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Abstract—Since the first communications satellites have been
launched to space with the beginning of the 1960s, these systems
have undergone a rapid development. Amongst others, this
development is driven by an increasing number of subscribers
exchanging larger and larger data volumes. This need of data
capacity cannot be satisfied alone by raising the sheer number
of communications satellites, but requires powerful individual
systems, which operate reliably and are cost effective at the same
time. In this context two requirements on the communications
antenna are the provision of high directional