (LSR),
here depicted in green. At the star shaped model, the LSR is divided into several
equally large cones. Only the cones in which the obstacle is present are limited
in their range. All other cones remain within the sensor coverage. This process
is performed analogously in case several obstacles are present. In this LSR, the
robot can move freely without colliding. After the robot has traveled to a target
position, it perceives its surroundings and integrates the new measurement in the
Sensor-Based Random Tree (SRT) data structure. The data structure consists of
the respective poses realized as nodes where the robot has already been, combined
with the respective measurement data. The robot chooses his next observation point

12

based on the following criteria:

1. The next node has to be present in the current LSR of the robot.

2. It must not be located within the LSR of a previous node.

3. It has to keep a minimum distance to the current pose.

In case no such pose is found, the robot moves back to the previous node. This
process is called backtracking. Therefore, several consecutive steps are performed.
Initially, the exploration direction is chosen arbitrarily. The distance to drive is
calculated by a product of the LSR radius and a specified constant between 0 and 1.
This ensures the target position to be within the LSR of the current node. Now, the
criteria points 2. and 3. are evaluated. The robot moves to this target point in case
both terms are considered true. If they do not hold true, the generation process is
started again by selecting a new exploration direction. The arbitrary selection of a
target pose is very likely to deliver an appropriate goal after several tries [OVFT04].
In case a maximum number of sample points are evaluated as negative, this node
is considered an end point, and the robot moves back to its previous pose. From
this observation point, the robot starts the exploration process again. The SRT
approach is performed by the random selection of target poses, based on the length
of edge segments. In contrast, the approach in this thesis considers the estimated
information gain for the target poses in combination with the traveling cost. The
exact pose generation is also sampling based, but in the present proposal, no pose
graph is composed and no backtracking performed. Instead, another frontier is
searched in the whole environment.

2.10 Next Best View Planning

The necessary process steps for a Next Best View (NBV) strategy are described in
Figure 2.3 according to [AG05]. While SLAM algorithms try to make an accurate
map out of the sensory information, NBV algorithms want to find a new pose where
the sensors can provide the best possible input, considering certain criteria. It is
also a well known problem in the graphics and computer vision community [Pit96,
BZW+95]. But these algorithms can not directly be applied for the purpose of
mobile robot exploration.

First, the collision problem is approached in a different way. In object modeling,
the sensor moves around relatively small objects in free space and does normally
not have to consider collisions with it. Keeping a certain distance to the object, the
sensor is able to move freely around the object. At an exploration execution by a
mobile robot, the sensors are moved inside the to be mapped object and the task of
avoiding collisions with the environment is of highest importance. Furthermore, the
relocalization step has to be approached in a different manner. The odometry and

13

Figure 2.3: Next Best View exploration process as described in [AG05].

slippage errors of the robot have to be opposed and a constant localization relative
to the partially constructed map has to be performed.

In NBV-planning for 3D object modeling, often sample points around the to be
modeled object are generated, with the camera pointing towards the object. These
sample points are evaluated, in terms of their information gain. If an octree data
structure is used, there is a distinction between free, unknown and occupied space.
The amount of unknown space, which can be perceived by such a sample point is an
indication for the information gain of this configuration. This thesis uses the NBV
approach for the exploration task. The generation of possible target poses is based
on a 2D environment representation, whereas their evaluation is based on a 3D map
representation. The external world relates to an indoor environment. The targeted
decision output of the exploration process is a sequence of control actions in order to
find the next best robot pose, based on the current internal map representation. The
difficult part, which differs from the classical Next-Best View planning strategies in
computer vision, is to guarantee a safe navigation with only partial knowledge about
the environment. Enough overlap between every sensing pose has to be ensured as
well. Otherwise, it might not be possible for the local map to be registered correctly
into the global map representation.

14

Chapter 3

Fundamentals

The autonomous exploration process covers many distinct fields of research. In order
to enable a better classification of the implemented algorithm, the important and
fundamental topics for this thesis are presented in the following. In this chapter, no
complete coverage of all relevant theory is given, but the most important aspects
are mentioned. They form the basis for the implemented algorithm in chapter 4.

3.1 Probabilistic Formulation of SLAM

Most state-of-the-art algorithms are derived from either the EKF-based, Graph-
based or Particle Filter-based SLAM approach [SK08, ch.37]. The tutorial papers
[DWB06] and [BDW06] give a broad overview on the whole SLAM problem and
its different approaches. In the following, the notation for formulating the SLAM
problem is explained in more detail. At a specific time step t the following state,
control and measurement vectors are defined:

• X0 :k = {x0 ,x1 , ...,xk}: represents the state vectors from time step t = 0 to
time step t = k. The time is discretized to describe the distinct and limited
number of processing steps. At a specific time step t the vector xt represents
the state of the robot, which is normally its position and orientation and
x0 describes the initial starting position. In the planar case, x = (x, y, θ)T

suffices to fully describe the state, whereas in the 3D case, the vector x =
(x, y, z, θx, θy, θz)

T is necessary to describe the state fully. For every additional
DoF, a new parameter is necessary.

• U 1 :k = {u1 ,u2 , ...,uk}: represents the control vectors up to the time step
t = k. ut is the control vector in order to steer the robot from state xt−1 to
xt . It expresses the relative movement between the two robot poses and gives
an initial estimation. By virtue of noise and odometry errors, these estimates

15

zt+1

xt+1xtxt–1

ztzt–1

ut+1utut–1

m

(a)

zt+1

xt+1xtxt–1

ztzt–1

ut+1utut–1

m

(b)

Figure 3.1: Online (a) and Full (b) SLAM Dynamic Bayesian Network (DBN)
[GKSB10]. The DBN is a representation for the filter-based SLAM problem. The
nodes in blue mark the targeted solution vectors.

can not complete be considered accurate. How the motion process is realized
exactly is not relevant for the SLAM problem itself.

• Z1 :k = {z1 , z2 , ...,zk}: represents the measurement vectors, which consist of
the gathered sensor data at a distinct time step t and the state xt . A depth
image, recorded by a ToF camera, would be an example of such a measurement.

• m: stands for the map of the sensed environment. This can be a set of
landmarks of the environment or any other targeted representation.

The solution to the SLAM problem is the acquisition of an accurate model of the
world m and the robot locations X0 :k . Many SLAM algorithms are probabilistic,
in which a joint posterior probability distribution has to be calculated. In literature,
there is a distinction between the Online and the Full SLAM problem. The joint
posterior probability distribution for these problems is:

• P (xk ,m |U 1 :k ,Z1 :k) for the Online SLAM and

• P (X1 :k ,m |U 1 :k ,Z1 :k) for the Full SLAM problem.

This relation can be expressed graphically by a Dynamic Bayesian Network (BDN)
in Figure 3.1. The control and measurement vectors are directly observable. Only
the targeted hidden solution vectors, marked in blue, differ for either of the SLAM
formulations. For the Online SLAM problem, only the current state vector xt

needs to be estimated, whereas the Full SLAM problem targets the complete path
X1 :t starting from the beginning. The approach presented in this thesis currently
only solves the Online SLAM problem. The location of the current robot pose
is calculated and then the sensor data is used for the mapping task. For further
extensions and developments, this approach could be extended to the solution of
the Full SLAM problem, in case the graph-based formulation is pursued.

16

x

y

Figure 3.2: Robot pose in 2D coordinate frame. The pose can be fully described by
the translation components x and y, and its rotation θ.

3.2 Robot Odometry

Many robots have odometry sensors integrated, which can be used to get an estimate
about the robot’s current pose in a planar environment. The term pose defines the
combination of the position and orientation of a rigid body in space. This pose is
relative to the starting pose, where the robot has been switched on. The odometry
counts or measures the wheel rotations and integrates the gathered data over the
working time. But the longer the robot is driving around, the more this estimate is
about to diverge from the robot’s real pose in the environment. In Figure 3.2, the
pose of the robot is depicted, which can be fully described by the vector (x, y, θ)T

in the world reference frame w. The orientation θ is often called heading direction
or bearing. The robot has its own right-handed coordinate frame r from top-view,
where the origin is located at its center and the x- and y-axes are marked in red
and green color, respectively.

The notation for describing the transformations in this thesis is based on the Springer
Handbook of Robotics [SK08]. To express the position of a point rp = (x, y)T in robot
reference frame r relative to the world reference frame w, the equation

wp = wRr
rp + wtr (3.1)

is needed. The rotation matrix wRr and the translation vector wtr for the scenario
in Figure 3.2 would be

wRr =

(
cos θ − sin θ
sin θ cos θ

)
and wtr =

(
x
y

)
, respectively. (3.2)

In order to combine the rotation matrix wRr ∈ R2×2 and the translation vector
wtr ∈ R2×1, the homogeneous transformation wT r is used:(

wp
1

)
=

(
wRr

wtr
0T 1

)(
rp
1

)
= wT r

(
rp
1

)
. (3.3)

The terms (wp 1)T and (rp 1)T represent the vectors wp and rp in homogeneous
notation. For further information about homogeneous transformations, it is con-
ferred to [SK08, Ch. 1 Kinematics]. They enable the combination of a rotation

17

X

7.0

6.1

8.3

6.5

Figure 3.3: Working principle or range sensors. The values describe the measured
distances of each individual pixel. The higher the distance, the darker is the pixel
representation. In case it surpasses a maximum distance, no valid value can be
returned.

and translation (Equation 3.1) into one single matrix multiplication (Equation 3.3).
With a rigid transformation, all distances between pairs of points are preserved,
therefore no scaling, shearing or squeezing is performed.

The pose of a robot on a plane relative to the world reference frame w can therefore
be described by a transformation wT r instead of its pose vector wr:

wr =

xy
θ

→ wT r =

cos θ − sin θ x
sin θ cos θ y

0 0 1

 . (3.4)

This makes it more easy to describe relative movements from one pose to another,
or to transform points from the robot’s reference frame into the world frame. In
case the robot’s current pose is at wri and it moves to pose wrj, both poses can be
described as wT ri and wT rj , respectively. In order to get the relative transformation
riT rj , which describes the pose rj in the reference frame ri,

riT rj = (wT ri)
−1(wT rj) (3.5)

has to be calculated. The presented notation so far is for the 2D case, where there
are three DoF. Analogously, this can be performed for the 3D case as well. The
difference is the extension to six DoF, namely r = (x, y, z, θx, θy, θz)

T , and a resulting
transformation Matrix T ∈ R4×4. In the present work, the transformations in the six
DoF case is only needed for transforming data from the camera coordinate system
into the robot system. All cameras are considered calibrated and the respective
transformations are already known. Therefore, a further description of the six DoF
case is omitted.

3.3 Range Sensors

There exist a variety of sensors in order to acquire 3D data. It is, among oth-
ers, possible to use stereo triangulation, structured light patterns, or also Time

18

Figure 3.4: Exemplary ToF camera range measurement. In the left picture the
recording camera is depicted with the FoV visualized in red. The middle picture
represents the depth image from the sensor. On the right side, the resulting point
cloud is depicted.

of Flight (ToF) sensors. The Microsoft Kinect is one example, which projects a
structured light pattern into the environment and measures the distortion. Another
approach are the more expensive laser range sensors called Light Detection and
Ranging (LIDAR), where a laser beam is sent into the environment and the time-
of-flight reflection is measured. Furthermore, it is possible to use stereo images to
extract 3D data from regular pictures, in case the relative pose is known.

The used range sensors in this thesis are ToF cameras for the perception of 3D range
data. They compute the distances by measuring the travel time of the light, which
first is generated by a source, then travels to the observed target, is reflected and
then detected by a sensor. The light source and sensor are normally located next
to each other in the camera. In Figure 3.3, a range measurement is depicted for
the 2D case, where only one line of pixels is used. The individual distance values
can be used, in order to calculate a specific point in space. In the 3D case, where a
sensor is used with the pixel indexes (i, j), a measurement represents a 3D point set
P = {p1, ...,pk} and k = i · j. This point set can be generated based on the known
camera geometry. The respective distance value dk combined with the pointing
direction vk = (∆xk,∆yk,∆zk)

T , where ||vk || = 1, is used in order to generate the
3D point pk = dkvk . The pointing direction changes for every pixel and is oriented
from the pixel location towards the focal point of the camera.

The process of generating such a point cloud is exemplified in Figure 3.4. On the
left side, a ToF camera is shown in the used simulator, pointing towards an object.
The resulting data is depicted in the middle, where a dark pixel indicates a high and
bright a pixel a low distance measurement. Combining the distance measurements
with the camera geometry parameters makes it possible to generate a point cloud,
which is visualized in the right image. Every point in this image is defined by the
vector pk = (xk, yk, zk)

T .

19

registrationM
N

M'

Figure 3.5: Metaview registration with the ICP algorithm.

3.4 Multiview Range Image Registration

In this thesis, SLAM is formulated in terms of multi-view range image registration.
Thereby, the successive range images are combined together into one common ref-
erence frame [CM92]. One single range measurement forms a local reference frame,
with the sensor pose as its origin. A multiple of these measurements can not just be
combined without further knowledge about their relative position and orientation
towards each other. The problem of aligning the distinct pieces of rage data into
one single reference frame is called registration. In the case of two data sets, where
M is the model and N the scene set, the goal is to find a transformation T , that,
applied to the scene set N , aligns the two data sets correctly.

The difficulty is finding an error function, which, if minimized, represents a best fit
ot the data sets. In Figure 3.5, an exemplary registration process is depicted. M
already consist of multiple combined data sets. The new data set N is aligned by
registration onto M and they form the data set M ′. T is expressed by a rigid
transformation, which consists of a translation and rotation. If the robot move-
ment is restricted to the planar case, only three DoF have to be considered. The
overlapping of the respective data sets also determines the likelihood of finding a
correct alignment. In case they do not overlap at all, it is not possible to calculate
any spacial relation between them. In case of overlapping, one difficulty is finding
the correct data-association. This defines the selection of pairs in the respective
data sets, which correspond to the same feature in the real world. A very popular
solution for solving this problem is the Iterative Closest Point (ICP) algorithm. It
was introduced by Besl and McKay [BM92] and is further described in section 3.6.

There are different approaches for registering several range images into one common
reference frame:

1. Sequential registration: Here, a set of consecutive range images N 1:k is
registered in a pairwise fashion. The origin of the global reference frame is
defined by the reference frame of the first image N 1. All further images are
registered relative to this reference frame in pairs, which means, image N k is
aligned onto N k−1 for k = 2...k in order to generate one common model. This
method is not very robust because of the accumulation of alignment errors,

20

and therefore is unlikely to generate a consistent registration [Pul99]. Very
small alignment errors can lead to large errors over time and inconsistencies
may occur. Especially, in case loops are closed, which means that image
N i overlaps with image N j and j >> i. This kind of pairwise registration
is normally followed by global relaxation techniques and graph optimization
algorithms [SNLH09].

2. Metaview registration In contrast to the sequential registration technique,
metaview registration uses the complete merged information in order to align
any new image. Introduced by Chen and Medioni [CM92], the combination of
the aligned data into one reference frame form the so called metaview. A new
data set N k is registered and integrated into the metaview M k−1 and forms
the new data set M k.

Compared to the sequential registration method, the chance of a correct align-
ment increases. The registration errors still can accumulate, but because of the
integration of all previous data into the registration process, these errors are
more likely to be corrected. For smaller environments, like one single room,
this method is applicable, but will still result in divergences for large-scale
settings. In case a loop is detected after a long traveling distance, the loop
losing is unlikely to be correct without further global relaxation steps.

3. Simultaneous registration The shortcomings of the two previously pre-
sented methods result from the fact, that a measurement N k does not change
the previously registered data sets N 0:k−1. But a new observation of the
environment is very likely to change the understanding of some previously
gathered data. The idea behind simultaneous registration, is a registration
process, which considers all range images at once in order to build a consistent
model of the environment. For registering a new data set, all previously gath-
ered data is considered and changed as well. This results in a better and more
accurate model, with the drawback of a much higher processing complexity.

In this thesis, the metaview registration method is used. The advantage to the se-
quential registration is the reduced error accumulation for multiple recordings in the
same environment. The simultaneous registration would reduce the alignment error
even more, but with the cost of a complete remodeling of the whole existing map
representation. This step is computationally expensive, but might be necessary in
some cases. But the remodeling by range scan alignment after every exploration step
is computationally too expensive for a reasonable and timely exploration procedure.

3.5 Map Representation

In order to react to an environment, a robot has to create an internal representa-
tion or map of it. Somehow, the information from the real world has to be made

21

processable in order to form a basis for further interaction. There are basically two
distinctive kinds of environment representations:

1. Egocentric Map: In this kind of environment representation, the robot forms
the origin. All gathered data and features of the environment are stored in
relation to the robot’s position and orientation. In case the robot moves from
one place to another, the position and orientation of all gathered features has
to be transformed as well, in order to retain an egocentric map.

2. Allocentric Map: This forms the counterpart of the previous representation,
where all data and features are expressed in relation to a global reference frame.
In case the robot performs a movement, all features remain on their position
and only the robot changes its position and orientation in the reference frame.

In addition, a map is used to represent a geometric structure, which is normally
expressed by a metric map representation. Its counterpart, the topological map, in
which only qualitative relations and descriptions are stated between places, has fallen
out of fashion in the recent years [SK08, p. 874]. More often, hybrid approaches
combining both are used either to connect allocentric maps or divide them into parts
in order to form nodes [TBF05]. The most common realizations of metric maps are:

1. Continous Maps: They are also called feature maps. In this kind of map,
all data is stored by a continuous range of values. These features can describe
various things, like points in space, individual distance measurements, or also
whole objects like walls or chairs. The main disadvantage for this representa-
tion is the growing amount of necessary memory data over time. In case no
involved reduction and segmentation algorithms are performed, the amount
of data can easily become infeasible for further processing. In addition, it is
often difficult to determine a separation between free and occupied space.

2. Grid Maps: Also called discrete maps. They use a discrete range of values in
order to describe an environment. Normally realized as occupancy grid maps,
introduced by [ME85], one grid cell represents the state of a discrete spacial
unit. It can be encoded binary into free or occupied, or into a more probabilistic
representation, in which the state of a cell describes the probability of being
either free or occupied. The difficulty for grid maps is to find a reasonable
trade-off between grid resolution and memory efficiency. The larger the gird
size, the easier it is to process and store the date, but the fewer details can be
represented.

In the following, the problem of construction an environment representation, with
already known poses of the robot is regarded. The localization of the robot in a
global reference frame is considered to be known, and the process of generating an
appropriate map out of the collected sensor data is addressed. In this thesis, two
different representations are used, namely, a point map and an occupancy grid map.

22

3.5.1 Point Maps

Point maps are a simple and straight forward way of representing an environment
They are strongly related to raw sensor data from range images and the measure-
ments already form a representation of 2D or 3D point sets in space. From a sequence
of measurement, the corresponding point map can directly be calculated, without
further feature extraction or other additional processing steps. One observation of
the environment is called point cloud and the data is perceived relative to the local
reference frame s of the sensor. The important processing step is to describe these
point sets relative to the robot pose at the respective recording time.

For clarification, the used notation is based on [SK08], where sp defines a point
vector in the reference frame s. rT s defines an affine homogeneous transformation
between the reference frames s and r by Equation 3.6.

rp = rT s
sp =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

︸ ︷︷ ︸

homogeneous transformation

sp (3.6)

rT s represents a 4× 4 homogeneous rigid body transformation and allows the com-
bination of rotation and orientation into one matrix multiplication. The transfor-
mation matrix rT s from the sensor reference frame s to the robot frame r is defined
by the extrinsic calibration parameters. A previous calibration process, which is
not in the scope of this thesis, determines this transformation. Only if the relative
sensor position or orientation is changed, the transformation matrix values change.
For several sensors, each sensor pose is described by its own transformation rT si .

The previous transformation makes it possible to represent all gathered range data
relative to the robot reference frame. With the help of the known robot poses, the
different data sets can be combined into one global reference frame, called the world
frame w. Therefore, another rigid body transformation wT ri has to be applied to
the point cloud, which differs at every distinct robot pose.

wp = wT ri
rip =

cos θ − sin θ 0 tx
sin θ cos θ 0 ty

0 0 1 0
0 0 0 1

 rip = wT ri
riT sj

sjp (3.7)

In Equation 3.7, the transformation wT ri is already represented for a robot move-
ment on a plane. The 3D case with 6 dDoF is not considered in this thesis, because
the robot only moves within a planar environment and the extrinsic camera pa-
rameters are known. After the application of the correct transformations, all point
clouds can be modeled in the common world reference frame. One big disadvan-

23

(a)

0
1

max

0.5

beam

(b)

Figure 3.6: Octree data structure (a) and an update step for the occupancy grid
map (b). The darkness of a cell indicates its occupancy probability.

tage of this modeling technique is the missing distinction between free and occupied
space. Hence, the following representation is used as well.

3.5.2 Occupancy Grid Maps

With grid maps, the real world environment is divided into equally sized units of
space called grid cells. Such a grid cell represents a description for the knowledge
about this particular space. As a grid map representation, occupancy grid maps,
introduced by Moravec and Elfes [ME85] are often used in exploration approaches.
The idea behind them, is to describe each cell with its on value, expressing the
probability of being occupied by any obstacle. Each of such a grid cell possesses
a probability of being free or occupied. Cells which have not been observed yet
usually get the initial value 0.5. They are also referred to as being unknown. The
big advantage of such a grid map is the distinction between occupied and free space,
which is not possible by a point map. Additionally, they allow a constant time
access. The discretization errors and high memory requirement, depending on their
resolution, are drawbacks which have to be taken into account.

These grid maps are also applicable to 3D representations of the environment. To
decrease the impact of the exponential growth of data, smart data structures like
octrees are used to represent the map. It is a tree-based hierarchical representation,
in which each grid cell is subdivided into eight smaller cells. The leafs, as a smallest
division unit, are also called voxel (from volume/pixel). In case all eight sub-units of
a node contain the same values, it is only necessary to store this information in the
node itself with one single value. This enables a memory efficient way of representing
3D grid maps, where much space has the same state (either unknown or free). In
Figure 3.6a, such an octree is shown exemplarily. Representing the grid map by m =
{m1,m2, ...mk}, the robot poses by X1 :t = {x1,x2, ...xt} and measurements by
Z1 :t = {z1, z2, ...zt} the occupancy grid mapping approach represents the posterior
probability p(m |x1 :t , z1 :t). Grids cells mi are normally also considered independent

24

to keep the calculations tractable:

p(m |X1 :t ,Z1 :t) =
k∏
i=1

(mi |X1 :t ,Z1 :t) (3.8)

Updating the occupancy probability of a cell strongly depends on the used sensor.
An inverse sensor model is needed, which specifies the probability of a cell of being
occupied after a sensor reading. For further information, [Sup08] can be referred
to, where different update strategies are described in more detail. Such a 3D grid
space, or also called voxel space, can be updated after various fashions, whereby in
this thesis the Bayes-Update is used. It is performed in a ray-tracing fashion, where
beams are generated from a sensor measurement and integrated into the 3D voxel
space.

The individual steps of integrating a sensor measurement into an occupancy grid
map are described in the following:

1. The measurement is represented relative to the world reference frame w. This
is performed equally to generation of the point cloud map.

2. Starting from the origin of the sensor frame, so called beams or rays are created,
which point from the origin to the particular sensor readings including the
respective distance.

3. The beams are integrated into the occupancy with the chosen update strat-
egy. The parameters of the sensor reading are also very important for this
step, because they define the certainty of a measurement of being correct. In
Figure 3.6b, an exemplary update step for one dimension is depicted, where a
beam is integrated into the occupancy grid map. The gray values indicate the
probability of a cell of being occupied. The dispersion of the end point resem-
bles the variance parameter of the real sensor in order to model the accuracy
as good as possible. This step is performed in the 3D occupancy grid map in
a ray-tracing manner, where all intersecting voxel are processed.

3.5.3 Collision Space in Grid Maps

Based on the information given in [GBL02] a safe region is necessary for the explo-
ration process. Somehow, a distinction has to be made between the region, where
the robot can drive around without colliding with any object, and the region, where
it is not allowed to go. This forbidden areas might contain obstacles, like walls,
chairs or tables, or also obstacles like the descent of a stairway. By the help of the
sensor measurements, it is not directly possible to judge, where the robot is able to
go and where it is not. But there is knowledge about the positioning of the sensors
and also their orientation in relation to the robot. A method has to be found, in
order to process the gathered data, and distinguish between the traversable and

25

forbidden space. In the present work, a collision radius is applied to the occupied
cells, which keep the robot from colliding with them. The exact process is described
in subsection 4.5.2.

3.6 ICP Range Image Registration

In order to create a consistent model out of the sensor measurements, the distinct
data sets have to be merged into one common reference frame. This process is called
registration. In case the robot poses from the odometry reading were already exact,
the point sets could be combined, like described in subsection 3.5.1. But they are
prone to errors and need correction. The ICP algorithm is one popular way for
solving this problem and will be briefly described in the following.

3.6.1 The Algorithm

Given two point sets M = {m1 ,m2 , ...,mk} and N = {n1 ,n2 , ...,nl}, we want
to find the rigid body transformation consisting of the rotation R and translation
vector t, which minimizes the following cost function (from [Nüc09]):

E(R, t) =
k∑
i=1

l∑
j=1

wi,j ||mi − (Rnj + t)||2 . (3.9)

If the i-th point of M and the j-th point of N correspond to the same point in
space, the value for wi,j is 1. Otherwise it is 0. The first challenge is to find the
corresponding points. To find the optimal transformation (R, t), which minimizes
the error function, is the next important step. In [BM92], it is proven, that the
iterative algorithm terminates in a local minimum, provided, the corresponding
points in the last step are assigned correctly. It is represented in Algorithm 1.

Because of the iterative nature of the algorithm, the guess of the initial transfor-
mation is very important for the convergence process. If the guess is to far away
from the optimal solution, or if there is too little overlapping, the whole process will
result in a failure, or it may converge to a wrong local minimum. Therefore, the
odometry readings from the robot serve as an initial estimate in order to combine
the distinct data sets.

Furthermore, the robot is restricted to movements on a plane, and therefore the
rigid body transformations are also restricted to three Degrees of Freedom (DoF).
The basic ICP algorithm calculates rigid body transformations for the 6 DoF case,
therefore, the algorithm of finding the transformation R and t can be restricted.
This reduces the search space and enables a faster calculation of the solution.

26

Algorithm 1 The ICP algorithm [Nüc09]

1: for i = 0 to maxiteration do
2: for all nj ∈N do
3: Find the corresponding closest point within a range dmax in the set M

for every point nj .
4: end for
5: Calculate the transformation (R, t), which minimizes the error function from

Equation 3.9.
6: Apply the transformation from step 5 to data set N .
7: Compute the difference in the quadratic error Ei−1(R, t) − Ei(R, t) before

and after the application of the transformation. Terminate, if the difference
is smaller than a certain threshold ε.

8: end for

3.6.2 Overlapping and Noise

The algorithm assumes, that for every point mi in M exists a corresponding point
nj in N . If this is not the case, false pairs can negatively affect the outcome.
A limiting search radius can restrict the error. There are two types of incorrect
correspondences: initially false and generally false ones. A pair is initially false if
mi and nj are selected as pairs, but mi actually corresponds to another point nk

with k 6= j because of a poor initial estimate. After several ICP iterations mi is
finally paired correctly with nk and the delivered solution is correct. However, if too
many pairs are initially false, the algorithm may directly converge to a false local
minimum. If a pair is generally false there is no corresponding point at all. This can
be caused by noise or a non complete overlapping of the respective data sets. Noise
can not be avoided, and the data sets can not always overlap completely, otherwise
no exploration of new regions is possible.

In order to cope with these problems, a reasonable rejection of specific correspon-
dence pairs has to be found, e.g. a limited range between the corresponding points
[Zha00], or using only a certain subset of the data set N . In this thesis a limited
search radius is applied for the ICP algorithm. This reduces the effect of missing
correspondences in regions, where distinct data sets do not overlap.

3.7 Entropy-based Exploration

The exploration strategy in this thesis is based on a combination of frontier- and
entropy-based exploration. The frontier serves as an initial analytic strategy, in
order to minimize the region of possible target locations. In addition, a zig-zag
movement between distant borders is suppressed. But the main goal is to reduce
the uncertainty of all observable cells in classifying them into either being free or

27

Figure 3.7: The occupancy grid entropy for a single cell.

occupied. In other words, this task states the maximization of information gain, or
the reduction of entropy during the exploration [VAC13].

A common measurement for the uncertainty is the entropy H(x) [TBF05, ch 17.].

H(x) = E[− log p(x)] =

∫
x

p(x) log p(x) (3.10)

It is the expectation value of the information content of the variable x. The entropy
of a cell mi in an occupancy grid map with the occupancy probability p(mi) is
computed by Equation 3.11.

H(mi) = − (p(mi) log p(mi) + (1− (p(mi))) log (1− p(mi))) (3.11)

In Figure 3.7, this function is visualized. For the occupancy probability values of
0 or 1, the entropy is minimal, whereas it is maximal for highest uncertainty with
p(mi) = 0.5. The entropy basically is a measurement for the present information
about the environment. The more the entropy can be reduced, the higher is the
certainty about the state of the occupancy map. The idea of the entropy-based
exploration is to express the information gain I(t, t + 1), after executing an action
from time step t to t+ 1 with Equation 3.12.

I(t, t+ 1) = H(xt)−H(xt+1) (3.12)

The sensory information at the robot pose xt+1 is integrated into the map in order
to calculate H(xt+1). To apply the entropy criteria to the exploration task, a virtual
measurement is performed to estimate the information gain for a specific action.
The procedure for a virtual measurement is briefly described in the following.

28

Simulated Measurement

A range scan is simulated by a a ray-casting procedure, where a beam originating
from the camera center is only intersected by occupied space. For free or unknown
space, it will not be intersected and continues its path through the occupancy grid
map until the beam reaches a maximum length. Therefore, this simulation proce-
dure gives an upper estimate about the possible information gain of a robot pose
configuration.

All cells, which are influenced by the simulated range measurement are considered
for calculating the entropy H(xt+1). The individual entropy values of each cell mi

are simply summed up by H(xt+1) =
∑

iH(xi). The more unknown space is likely
to be perceived by a robot pose xt+1, the higher the estimated information gain will
be. Of course, this estimation will not always be correct, because the outcome of
the real measurement is not yet known. But it gives a good estimate about which
robot pose might lead to the highest information gain.

Like mentioned in section 2.4, the analytical determination of the next robot pose
with the highest entropy reduction is related to the art gallery problem and infeasable
for a practical use. Therefore, a randomized strategy is used, where individual
samples are generated and evaluated.

29

Chapter 4

Autonomous Exploration Process

In this chapter, the whole autonomous exploration process will be discussed, focus-
ing on its realization in software. Every algorithm is written in C++ and integrated
into the institute’s internal L3D-library. In the following, the implementation envi-
ronment and project specific details will be explained. Afterwards, the process steps
which need to be executed in order to fulfill the autonomous exploration task are
described.

4.1 Mobile Robot Environment

The relevant software and hardware tools for this thesis are further described in this
section. The target platform is the KUKA omniRob, which is additionally equipped
with eight ToF cameras. The software development is realized solely within the
MRE simulation environment and by the use of L3D internal tools.

4.1.1 OmniRob Platform

The omniRob (Figure 4.1a) is a robot supplied by KUKA. Two laser range sensors
for 2D measurements are initially installed on the robot, but they are not used for the
implemented algorithms in the present thesis. For the 3D mapping purpose, eight
ToF cameras are additionally attached on top of the robot and make it possible to
perceive a large field of view. The developed algorithm in this thesis is self-contained
and able to run on other mobile robot platforms as well. It only depends on data
from 3D range sensors and the robot’s odometry data.

The specifications for the omniRob platform are still important, because the algo-
rithm is targeted for the deployment on the robot. Furthermore, the MRE simulation
environment uses the robot’s parameters.

30

(a) The KUKA omniRob platform. (b) ToF camera O3D300.

Figure 4.1: The used omniRob platform at the DLR-Institute in Oberpfaffenhofen
(4.1a). Only the eight ToF cameras, attached around the robot, are used for the
integrated exploration. One single ToF camera is depicted at 4.1b (source: DLR-
intern)

Some important specifications are:

• size (length × width × height): 1 200 mm × 712 mm × 645 mm

• weight: 270 kg

• maximum speed: 1 m/s

Furthermore, the robot is able to move omnidirectional with the help of its mecanum
wheels. The robot’s computation unit consists of four I7 processor boards.

4.1.2 O3D100 Photonic Mixing Device

In this thesis, eight O3D100 Photonic Mixing Device (PMD) 3D sensor cameras are
used. In contrast to a laser range sensor, these ToF cameras do not use a single laser,
but illuminate the whole scene at once by infrared light. They have and infrared
Light-Emitting Diode (LED) integrated with a wavelength of 850 nm, which is not
in the visible spectrum. The sensor is able to measure the phase shift for every pixel
at the same time.

The panoramic arrangement of the eight ToF cameras allow an almost complete
surround view of the environment, but there is still space around the robot which
can not be perceived. In Figure 4.2b, the FoV of one single camera is depicted
exemplarily from a side perspective. It is not possible for the robot to register the
obstacle in red, because it is located in its blind angle. Additionally, space above

31

(a)

OmniRob

(b)

Figure 4.2: OmniRob FoV visualization. A measurement is depicted in (a) with
the robot standing on a wide plane without obstacles. The black dots indicate the
calculated depth image points on the floor. In (b), the FoV of one single camera is
depicted sideways.

the height of 60 cm can not be perceived either with the current camera setting. But
this is still sufficient to create an environment representation which can be used for
further processing steps. The O3D100 PMD has the following parameters:

• The opening angel is 40◦× 30◦ .

• The resolution in pixel is 64× 48

• The measurement frequency is 20 Hz

• The measurement range is from 12 cm to 7 m

One perception of the environment results in 64 × 48 = 3072 points per camera.
Therefore, 24576 points are generated by one measurement step with all eight cam-
eras combined.

In this thesis the calibration process is omitted and all ToF cameras are expected to
be positioned and calibrated correctly. For more information about the calibration
process of ToF cameras, the work from Fuchs S. et al. [FM08] is referred to. It
implies that the pose of every camera rcam,i relative to the robot pose rrobot in the
robot reference frame r is known.

Every camera has its own reference frame ci. Within the calibration process, the
extrinsic parameters of the camera are determined. The targeted output is a trans-
formation matrix rT ci for each camera. The eight transformation matrices are ex-
pected to be known in the present work. This enables the calculation of one common

32

point cloud in the robot reference frame. The process of generating such a point
cloud is described in section 3.3 and exemplified in Figure 3.4.

4.1.3 L3D C++ Library

The C++ Library Lib3D (L3D) is used in order to solve all robot tasks, mentioned
in this thesis. The library is developed at the German Aerospace Center (”Deutsches
Zentrum für Luft- und Raumfahrt”) (DLR) Institute of Robotics and Mechatronics
and is still under development. It provides many useful tools for the solution of
robot and 3D perception relevant problems. The most important tools used in
this thesis where the ICP algorithm and the Dynamic Octree Voxel Space, which
includes useful update procedures for range data sets. Furthermore, noise models
for the odometry and range measurements, based on the manufacturer data, are
included. This L3D probabilistic octree space is developed and maintained at the
DLR institute. It is very similar to the OctoMap [WHB+10], which is released under
the BSD 3-clause license. The used ICP algorithm is able to work with constrained
rigid body transformations, where only a translation on a plan and a rotation around
the z-axis are considered.

4.1.4 Simulation Environment

For the purpose of fast and efficient software development for the KUKA omniRob,
an institute intern simulation environment called Mobile Robot Environment (MRE)
is available. It is also possible to visualize the robot and create test maps for it with
3D computer graphics software like Blender. In Figure 4.3, the FoVs of all cameras
are visualized for the simulated robot.

With the simulator, it is possible to model odometry and sensor noise, similar to
reality. Furthermore, the MRE software is used with the same interfaces as the real
robot, so there is nearly no difference between the real robot and the simulation
of it. This simulator was written to enable the developers a fast testing of their
software, without the need of starting the whole robot system and setting up a new
environment.

The simulation tool consists of different parts, where the following three parts are
the most important ones for this thesis:

1. Simulation of the ToF and laser sensors. The simulation of these sensors use a
polygon-based model of the environment and calculates the distance from the
position of the sensor to the next polygon. A gaussian model is used to add
noise to this distance. The gaussian model is based on the noise model given
by the manufacturer.

33

Figure 4.3: The omniRob in the MRE simulator with the FoV of all cameras visu-
alized. (The visualization does not resemble the actual measurement, because the
camera can not measure through walls.)

2. Simulation of the mobile platform. This tool simulates the movement of the
robot. The simulated motion depends on measurements, which were made to
determine the precision of the robot’s translation and rotation. These motion
noise models are used to simulate the robot as realistically as possible.

3. Visualization of the omniRob. The viewer enables a quick overview over the
actual status of the system. In Figure 4.3, the simulated robot is depicted
exemplarily.

4.2 System Overview

The focus of this thesis is on a combination and integration of a SLAM and explo-
ration process. In Figure 4.4, the whole autonomous exploration process workflow
is depicted. The sensors on the left side are for one thing the eight ToF cam-
eras and for another thing the odometry sensor. They form the connection to the
physical world in being able to perceive it. Their data serves as an input to the
SLAM process. During the execution of this process, a model of the environment
is generated and represented as a 3D occupancy grid map (subsection 3.5.2), by
metaview registration (section 3.4). The used occupancy grid map is realized as an
octree data structure, in which each voxel state value represents the probability of
being occupied.

Based on the occupancy grid map and the robot’s current position, the exploration
process proposes a next best sensing pose, in order to efficiently and completely

34

Figure 4.4: Autonomous exploration process workflow.

cover the whole environment. Thereby, the expected information gain with regard
to the path distance is evaluated. Once a path has been created, the motion control
process ensures, that the robot reaches the target pose. The generated commands
from the motion control are sent to robot controller, where they are executed by
moving the wheels in the correct manner. A new robot pose in the physical world is
the result of this action. During the path execution, the exploration process is not
invoked until the target point is reached. Only the SLAM process is needed in order
to localize the robot with respect to the internally constructed map. This prevents
the robot from colliding with the environment during the path execution. The whole
process loop continues until a complete map of the environment is created.

4.3 Map Notation

For the subsequent description of the individual exploration process steps, the im-
portant map representations are noted in the following way. Their generation and
application is further described and illustrated in the regarding section.

P : The raw point cloud from the range measurement

Q: The point cloud P with removed floor.

M : The metascan, as an accumulation of point clouds from Q.

V : The 3D occupancy grid map, as a result from the SlamICP process.

G: The 2D grid map, as a projection of V onto a plane.

4.4 SlamICP Process

When the robot takes a recording of the environment, the resulting depth images
and the respective odometry estimate are used as an input for the SlamICP process.

35

Figure 4.5: The encapsulated SlamICP process. The depth images and the current
odometry reading serve as an input. A 3D occupancy grid map and the robot pose
in this map are the targeted output parameters.

Based on this information, a voxel space is created with the robot’s estimated pose
in it, as can be seen in Figure 4.5.
The three important steps performed during the SlamICP process are:

1. Robot Pose Estimation

2. Pose Refinement

3. Occupancy Grid Mapping

They are further described in the following.

4.4.1 Robot Pose Estimation

The first estimated robot pose estimate will always be r0 = (0, 0, 0), no matter
what initial odometry reading is perceived. This means, that the first robot pose in
the world reference frame w is described by the transformation wT r0 = I. The first
odometry input b0 = (bx1 , by1 , bθ1) is not necessarily b0 = (0, 0, 0). This may result
from a previous robot movement, before the exploration algorithm is started. The
transformation bT b0 describes this pose change. The robot has its own reference
frame b for the odometry readings. For a clarification of the used notation, it is
conferred to section 3.2.

In case a new odometry input bi is received, the movement relative to the last input
bi−1 in the bi−1 reference frame is calculated in form of an affine Transformation
bi−1T bi by:

bi−1T bi = (bT bi−1
)−1(bT bi). (4.1)

This transformation is used for the estimation of the robot pose wT ri in the internal
world reference frame w:

wT ri = (wT ri−1
)(bi−1T bi). (4.2)

This calculation is possible, because the relative movements are equal, even if the
respective reference frames do not coincide.

36

(a) (b) (c)

Figure 4.6: Point cloud generation. Figure 4.6b is the raw point cloud from the
range measurement performed in the simulator Figure 4.6a. In Figure 4.6c, the
floor points have been removed.

4.4.2 Pose Refinement

Based on the estimated robot pose from the last step, the acquired camera recordings
are transformed into a point cloud P = {p1,p2, ...,pk}. This point cloud resembles
the collision points of the individual camera beams, relative to the internal reference
frame.

After the generation of the point cloud, the floor points are removed by a speci-
fied threshold zmin for the z-axis. The floor points are not necessary for the ICP
algorithm, because only translations and rotations on a plane are considered and
furthermore, the amount of data which has to be processed is reduced. There is
no vertical shift in z-axis direction between distinct range measurements, because
the robot is only driving on a plane. Typically, the ICP algorithm is applicable for
the 3D case with six DoF. Within the L3D library, it is possible to modify the ICP
algorithm for the 3D case with only three DoFs. This reduces the possible alignment
error and the processing complexity.

An exemplary point cloud generation process is depicted in Figure 4.6. The result-
ing point cloud without floor points is called Q, where Q ⊆ P . This process is
executed for all new measurements. In case the robot moves to another pose, the
received odometry estimate will not exactly resemble the real world position and
orientation. Small errors in rotation and translation will occur. This step is visual-
ized in Figure 4.7a, where the robot turns left and takes a new measurement, but
the merged two data sets do not align correctly because of a rotation error.

The ICP scan registration is then used to reduce the odometry-based pose error.
The point cloud Q0 from time step t = 0 will be directly used to build the metascan
M 0 , because it can not be aligned with any preceding data. In case it is one of the
consecutive measurements, the point cloud Qi is aligned by ICP with the metascan
M i−1 and then integrated into it. This results in the new metascan M i .

37

(a) (b)

Figure 4.7: ICP range scan alignment of two consecutive data sets. Figure 4.7a is
the initial pose estimate, based on odometry data, whereas Figure 4.7b represents
the corrected pose estimate after the alignment. The current measurement in blue
is matched onto the existing point cloud.

A rigid transformation alignedT initial is calculated by the ICP algorithm. The trans-
formation is applied to the point cloud Q with Qi

′ = alignedT initialQi and then
subsequently integrated into the metascan M .

This resulting transformation applied to the estimated robot pose ri from the last
step gives a new refined pose estimate about the robot.

Point Cloud Reduction

The integration of all subsequent range measurements Qi into M will lead to a
very dense and large metascan M . For the ICP algorithm, a nearest neighbor
search is necessary to determine the correspondences. In order to keep this process
performant and also reduce the memory requirement, the density of the metascan
is reduced.

For every point qi which is integrated into the metascan M , a nearest neighbor
search is performed. An octree data structure is used for the density reduction,
because it enables a fast access to the near surrounding of a specific point. If
there already exists a point mk, which is closer to the point pi than an initially
specified threshold dmin, the point will not be integrated into the metascan. It is
only integrated if ||mk−pi|| > dmin holds true for all points in M . The octree cells,
which intersect with a sphere of r = dmin around the point pi are iterated through
for the distance search.

The advantage of this procedure is the high memory saving ability. If many consec-

38

(a) M with 253210 points with no point
cloud reduction. All range scans are sim-
ply combined.

(b) M with 11424 points where point
cloud reduction with dmin = 3 cm is
used.

Figure 4.8: Metascan for a test environment.

utive range scans are performed at the same robot pose, the metascan does hardly
increase in size. If no point cloud reduction was performed, many points would be
present at the same location in space and this would result in a high increase of
computing power for the ICP algorithm. In Figure 4.8, this point cloud reduction
is visualized.

4.4.3 Occupancy Grid Mapping

After the newly gathered data has been successfully registered into the existing
metascan M , the pose of the robot is known in relation to the internal global map
representation. The sensor data can now be integrated into a 3D occupancy grid
map, which is called V . The occupancy grid map is a probabilistic octree space,
already available in the L3D library. It is a voxel space, in which the individual
entries describe the state of a certain volume. Further information is given in sub-
section 3.5.2. The integration of sensor data into the map is very similar to the
process of ray casting, where the first intersection of a ray with an object is deter-
mined.

The most important parameter for the map V is its grid resolution lres. One voxel
describes the state of a volume with the size of lres×lres×lres in the real environment.
In this thesis, resolutions from 2 cm to 10 cm edge length are tested. A smaller
resolution allows the more precise representation of map details, with the drawback
of higher memory and processing power consumption.

The space around the robot’s starting pose is initially defined as free, in order to
avoid the presence of unknown space on the floor around the robot. Based on the
robot’s geometry and the positioning of the ToF cameras, a space with the edge
lengths of 2,5 m × 2,5 m × 0,5 m is initially defined as free. This space is centered
around the robot and is standing on the ground plane. Without the preinitialized

39

Figure 4.9: 3D occupancy grid map with a resolution of 5 cm edge length. The
occupancy value of a voxel is described by its color, where black indicates a high
probability of being occupied. Free space is invisible.

free space, the robot is not able to move to any other place, because it is impossible
for it to perceive the vicinity on the floor near the robot. In Figure 4.2b, this fact
is visualized.

The integration of the range scan is performed for each camera individually. First,
the position and orientation of the camera in the 3D space is calculated relative to
the world reference frame w. Then, for each pixel value, a beam is defined, with
the starting pose at the camera center. The direction points from the pixel location
towards the focal point of the camera. This process is described more exactly in
3.5.2.

The beams are integrated into the 3D occupancy grid map by a bayes update rule.
The exact update process is described in [Sup08]. Internally, this is performed
by the addition of a likelihood factor in log-odds representation. The sensor noise
parameters and previous cell states are considered for the resulting occupancy values
of the grid cells. In Figure 4.9, an exemplary occupancy grid map is depicted. The
space cells below a certain threshold are defined as free and invisible in the picture.
The darker a voxel is depicted, the higher its probability of being occupied. They
resemble walls, tables or other obstacles, which restrict the possible movements of
the robot.

4.5 Exploration Process

The exploration process also has narrowly defined interfaces, as can be seen in
Figure 4.10. The 3D voxel space V generated by the SlamICP process and the
robot’s estimated pose in it are used as inputs. Based on this information, a path

40

Figure 4.10: The interfaces of the exploration process. Only the voxel space and the
robot’s current pose are needed as input. The result of this process will be a path
to a new target pose.

Figure 4.11: The environment of the simulated omniRob and the resulting voxel
space in top-view, created by the SlamICP process.

is generated to a new pose, in order to gather new relevant information for the
mapping process. This path must be free of any collision with the environment.

To give a better understanding of the respective algorithm steps, the whole process
is explained by the help of one example. In Figure 4.11 on the right side, the voxel
space on which the exploration process is based on is shown. On the left side in
the picture, the simulated robot can be seen, standing in a small room with some
tables. After several recordings of the environment, the SlamICP instance generates
the depicted voxel map. The chosen grid edge length is lres = 20 cm, which is
definitely too imprecise for further application, but is better suited for the sake of
demonstration.

For the exploration process, the following steps are performed consecutively:

1. Projection to Ground

2. Collision Space Generation

3. Frontier Generation

4. Application of exploration Strategy

5. Path Generation

41

(a) (b) (c) (d)

Figure 4.12: Visualization of the exploration process steps. The yellow pixel with
the small ”R” in it is the same in every picture and indicates the current location
of the robot.

In the following, these steps are described and visualized in more detail.

4.5.1 Projection to Ground

The robot is designed for indoor environments and in this thesis only limited to
movements on a plane. Therefore, in order to make the voxel space V more pro-
cessable, it is projected onto a plane where the new 2D grid map is denoted as G.
This simplifies the distinction of obstacle free space and collision space without any
relevant loss of information. This statement only holds true for box-like robots with
no overhanging objects which may collide.

The 2D grid map G is realized internally as a two-dimensional C++ std::vector,
where each vector element includes a further std::vector. The cell value G(i, j)
describes the state of a specific cell. The edge length lres of the 2D grid G is same
as for the 3D grid V . The grid indices i and j describe the position for the x-
or y-axis, respectively, and enable direct access for each cell state. Because of the
vector implementation, only unsigned integer values are possible for the indices. This
would make it impossible to represent the space at negative x- or y-axis positions.
As a solution, an internal offset value is introduced which serves as a movement
of the whole grid map to the minimal x and y position. This makes it possible to
access the complete space without the need of implementing a new data structure
and enables the use of negative i and j index values. Starting from a robot position
r = (x, y)T ∈ R2×1 the resembling rasterized position s = (i, j)T ∈ Z2×1 is calculated
by Equation 4.3.

i = round(x/lres) and j = round(y/lres) (4.3)

42

z-axis 15

128

200

128

51

free/unknown/occupied

Figure 4.13: The process of iterating through a voxel column and projecting the
correct state to the ground. The numbers indicate the occupancy value, where 0 or
255 resemble the occupancy probability values of 0 or 1, respectively.

The discretization causes a maximum distance error of e1 = 1√
2
lres (Equation 4.4).

This is the distance from the middle point to the corner of a cell.

e1 =

√(
1

2
lres

)2

+

(
1

2
lres

)2

=
1√
2
lres (4.4)

In Figure 4.12a, the first processing step is visualized, where white defines free, black
occupied and red unknown space.

Starting from the robot’s position, the space V is iteratively processed, in order
to determine the whole connected free space. The algorithm starts with the grid
cell G(i, j), in which the robot’s center is currently located. The term V (i, j, k)
describes the same rasterized robot position, but in the 3D occupancy grid map,
with k as a z-axis index. Each z-axis column of voxel will be traversed from a
minimum kmin to a maximum value kmax. A minimum value has to be defined in
order to separate floor from free space and a maximum value is needed in order to
ignore the space above the robot, which the cameras cannot perceive.

Furthermore, certain thresholds are necessary for defining free, unknown and occu-
pied space.

The occupancy values of the grid map in L3D range from 0 to 255, where all values
below a certain threshold thfree are considered free and all values above thocc are
considered occupied. 255 resembles a probability of 1 for a cell of being occupied.
The initial voxel state is 128. The narrower the free of occupied thresholds are de-
fined, the more certainty is necessary for their definition. This consequently requires
more measurements. In case one single occupied voxel is located in a voxel column,
the respective 2D grid pixel in G is set to occupied as well. Whereas the 2D grid
value will only be set to free, if all voxels in the column hold the free state. In all
other cases, the grid value is set to unknown. If the grid value is free, the process will

43

Algorithm 2 Projection to Ground Algorithm

1: V = 3D voxel space, G = 2D grid map
2: push starting position indices (istart, jstart) to the end of queue Q
3: while Q 6= empty do
4: take and remove (i, j) from the front of Q
5: if (i, j) already processed then
6: continue with 3
7: end if
8: move through corresponding column in col = V (i, j, kmin : kmax)
9: if ∃ voxel v in col with v ≥ thocc then

10: G(i, j)← occupied
11: else if ∃ voxel v in col with v > thfree then
12: G(i, j)← unknown
13: else
14: G(i, j)← free
15: push (i+ 1, j),(i, j + 1),(i− 1, j) and (i, j − 1) to back off Q
16: end if
17: end while

continue with all untreated neighboring columns until no more free space is found.
This procedure is similar to a simple flood-fill algorithm in computer graphics. The
whole projection to ground algorithm is formulated in pseudo-code in Algorithm 2.

4.5.2 Collision Space Generation

In the next step, the robot geometry is taken into account. The robot position in the
used coordinate system is defined by the robot’s center, as can be seen in Figure 4.14.
But to describe the robot only by its pose is not enough for a reasonable exploration

Figure 4.14: Robot geometry with the origin of the coordinate system indicated as
a cross. In the grid map, the gray color indicates the cells, where no obstacle is
allowed to be.

44

task. The dimensions of the robot have to be considered for every movement to
prevent any collision with the environment. A certain distance has to be kept to
every obstacle which has been perceived. Furthermore, this distance is also necessary
towards regions which have not yet been perceived. The robot can not be sure if
they will be free or occupied. In order to keep a certain minimum distance to any
occupied or unknown space, a collision radius is used for the exploration task. It is
applied to the grid map G to determine all regions where the robot is allowed to
go. The dimensions of the omniRob are described in subsection 4.1.1. The collision
radius can be calculated with rcoll =

√
(0.5l)2 + (0.5w)2 (Figure 4.14) and is applied

to the grid map from the previous step. Every pixel, which is in reach of the collision
radius of an occupied pixel is defined as collision space. The resolution error e1 has to
be considered. This means, that every cell center, which is in reach of rcoll+

√
2lres of

an occupied or unknown cell, is defined as collision space. Around unknown pixels
a maybe collision state is defined, because the robot can not yet be sure if there
might be free or occupied space. This means, that it is not possible for the robot
to go to this place without the chance of colliding with any object. The result is
visualized in Figure 4.12b, where grey indicates collision space and green indicates
maybe collision space. So far, the robot is able to rotate freely at every position,
which is still considered free. The fact that the robot might be able to move closer
to collision objects if it is rotated appropriately is not considered in the scope of this
work.

4.5.3 Frontier Generation

In Figure 4.12c, the blue color defines all reachable space. In the depicted case, all
previously declared free space is now reachable as well, but it might as well occur
that some regions will be barred away by the collision space. A reachable border
region from free to unknown space is called frontier.

During this step, the presence of a reachable border region is verified. The goal of
the exploration task is to cover the whole environment, and therefore the robot has
to find positions, where new data can be perceived. Therefore, all maybe collision
space is evaluated for bordering unknown space. In the picture, this is visualized
by a more bright green and red color. The grouping is performed by evaluating
the neighborhood of one frontier cell. If two frontier cells share one edge or one
corner, they belong to the same frontier. This is performed by iterating over all
eight surrounding cells in the grid.

Normally, more than one of these regions will be present, and they are grouped
together and sorted in ascending order, based on their calculated traveling distance.
The processing of reachable space is performed by a Breadth-First Search (BFS)
algorithm, and therefore it is easy to determine the grid distance to each border
region.

45

4.5.4 Application of Exploration Strategy

The next step is finding a new target pose for the robot in order to continue the
exploration process. The implemented strategy is a frontier-based approach, where
the information gain is considered. In case no appropriate target position can be
determined, the exploration task stops and the environment is considered to be fully
mapped. These three steps are performed consecutively.

1. Unknown Border Selection

2. Sample Space Generation

3. Scan Rating

They are explained more thoroughly in the following.

Unknown Border Selection

Depending on a certain strategy, one of the available frontiers is selected. Every
frontier is a collection of grid cells G(i, j). The size of a frontier is determined by
the number of grouped border cells. The number is also proportional to the selected
grid size lres. If several regions surpass a certain threshold size thf1, the nearest one
is chosen. The distance to a frontier is determined during the frontier generation
step, where all reachable space is defined. This is to guarantee the continuous
movement along a corridor and avoid a back and forth movement between several
distinct frontiers.

In case no border region with the size above the first threshold can be detected, a
second smaller threshold thf2 is considered. This may result from a fully explored
room, in which only smaller passages, like a door are present and have not yet
been explored in detail. If none is found at all, the environment is considered fully
explored and the algorithm stops.

Sample Space Generation

Once a certain region has been selected, a sample space is created in front of it.
This space marks possible positions from where the border can be observed. In
Figure 4.12d, the selected border region is marked in yellow and the sample space
in purple. A minimum distance to the unknown region is specified. This avoids new
space to be in the robot’s blind angle. In addition, a maximum distance is specified
so as to limit the space of possible target positions.

Line rasterizaiton is used, in order to determine the possibility of a direct line of sight
towards the unknown border region. If the sample space was only determined by
the distance to the frontier, there could be some space, e.g. behind a corner, where

46

Figure 4.15: 4-connected Bresenham’s line algorithm.

the frontier can not be seen by the robot. In order to avoid this, at least one frontier
cell must be directly observable from every sample space cell. In Figure 4.15, the
rasterization process is visualized. It is implemented as a 4-connected Bresenham
algorithm and similar to 2D ray tracing. For every sample space pixel, at least some
unknown border pixel have to be in direct line of sight, without the interception of
an occupied pixel. This prevents the processing of positions, e.g. behind an edge,
where the gain of new information is very unlikely or impossible.

In this generated sample space, several arbitrary robot positions are selected. The
quantity is specified in a settings file and every sample point has a minimum distance
to any other sample. The samples are visualized in Figure 4.12d as orange pixels.
The rotation of the robot could be sampled as well, but in order to reduce the amount
of necessary samples and the fact of an almost complete FoV (cf. Figure 4.2a) in front
of the robot, its orientation is always directed towards the center of the unknown
border region.

In case no sample space can be generated, this region is abandoned and the selection
process returns to the unknown border selection step.

Scan Rating

In the scan rating step, the sample with the most information gain is selected.
This approach is conventionally used in NBV planning (cf. section 2.10) for object
modeling. In the existing voxel space, a virtual measurement is performed. Similar
to the integration of data into the space, the virtual measurement simulates beams
for every camera pixel.

But instead of updating the space, the entropy is calculated without changing the
voxel space V . The information gain is calculated by the processing of all possibly
observable occupancy grid cells. Further information is given in section 3.7. The
sample pose with the highest information gain is likely to be the best one in the
real environment and will therefore be the new target. In the example, this would
be the top-right sample point, indicated by the red circle.

The implementation of the scan rating process takes a robot pose and generates

47

all beams for the ToF cameras at this pose with the maximum perception length.
This process is very similar to the occupancy grid mapping step in subsection 4.4.3,
where the beams for all cameras are generated, but based on the individual mea-
surement. The 3D occupancy grid V is now used to determine the information gain.
In section 3.7, the process of calculating the information gain is described in more
detail.

For the sake of performance, the amount of generated beams can be reduced by a
factor. The camera sensor in this thesis has i×j = 64×48 pixel values. For example,
if a reduction factor of 3 is chosen, only every third beam in i and j direction will be
processed. The overall evaluation steps are reduced by a factor of 3 × 3 = 9. This
still results in an expressive information gain calculation with the advantage of a
much higher processing speed. The scan rating step still demands a major amount
of processing time of the complete autonomous exploration process.

4.5.5 Path Generation

An easy way of generating a path from a robot pose ri to another pose ri+1 is
using a search algorithm like BFS or A* on the already generated grid map G. The
huge disadvantage of this approach is the high number of generated path segments.
The robot always drives from one cell to another neighboring one. This can result
in very abrupt and frequent changes in driving direction. As a consequence, the
localization error is very likely to increase. Moreover, this approach will always lead
to a path near the collision space around corners. This should be avoided to reduce
the likelihood of accidental collisions. One solution to this problem in literature
is the use of Voroni Diagrams [GMAM06], where the distance to any obstacle is
maximized.

In this thesis, an already implemented path generation algorithm within the L3D
library is used. It operates on the collision space grid map G from Figure 4.12b. A
starting position and a target position can be defined, where the generated path must
completely lie within the collision free space. Additionally, obstacles are avoided and
the distance to the collision space is maximized. In Figure 4.16, the path generation
process is exemplified. The output of the path generation process step is an ordered
list of robot positions. They define the path p = {(x0, y0)T , (x1, y1)T , ..., (xi, yi)T}
from start to end. The orientation of the robot is not changed during the path exe-
cution because of its omni-directional movement ability. Only at the final position,
the robot is directed toward the center of the frontier, in order to exploit the denser
FoV at its front-side.

48

(a) (b)

Figure 4.16: Path generation process. (a) would be a simple search strategy like
BFS in the grid map, whereas (b) exemplifies the used implementation from the
L3D library.

4.6 Motion Control

The robot’s movement is prone to errors and noise. Therefore, the robot travels
along the path in smaller steps. A maximum path segment length is defined, in
order to keep the error manageable. After every segment, a pose correction by
means of range scan alignment is performed. The environment is perceived with
the ToF cameras and a point cloud is generated. As described in subsection 4.4.2,
scan matching is performed to refine the position of the robot. In order to use the
perceived information for further refinement of the map representation, the range
data is integrated into the metaview and voxel space.

In Figure 4.4 the whole autonomous motion control process is depicted. After the
exploration routine has generated a path to a new target observation position, the
motion control process ensures the accurate reach of this position. After every path
segment, it has to communicate with the SlamICP process (cf. section 4.4), where
the data from the sensors is used for the pose refinement.

49

Chapter 5

Experiments and Discussion

In this chapter, the whole implemented autonomous exploration process is further
evaluated an discussed in various aspects and the exploration abilities of the imple-
mented process is demonstrated. First, one whole exploration process of a sample
environment is presented. The test room is modeled in Blender according to the
real test room at the DLR institute where the omniRob is currently standing. Af-
terwards, the results are discussed in matter of performance and behavior.

5.1 Example Exploration Process

In the following, an example autonomous exploration process will be presented and
visualized. The size of the complete test environment is 12 m × 8 m and is modeled
with Blender 2.72. The robot’s starting position is visualized in Figure 5.1a. Its
viewing direction is indicated by the yellow arrow. There are no narrow passages in
the test environment. This makes it possible for the robot to drive everywhere and
rotate freely within the safe collision space without colliding with any obstacle.

The grid resolution for the occupancy grid map is lres = 5 cm and each cell obtains
an occupancy value between 0 and 255. A value below thfree = 70 is considered
as free, whereas a value above thocc = 240 is considered occupied. The lower the
threshold for free voxel is chosen, the more consecutive scans are necessary to define
this space as free. 70 is a very loose threshold for the free space, but otherwise more
environment recordings are necessary. The same applies for the occupied states.
For the metascan, the distance to the nearest neighbor must be more than dmin =
5 cm. In the exploration process, 15 samples are evaluated at the maximum. Only
the space between zmin = 10 cm and zmax = 50 cm height is considered for the
space definition and exploration task. The space below 10 cm, is considered as floor,
whereas above 50 cm, it is ignored completely. The FoVs of the cameras do not
record this space in the current camera setting.

50

(a) MRE Simulator with the onmiRob
starting position and rotation marked in
yellow.

(b) The exploration gird map G after
the first range measurement. The target
pose is illustrated by the dotted arrow.

(c) The exploration map G after 14 ex-
ploration steps. The target pose is illus-
trated by the dotted lines.

(d) The 3D occupancy grid map V af-
ter 14 exploration steps. The targeted
frontier is marked by the red circle.

Figure 5.1: The exploration process in the beginning and during the autonomous
execution, performed with the MRE simulator and a previously modeled test envi-
ronment.

51

In Figure 5.1b, the implemented exploration map is depicted, after the first range
measurement has been integrated into the occupancy grid map. The selected frontier
is marked in yellow. Many parts of the surrounding environment are still missing,
because the cameras do not cover the whole surrounding at once. This results from
the application of several individual cameras with a limited angle of view. The
environment can already be assumed by the black pixel, which represent the walls
as occupied space. The nearest unknown border marked in yellow in front of the
robot results from the limited angle of view of the front camera. Even after defining
a space of 2,5 m × 2,5 m centered around the robot as free, some space near the
ground cannot be perceived. All the other straight red pixel lines also represent the
area, where the surrounding could not yet be perceived. But the robot is unrestricted
enough to move around and register this space in the next step from a more distant
point of view. The random samples, which are considered for the entropy-based
evaluation are marked in orange. The dotted yellow arrow marks the selected next
best robot pose out of the samples.

In Figure 5.1c, the exploration map is shown after the 14th step. The traveled path
by the robot is visualized by the red lines. Every time the robot stops and takes a
measurement is indicated by a red dot. The yellow arrows are the next best target
poses after every execution of the exploration process. All red dots without a yellow
arrow indicate a path execution, where a path is followed to a target position and
only a relocalization is performed at this position. There exist robot positions very
close to the collision space. In case of very inaccurate movements, this fact can cause
severe problems, because the robot might collide with any obstacle. The preference
of positions far away form any obstacle is not yet implemented within the scope of
this thesis. The corresponding 3D occupancy grid map is visible at Figure 5.1d. The
darker a voxel is depicted, the higher is its occupancy probability. The next target
pose is indicated by the dotted arrow and line in Figure 5.1c and the frontier in the
3D occupancy grid map is highlighted by a red circle in Figure 5.1d.

The result of the completed exploration process is shown in Figure 5.2. In Fig-
ure 5.2a, no new frontier could be determined by the implemented algorithm, thus
the exploration stops. The entire path traveled by the robot is represented by the
red lines and the respective generated next best positions are visualized by yel-
low arrows. The complete 3D occupancy grid map V is depicted in Figure 5.2b.
The metascan M , which is needed for the ICP range scan alignment is pictured in
Figure 5.2c and consists of 13 977 points. In case no point cloud reduction was per-
formed and all point clouds were solely combined, the same exploration task would
result in a point cloud with 545 133 individual points. There are still individual
unknown pixels in between the occupied ones and they restrict the reachable area
by the maybe collision space (indicated in green). But in order to certainly define
them as either free or occupied, many more measurements would have to be taken.
The sensor noise further hampers the exact definition of cell states. If an obstacle
in the real world exactly borders the edge of an internal occupancy grid cell, it will
take many measurements for the cell to diverge into one state. Therefore, these

52

(a) Exploration gird map G after the
finished exploration process.

(b) 3D occupancy grid map V after
the finished exploration process.

(c) The metascan M after the fin-
ished exploration process.

Figure 5.2: The completed exploration process and the resulting occupancy grid
map and metascan.

53

coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Steps

Figure 5.3: Environment coverage after every exploration step.

unreachable pixels are not considered anymore for the further exploration process.

In Figure 5.3, the environment coverage after each exploration step is depicted. The
number of grid cells, which are defined as free, serve as an indicator for the map
coverage. Initially, nothing is known about the environment. With the first mea-
surement, the largest increase of map coverage is archived. This results from the
complete surrounding of unknown space. The precondition before starting the au-
tonomous exploration process is a safety distance to any obstacle in the environment.
Therefore, the robot registers a lot of free space around itself, which results in the
increased information gain. All preceding steps are iterative measurements in which
the robot always stays withing the known space. Hence, the gain of information will
not be as large as in the first step. As soon as no new explorable frontier is present,
the algorithm stops and the map is considered fully mapped.

5.2 Exploration Performance

In the previous section, an example exploration process is displayed and analyzed.
In the following, the individual autonomous exploration process tasks is discussed
in terms of processing time and performance. Exact times are difficult to determine
because more than 20 threads running in parallel in the simulator and the individual
times for the same task vary a lot. But it is still possible to give approximated
average times for the same task in order to determine a qualitative characteristic of
each processing step. The computer on which the simulation is performed possesses
an Intel Xeon Processor W3520 with 2.66 GHz and 4 GB of RAM.

The most important factor for the performance of the implemented algorithm is the
resolution of the occupancy grid. For the 3D occupancy grid V and the projected
2D grid map G, the edge length lres is the same and highly influences the needed
processing time. Another factor is the minimal distance dmin to any other point in

54

the metascan reduction step. The reduced metascan influences the processing time
of the ICP algorithm and also the claimed RAM use. The SlamICP process does
not scale with the number of consecutive measurements. Only the RAM usage is
increasing, depending on the growth of the 3D octree space V and the metascan
M . The exploration process does scale with the size of the map. Starting from the
robot position, every reachable grid cell is searched. As a result, the algorithm will
need a longer execution time as more free grid elements are present. During the
exploration tasks, the size of the grid map is constantly growing. Also the frontier
generation and robot pose sampling depends on the number of grid cells, which have
to be processed.

The influence of the edge length lres and the minimal distance dmin for the metascan
are discussed in the following. The major CPU-intensive and time consuming steps
performed in the SlamICP process are:

1. Generate point cloud P from measurement [const].

2. Range scan alignment [dmin].

3. Integration of measurement into metascan M [dmin].

4. Integration of measurement into 3D occupancy grid map V [lres].

The parameter, on which the individual task depends on is noted in the square
brackets [...]. For the exploration process, all tasks depend on the parameter lres.
These tasks are:

1. Projection to ground.

2. Collision space generation.

3. Frontier generation.

4. Robot pose sampling.

5. Scan rating.

6. Path generation.

The task of performing the measurement in the simulator with the eight cameras and
accessing the images takes about 2 seconds within the MRE simulator. The path
execution is not considered, because it highly depends on the robot’s acceleration
and speed parameters. The generate point cloud P from measurement step in which
the eight range images are converted into the point cloud P takes 15 ms and remains
constant. It is independent of the algorithm’s parameters.

55

Reduction radius dmin 0 5 10 20 30 40 50 100 150

Integration into M [ms] 4.4 79 92 90 76 73 67 55 47
ICP alignment [ms] 886 848 784 254 169 65 40 12 10

Numer of points in M 53238 50252 38481 16681 9500 5842 3995 1221 636

Table 5.1: Effect of dmin on the execution time and the metascan size.

0

200

400

600

800

1000

0 5 10 20 30 40 50 100 150

Figure 5.4: The execution time of the metascan point reduction and the ICP range
scan alignment conditioned on the parameter dmin.

5.2.1 Point Cloud Reduction

In Table 5.1, the processing times for the two tasks Range scan alignment and Inte-
gration of measurement into metascan M are listed, conditioned on the parameter
dmin. For each test, the same sequence of 10 range measurements and odometry
inputs was used in order to ensure a reasonable comparison. If no reduction radius
is chosen, that means dmin = 0, no reduction is performed and the integration of
one measurement into the metascan only lasts about 4.4 ms. The ICP operates on
the full dense point cloud and therefore needs the most time. In case the point
reduction is performed, the size of the metascan decreases a lot, which results in a
faster execution of the ICP alignment. The reduction itself also needs time, because
the near vicinity of a new point has to be searched in a space octree structure. The
effect of the parameter dmin on the execution time is depicted in Figure 5.4, in which
the time of the metascan integration and of the range scan alignment are combined.

Naturally, a high reduction of the metascan will result in a worse representation
of the environment and increase the alignment error. For the modeling of smaller
objects like a table leg, a reduction radius of more than 50 mm is not suitable. The
best results for the algorithm and the test environment in this thesis were archived
with a reduction radius of 20 mm. The environment can still be adequately modeled
with a high accuracy and a reduced execution time. Furthermore, the RAM usage is
not directly proportional to the number of measurements, like in case of no reduction,
but only to the size of the environment.

56

Grid resolution lres [mm] 10 20 30 40 50 60 80 100 120

Integration into V [ms] 3308 1767 1238 892 737 592 456 423 319
Projection to ground [ms] 1085 214 84 38 20 15 8.1 6.0 2.4

Collision space generation [ms] 84 12 3.9 1.7 0.9 0.8 0.4 0.2 0.1
Frontier generation [ms] 29 8.7 3.5 2.0 1.4 0.9 0.6 0.4 0.2

Robot pose sampling [ms] 3240 201 48 34 11 6 1.8 1.2 0.8
Scan rating (single sample) [ms] 1124 637 458 359 285 236 172 139 119

Path generation [ms] 15388 1660 941 737 674 622 591 589 590

Table 5.2: The execution times of all process steps, which depend on the grid reso-
lution lres.

5.2.2 Grid Resolution

The grid resolution has a lot of influence on the execution time and accuracy of the
presented algorithm. As a first obvious consequence, the environment can be repre-
sented more accurately, if a smaller grid resolution is selected. But this parameter
can not be decreased without any limit. The processing time and RAM usage will
strongly increase for smaller resolutions. In oder to get an impression about the
individual processing times, a wide range of grid resolutions has been tested. For
the execution times in Table 5.2, an exploration run was performed in the same test
environment with the same amount of exploration steps. The displayed numbers
are mean values of the needed execution time. Some tasks also scale with the size
of the environment, but as it is growing to almost the same size for every used grid
resolution, this increase does not eliminate the comparability. The test environment
displayed in Figure 5.1a was used. The integration of the measurement into the
3D occupancy grid V does belong to the SlamICP process and does not scale with
the map size. For the scan rating step, the execution time for one single sample is
displayed. This time scales linear with the number of pose samples. If more than
10 samples are evaluated, it is the main factor for the whole exploration task. In
Figure 5.5, the execution times of the exploration task are displayed in relation to
their partial share and with the evaluation of 10 samples for each processing step.

It is clearly visible, that the scan rating step requires the most time in relation to
the other steps. In the path generation step, an existing L3D class is used. First, the
own internal map representation has to be converted into the appropriate format,
then a graph is created on which the path from one to the other position is generated.
This step also utilizes a lot of execution time. Furthermore, in contrast to the scan
rating step, the path generation step scales with the size of the map. In order to
reduce the performance of the whole exploration process, the path planing on a 2D
grid map has to be optimized. The entropy based scan rating process for several
samples takes the major part of the whole process. To reduce this processing time,
the evaluation could be performed on the 2D grid map, or other reasonable analytic
strategies have to be found. The other process steps are negligible in processing
time in the current approach.

57

Figure 5.5: The partial share in execution time of each step in the exploration
process conditioned on the grid resolution lres. (The integration into V step belongs
to the SlamICP process and is not included in the diagram.)

It has to be stated, that a grid resolution of lres = 10 mm is not applicable anymore
for the underlying problem setting. The 4 GB RAM are not sufficient anymore after
several measurement steps. The processing time highly increases and a visualization
of the map representation is not possible anymore with the used computer. Fur-
thermore, the integration of the individual beams into the 3D occupancy grid map
does not deliver useful results. The individual grid cells, which intersect with the
generated beams from the depth measurement do not lie side by side anymore, but
leave some space unprocessed between them. This effect occurs some distance away
from the camera till to the end of the measuring distance and the result is visualized
in Figure 5.6. A multitude of measurements would be necessary to cover the whole
free space.

A solution to this problem would be a widening of the individual beams linear to
their distance, or the use of cameras with a higher resolution. The best exploration
results for the test environment were archived with a grid resolution of lres = 50 mm
to lres = 80 mm and a point cloud reduction of dmin = 30 mm.

5.3 Major Drawbacks

5.3.1 Metascan Misalignment

The main disadvantage of the presented algorithm in this thesis is the missing cor-
rection and relaxation of previously integrated measurements. One range measure-
ment consists of the combination of eight distinct range measurements into one point
cloud. The individual measurements of each camera do not necessarily overlap, but
contain free space between them. The metascan is an accumulation of the resulting

58

Figure 5.6: Occupancy grid map after range scan integration. A grid resolution of
10 mm is too low for a reasonable voxel mapping.

(a) Metascan M misalignment during
the exploration.

(b) Resulting exploration map G.

Figure 5.7: Incorrect exploration caused by metascan misalignment. The resulting
exploration map does not represent the real world environment.

59

Figure 5.8: Shortening of long pathways without shape indicators by range scan
alignment.

point clouds and can contain some missing space as well. If the odometry estimate
of a new robot pose is not very exact and the correspondence search of the range
scan alignment selects the wrong points, the resulting transformation will lead to a
wrong pose refinement. The gathered date is incorrectly integrated into the existing
metascan. All further range scan alignments will take this faulty metascan as a map
reference. The algorithm is not able to correct the fault and will diverge and cancel.
An exemplary misalignment is depicted in Figure 5.7, in which the faulty metascan
an the resulting exploration map are visible. Some few alignment errors resulted
in an erroneous environment representation. Ideally, such an alignment error only
results in a premature ending of the exploration process. But for the path execution,
a severe alignment error can even lead to collisions with the environment, in case
the localization after each path segment is completely wrong.

In Figure 5.8, another alignment problem is displayed, caused by the shape of the
environment itself. This especially happens in long unchanging pathways without
distinct shape features. In case the robot is moving in a long pathway, where only
straight walls are present and no standing around objects influence the shape of the
range scan, this pathway will be shortened by the ICP alignment. This situation is
visualized in Figure 5.8, in which a robot registers the environment from a new pose
to the right side. But because of the unchanging environment along the pathway, the
new range scan is identical to the previous one. The range scan alignment will math
the two point clouds and correct the robot pose to the left. The exact maximum
length of the path shortening is defined by the correspondence search radius for the
ICP algorithm. A smaller radius will reduce the shortened length. But for very
inaccurate odometry sensors, a small search radius might lead to failing or wrong
alignments. Within the scope of this thesis the underlying problem of missing shape
indicators in the environment is not considered explicitly. The targeted indoor
environments have many obstacles and corners in which a path shortening is of no
concern.

60

Figure 5.9: Some unknown space at the starting position causes the robot to drive
back the whole way. This could be prevented by a map segmentation.

5.3.2 Missing Map Segmentation

One other drawback of the implemented algorithm is the missing map segmentation.
In case the robot is exploring an unknown environment, it continues to follow the
nearest frontier to unknown space. Sometimes it happens, that there is still unknown
space present in a room, when the robot already continues to explore the region in
the corridor or the next room. When everything else of the environment is already
covered, the robot will move back to the partly explored room. This problem is
illustrated in Figure 5.9, where some small space is still unexplored near the starting
position. The few unexplored cells marked in yellow, which were not fully covered
by one of the ToF cameras, cause the robot to drive back the whole way. In case the
robot intends to fully explore a room or a bigger connected area, before moving to a
next room, this problem could be avoided. Therefore, the map must be segmented
into different parts.

Furthermore, this segmentation would have positive effects on the processing time
of the algorithm. If a room is fully explored, it can be treated finalized, and does
not have to be considered for the exploration process algorithms anymore. Also
for future work, if the existing map representation needs to be corrected, a map
segmentation can highly increase the performance.

61

5.3.3 Noisy Measurement

The implemented algorithm is very sensitive to sensor noise. The robot only moves
to a place if every voxel column in the 3D occupancy grid map is defined as free
within the collision radius. If one of the cells is not below a predefined occupancy
threshold, the robot is not allowed to travel there. Especially for the separation
of floor and obstacles, the sensor noise has a hampering effect. In the scope of
this thesis, the raw point cloud is used for the environment modeling. In order
to determine the traversable and reachable environment, only the space above a
certain threshold is considered. For the noise parameters of the cameras from the
manufacturer, a threshold of 10 cm is used in this thesis. If a lower threshold is
selected, no connected free space can be defined, because the sensor noise will lead
to many grid cells above the floor to be either unknown or occupied. The exact
process of the projection algorithm is described in subsection 4.5.1. This also means
that no object below a height of 10 cm will be recognized.

Smaller objects like vertical table legs can not be registered and integrated into the
exploration process. If such small objects are present in the targeted environment,
the robot is likely to ignore them. This can result in damage of the respective object,
or the robot itself. In addition, the odometry and camera noise can encourage an
error in the range scan alignment, as described in subsection 5.3.1. All in all, a low
sensor noise with few outliers is crucial for a reliable exploration of an unknown
environment. Otherwise, an early abortion of the exploration process or even a
collision with an obstacle are very certain.

62

Chapter 6

Conclusion

6.1 Summary

The implemented autonomous exploration approach in this thesis is a combination of
frontier- and entropy-based exploration. For the mapping and localization process,
a metaview registration SLAM algorithm has been implemented, which operates on
the raw range measurements of depth cameras. The individual measurements are
combined to a metascan and integrated into a 3D occupancy grid map. In order to
reduce the amount of necessary RAM, a point reduction method is implemented for
the integration of new data into the metascan. Furthermore, a 3D occupancy grid
map is generated by the SlamICP process. The occupancy grid map is realized by
a memory saving octree data structure, which is available in the L3D C++ library.
The exploration process is based on the generated 3D occupancy grid map. Because
of the robot movement, which is restricted to planar environments, this 3D repre-
sentation is projected to a 2D grid map, in which the collision spaces and available
frontiers are determined. The frontier selection process is determined analytically,
whereas the robot pose sampling is randomized. The evaluation of each sample is
performed by an entropy-based scan rating process within the 3D occupancy grid
map. For a faster execution of the scan rating process, the amount of generated test
beams is reduced by a predefined factor. The path generation from one to another
robot pose is performed by an existing L3D C++ class.

An example autonomous exploration task was described in section 5.1 and the per-
formance of the whole process was analyzed in section 5.2. The effects of the grid
resolution lres and the metascan point reduction radius dmin were evaluated in de-
tail and the major time consuming tasks were detected. The algorithm was tested
within the MRE simulator. An integration and testing of the algorithm with the
real robot could not be performed, because of different version conflicts and inter-
face problems. But the simulation results are expected to be applicable for the real
world scenario. It showed that the scan rating and path generation steps require

63

the longest execution time, whereas the 2D grid projection and processing are al-
most negligible. The implemented SlamICP process does not scale with the map
size and iteration steps, but no faulty alignments and noise errors can be corrected.
For smaller environments and sensors with low noise, this approach is still appli-
cable. The implemented algorithm supplies a testable and working framework for
further developments. The interfaces of each process are clearly defined and enable
the extension to further problem solutions, e.g. the detection of negative slants,
descending stairways or the correction of erroneous alignments.

6.2 Future Work

The presented approach in this thesis is similar to the RBPF approach with only
one single particle. As a consequence, no loop closing for large-scale environments
is possible. This makes the implemented approach only useful for smaller indoor
environments. Furthermore, individual severe alignment errors will cause erroneous
results.

There are basically two ways of solving this problem and enhance the current ap-
proach for large-scale environments. The first approach is the development of a
performant RBPF algorithm for the 3D case. As shown in [WSBC10], involved data
structures need to be implemented first, to ensure an applicable SLAM routine with
enough individual particles. The available RAM and the processing power are the
crucial factors for this strategy. If only a few particles are used, this approach will
also be very likely to diverge after a certain time.

Another solution is the integration of graph construction and relaxation algorithms
- in literature often referred to as Front-End and Back-End. The individual robot
poses can be interconnected to a graph, in which the spacial constraints between the
individual poses form an optimization problem. The drawback of this approach is
the steadily increasing amount of necessary processing power. After every relaxation
of the graph, the occupancy grid map would have to be rebuilt. Furthermore, the
nodes in the graph are constantly increasing in number after each iteration step,
which results in a more complex optimization problem. A solution to this issue could
be the segmentation of the environment into delimited areas (e.g. rooms), which
will only be changed if necessary. Otherwise, only the individual areas are relaxed in
the optimization problem. Furthermore, a segmentation of individual rooms would
be of high interest for the indoor exploration task. As soon as one room is fully
explored, it does not have to be considered anymore for further processing.

For the exploration process itself, it is also beneficial to target robot poses, where a
correct loop closing is very likely. To visit already observed places again increases
the probability of a proper alignment for the graph-based approach and supports
the propagation of correct particles in the RBPF approach. In order to reduce the

64

processing data of the whole algorithm, a feature and landmark extraction procedure
can be applied to the sensor data. Geometric shapes can be extracted from a
point cloud and replace the large amount of individual points. Especially for indoor
environments, the detection of walls and doors provide a highly reduced environment
representation.

Another interesting problem in the autonomous exploration research is the consid-
eration of the robot’s geometry. So far, the distance from the robot to any object
in the environment is determined large enough to prevent any collision, regardless
of the robot’s rotation. But especially for narrow corridors or passages, the robot
might only fit through if it is rotated correctly. The robot also could have a dif-
ferent shape than the box-like robot in this thesis. The reasonable consideration of
these factors into the autonomous exploration task can extend the applicability and
performance for more restrained and narrow environments.

A further interesting consideration is the use of the two 2D horizontal range sen-
sors, which are already mounted on the omniRob, for the SLAM process. They are
attached on a low height near the floor and enable a better recognition of small
obstacles. Furthermore, they provide a complete panoramic perception of the en-
vironment. KUKA already supplies the omniRob with a RBPF-based SLAM algo-
rithm, which is based on the 2D sensors. The 3D data from the ToF cameras can
then be used additionally for the exploration process in order to model overhanging
obstacles or descending slants. The generation of the 3D representation can then
be performed after the exploration process. This so called offline processing moves
a lot of time consuming calculations to a post-processing step and provides more
performance for motion control and path planning algorithms.

In this thesis, the exploration process is performed in a stop-and-go fashion. The
robot moves to a target position, stops, takes a recording, integrates the perceived
data into the environment model and continues its movement. For the fast execu-
tion of the whole exploration task, a subdivision of the whole process into different
threads would be beneficial. The localization and mapping tasks can be performed in
a different thread than the robot movement or motion control task. This would en-
able the possibility of an environment exploration and mapping algorithm, without
the need of stopping the robot movement at every path segment. The implemen-
tation of smooth trajectories for the path planning and the concurrent execution of
the robot movement with environment mapping are only a few out of many other
enhancement possibilities.

The development and functionality of an autonomous exploration process is pre-
sented and analyzed in this thesis. It states a foundation for many further devel-
opments and possible extensions. The topic of autonomous exploration including
SLAM, path planning and motion control covers a very large field of research. As
shown, the development of many interesting and involved algorithms is imaginable.
To prove and test their applicability for real world scenarios with the underlying
hardware setting is up to subsequent researchers.

65

List of Figures

1.1 The different parts of robotic exploration. 3

2.1 Frontier-based exploration. 10
2.3 Next Best View exploration process. 14

3.1 Online and Full SLAM Dynamic Bayesian Network (DBN) 16
3.2 Robot pose in 2D coordinate frame. 17
3.3 Working principle of range sensors. 18
3.4 Exemplary ToF camera range measurement. 19
3.5 Metaview registration with the ICP algorithm. 20
3.6 Octree data structure and an update step for the occupancy grid map. 24
3.7 The occupancy grid entropy for a single cell. 28

4.1 The used omniRob platform and ToF cameras. 31
4.2 OmniRob FoV visualization. 32
4.3 The omniRob in the MRE simulator with the FoV of all cameras

visualized. 34
4.4 Autonomous exploration process workflow. 35
4.5 The encapsulated SlamICP process. 36
4.6 Point cloud generation. 37
4.7 ICP range scan alignment of two consecutive data sets. 38
4.8 Metascan for a test environment. 39
4.9 3D occupancy grid map with a resolution of 5 cm edge length. 40
4.10 The interfaces of the exploration process. 41
4.11 The simulated omniRob in MRE and the resulting voxel space. 41
4.12 Visualization of the exploration process steps. 42
4.13 The process of iterating through a voxel column and projecting the

correct state to the ground. 43
4.14 Robot geometry with the origin of the coordinate system indicated

as a cross. 44
4.15 4-connected Bresenham’s line algorithm. 47
4.16 Path generation process. 49

5.1 The exploration process in the beginning and during the autonomous
execution. 51

66

5.2 The completed exploration process and the resulting occupancy grid
map and metascan. 53

5.3 Environment coverage after every exploration step. 54
5.4 The execution time of the metascan point reduction and the ICP

range scan alignment conditioned on the parameter dmin. 56
5.5 The partial share in execution time of each step in the exploration

process conditioned on the grid resolution lres. 58
5.6 Occupancy grid map after range scan integration. 59
5.7 Incorrect exploration caused by metascan misalignment. 59
5.8 Shortening of long pathways without shape indicators by range scan

alignment. 60
5.9 Some unknown space at the starting position causes the robot to drive

back the whole way. 61

List of Tables

5.1 Effect of dmin on the execution time and the metascan size. 56
5.2 The execution times of all process steps, which depend on the grid

resolution lres. 57

67

Bibliography

[AC10] Francesco Amigoni and Vincenzo Caglioti. An information-based
exploration strategy for environment mapping with mobile robots.
Robotics and Autonomous Systems, 58(5):684–699, 2010.

[AF88] Nicholas Ayache and Olivier D Faugeras. Building, registrating, and
fusing noisy visual maps. The International Journal of Robotics Re-
search, 7(6):45–65, 1988.

[AG05] Francesco Amigoni and Alessandro Gallo. A multi-objective explo-
ration strategy for mobile robots. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, ICRA 2005,
April 18–22, 2005, Barcelona, Spain, pages 3850–3855, Barcelona,
Spain, April 2005. IEEE.

[BATP10] Nicola Basilico, Francesco Amigoni, Letizia Tanca, and Barbara Per-
nici. Navigation Strategies for Exploration and Patrolling with Au-
tonomous Mobile Robots. PhD thesis, Politecnico di Milano, 2010.

[BDW06] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization
and mapping (slam): Part ii. Robotics & Automation Magazine,
13(3):108–117, 2006.

[BG10] Gabriel I. Barbash and Sherry A. Glied. New technology and health
care costs - the case of robot-assisted surgery. New England Journal
of Medicine, 363(8):701–704, 2010.

[BM92] Paul J. Besl and Neil D. Mckay. A method for registration of 3-D
shapes. The IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 14(2):239–256, February 1992.

[BMF+00] Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Se-
bastian Thrun. Collaborative multi-robot exploration. In Proceedings
of the 2000 IEEE International Conference on Robotics and Automa-
tion, ICRA 2000, April 24–28, 2000, San Francisco, CA, USA, vol-
ume 1, pages 476–481, San Francisco, CA, USA, April 2000. IEEE.

68

[BSG05] Wolfram Burgard, Cyrill Stachniss, and Giorgio Grisetti. Information
gain-based exploration using Rao-Blackwellized particle filters. In
Proceedings of Robotics: Science and Systems (RSS), pages 65–72,
Cambridge, MA, USA, 2005.

[BZW+95] Joseph E. Banta, Yu Zhien, Xiao Zhao Wang, G. Zhang, T. Smith,
M. and Mongi A. Abidi. A “best-next-view” algorithm for three-
dimensional scene reconstruction using range images. In Photonics
East’95, pages 418–429. International Society for Optics and Photon-
ics, 1995.

[Chv75] Vasek Chvatal. A combinatorial theorem in plane geometry. Journal
of Combinatorial Theory, Series B, 18(1):39–41, February 1975.

[CM92] Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image and vision computing, 10(3):145–155,
1992.

[DDFMR00] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Rus-
sell. Rao-blackwellised particle filtering for dynamic bayesian net-
works. In Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, pages 176–183. Morgan Kaufmann Publishers
Inc., 2000.

[DW88] Hugh F Durrant-Whyte. Uncertain geometry in robotics. IEEE Jour-
nal of Robotics and Automation, 4(1):23–31, 1988.

[DWB06] Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localization
and Mapping (SLAM): Part I the essential algorithm. Robotics &
Automation Magazine, 13(2):99–110, 2006.

[DWRN96] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. Localization
of autonomous guided vehicles. In Robotics Research, pages 613–625.
Springer, 1996.

[FM08] Stefan Fuchs and Stefan May. Calibration and registration for pre-
cise surface reconstruction with time-of-flight cameras. Interna-
tional Journal of Intelligent Systems Technologies and Applications,
5(3):274–284, 2008.

[FO05] Luigi Freda and Giuseppe Oriolo. Frontier-based probabilistic strate-
gies for sensor-based exploration. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, ICRA 2005,
April 18–22, 2005, Barcelona, Spain, pages 3881–3887, Barcelona,
Spain, April 2005. IEEE.

[GBL02] Hector H Gonzalez-Banos and Jean-Claude Latombe. Navigation
strategies for exploring indoor environments. The International Jour-
nal of Robotics Research, 21(10-11):829–848, 2002.

69

[GKSB10] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram
Burgard. A tutorial on graph-based slam. Intelligent Transportation
Systems Magazine, IEEE, 2(4):31–43, 2010.

[GMAM06] Santiago Garrido, Luis Moreno, Mohamed Abderrahim, and Fer-
nando Martin. Path planning for mobile robot navigation using
voronoi diagram and fast marching. In 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS 2006,
pages 2376–2381, Beijing, China, October 9–15 2006. IEEE/RSJ,
IEEE.

[GN01] Jose E Guivant and Eduardo Mario Nebot. Optimization of the
simultaneous localization and map-building algorithm for real-time
implementation. IEEE Transactions on Robotics and Automation,
17(3):242–257, 2001.

[GOR94] Javier Gonzalez, Anibal Ollero, and Antonio Reina. Map building for
a mobile robot equipped with a 2d laser rangefinder. In Proceedings
of the 1994 International Conference on Robotics and Automation,
San Diego, CA, USA, May 1994, pages 1904–1909, San Diego, CA,
USA, May 1994. IEEE Computer Society.

[GSB07] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved
techniques for grid mapping with rao-blackwellized particle filters.
IEEE Transactions on Robotics, 23:34–46, 2007.

[GSKB11] G Grisetti, H Strasdat, K Konolige, and W Burgard. g2o: A general
framework for graph optimization. In IEEE International Conference
on Robotics and Automation, ICRA 2011, Shanghai, China, 9–13
May 2011, Shanghai, China, May 2011. IEEE.

[HBAB10] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven Behnke.
Evaluating the efficiency of frontier-based exploration strategies. In
Proceedings of the joint conference of the 41st International Sympo-
sium on Robotics (ISR 2010) and the 6th German Conference on
Robotics (ROBOTIK 2010), pages 36–43, Munich, Germany, June
2010. VDE VERLAG.

[HKH+10] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter
Fox. RGB-D mapping: Using depth cameras for dense 3D modeling
of indoor environments. In The 12th International Symposium on
Experimental Robotics (ISER). Citeseer, 2010.

[JSPB07] Dominik Joho, Cyrill Stachniss, Patrick Pfaff, and Wolfram Burgard.
Autonomous exploration for 3d map learning. In Karsten Berns and
Tobias Luksch, editors, Autonome Mobile Systeme 2007, 20. Fachge-
spräch, Kaiserslautern, 18./19. Oktober 2007, Informatik Aktuell,
pages 22–28, Kaiserslautern, Germany, October 2007. Springer.

70

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and pre-
diction problems. Journal of Fluids Engineering, 82(1):35–45, 1960.

[KTH01] Sven Koenig, Craig Tovey, and William Halliburton. Greedy mapping
of terrain. In Proceedings of the 2001 IEEE International Conference
on Robotics and Automation, ICRA 2001, May 21–26, 2001, Seoul,
Korea, volume 4, pages 3594–3599, Seoul, Korea, May 2001. IEEE.

[LDW91] John J. Leonard and Hugh F. Durrant-Whyte. Simultaneous map
building and localization for an autonomous mobile robot. In
IEEE/RSJ International Workshop on Intelligent Robots and Sys-
tems ’91, Intelligence for Mechanical Systems, Proceedings IROS’91,
pages 1442–1447. IEEE, 1991.

[LM97] Feng Lu and Evangelos Milios. Globally consistent range scan align-
ment for environment mapping. Autonomous robots, 4(4):333–349,
1997.

[ME85] H.P. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proceedings of the 1985 IEEE International Conference on
Robotics and Automation, St. Louis, Missouri, USA, volume 2, pages
116–121, 1985.

[MSW01] Stewart J. Moorehead, Reid Simmons, and William L. Whittaker.
Autonomous exploration using multiple sources of information. In
Proceedings of the 2001 IEEE International Conference on Robotics
and Automation, ICRA 2001, May 21–26, 2001, Seoul, Korea, vol-
ume 3, pages 3098–3103, Seoul, Korea, May 2001. IEEE.

[MTKW02] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Weg-
breit. Fastslam: A factored solution to the simultaneous localization
and mapping problem. In AAAI/IAAI, pages 593–598, 2002.

[MTKW03] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM
2.0: An improved particle filtering algorithm for simultaneous lo-
calization and mapping that provably converges. In Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI), Acapulco, Mexico, 2003. IJCAI.

[MTS07] Michael Montemerlo, Sebastian Thrun, and Bruno Siciliano. Fast-
SLAM: A scalable method for the simultaneous localization and map-
ping problem in robotics, volume 27. Springer, 2007.

[MWBDW02] Alexei A. Makarenko, Stefan B. Williams, Frederic Bourgault, and
Hugh F. Durrant-Whyte. An experiment in integrated exploration. In
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Lausanne, Switzerland, September 30 - October 4, 2002, vol-

71

ume 1, pages 534–539, Lausanne, Switzerland, September/October
2002. IEEE.

[Nüc09] Andreas Nüchter. 3D robotic mapping: the simultaneous localiza-
tion and mapping problem with six degrees of freedom, volume 52.
Springer, 2009.

[OVFT04] Giuseppe Oriolo, Marilena Vendittelli, Luigi Freda, and Giulio Troso.
The SRT method: Randomized strategies for exploration. In Pro-
ceedings of the 2004 IEEE International Conference on Robotics and
Automation, ICRA 2004, April 26 - May 1, 2004, New Orleans, LA,
USA, volume 5, pages 4688–4694, New Orleans, LA, USA, April 2004.
IEEE.

[Pit96] Richard Pito. A sensor-based solution to the “next best view” prob-
lem. In Proceedings of the 13th International Conference on Pattern
Recognition 1996, volume 1, pages 941–945. IEEE, 1996.

[Pul99] Kari Pulli. Multiview registration for large data sets. In Second
International Conference on 3-D Digital Imaging and Modeling, 1999.
Proceedings, pages 160–168. IEEE, 1999.

[SC86] Randall C Smith and Peter Cheeseman. On the representation and es-
timation of spatial uncertainty. The international journal of Robotics
Research, 5(4):56–68, 1986.

[SHB04] Cyrill Stachniss, Dirk Hähnel, and Wolfram Burgard. Exploration
with active loop-closing for FastSLAM. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Sendai, Japan,
September 28 - October 2, 2004, volume 2, pages 1505–1510, Sendai,
Japan, September/October 2004. IEEE.

[SK08] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.
Springer, 2008.

[SNH03] Hartmut Surmann, Andreas Nüchter, and Joachim Hertzberg. An au-
tonomous mobile robot with a 3d laser range finder for 3d exploration
and digitalization of indoor environments. Robotics and Autonomous
Systems, 45(3):181–198, 2003.

[SNLH09] Jochen Sprickerhof, Andreas Nüchter, Kai Lingemann, and Joachim
Hertzberg. An explicit loop closing technique for 6d slam. In Eu-
ropean Conference on Mobile Robots, ECMR 2009, pages 229–234,
2009.

[SSC90] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating
uncertain spatial relationships in robotics. In Autonomous robot ve-
hicles, pages 167–193. Springer, 1990.

72

[Sup08] Michael Suppa. Autonomous Robot Work Cell Exploration Using
Multisensory Eye-in-hand Systems. PhD thesis, Universität Han-
nover, 2008.

[T+02] Sebastian Thrun et al. Robotic mapping: A survey. Exploring Arti-
ficial Intelligence in the New Millennium, pages 1–35, 2002.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. MIT Press, MA, 2005.

[TLK+04] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y Ng, Zoubin
Ghahramani, and Hugh Durrant-Whyte. Simultaneous localization
and mapping with sparse extended information filters. The Interna-
tional Journal of Robotics Research, 23(7-8):693–716, 2004.

[TMM+06] Benjamı́n Tovar, Lourdes Muñoz, Rafael Murrieta, Moisés Alencas-
tre, Raúl Monroy, and Seth Hutchinson. Planning exploration strate-
gies for simultaneous localization and mapping. Robotics and Au-
tonomous Systems, 54(4):314–331, 2006.

[VAC13] Joan Vallvé and Juan Andrade-Cetto. Mobile robot exploration
with potential information fields. In European Conference on Mo-
bile Robots, ECMR 2013, pages 222–227. IEEE, 2013.

[WHB+10] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: A probabilistic, flexible, and compact 3D map rep-
resentation for robotic systems. In Proceedings of the ICRA 2010
Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, Anchorage, AK, USA, May 2010. Software available
at http://octomap.sf.net/.

[WSB08] Kai M. Wurm, Cyrill Stachniss, and Wolfram Burgard. Coordinated
multi-robot exploration using a segmentation of the environment. In
2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, September 22–26, 2008, Acropolis Convention Center, Nice,
France, pages 1160–1165, Acropolis Convention Center, Nice, France,
September 2008. IEEE.

[WSBC10] Jochen Welle, Dirk Schulz, Thomas Bachran, and Armin B. Cremers.
Optimization techniques for laser-based 3d particle filter slam. In
2010 IEEE International Conference on Robotics and Automation,
ICRA 2010, Anchorage, Alaska, USA, 3–7 May 2010, pages 3525–
3530, Anchorage, Alaska, USA, May 2010. IEEE.

[Yam97] Brian Yamauchi. A frontier-based approach for autonomous explo-
ration. In IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation, 1997, CIRA’97, Proceedings,
pages 146–151. IEEE, 1997.

73

http://octomap.sf.net/

[Zha00] Zhengyou Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(11):1330–1334, 2000.

74

	Contents
	Introduction
	Motivation
	Problem Description
	Thesis Structure

	Related Work
	Kalman Filter
	Particle Filter
	Graph-based Optimization
	Robot Exploration
	Frontier-based Exploration
	Information Gain-based Exploration
	Polygon-based Map Representation
	Greedy Mapping
	Sensor-Based Random Tree (SRT) Method
	Next Best View Planning

	Fundamentals
	Probabilistic Formulation of SLAM
	Robot Odometry
	Range Sensors
	Multiview Range Image Registration
	Map Representation
	Point Maps
	Occupancy Grid Maps
	Collision Space in Grid Maps

	ICP Range Image Registration
	The Algorithm
	Overlapping and Noise

	Entropy-based Exploration

	Autonomous Exploration Process
	Mobile Robot Environment
	OmniRob Platform
	O3D100 Photonic Mixing Device
	L3D C++ Library
	Simulation Environment

	System Overview
	Map Notation
	SlamICP Process
	Robot Pose Estimation
	Pose Refinement
	Occupancy Grid Mapping

	Exploration Process
	Projection to Ground
	Collision Space Generation
	Frontier Generation
	Application of Exploration Strategy
	Path Generation

	Motion Control

	Experiments and Discussion
	Example Exploration Process
	Exploration Performance
	Point Cloud Reduction
	Grid Resolution

	Major Drawbacks
	Metascan Misalignment
	Missing Map Segmentation
	Noisy Measurement

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography

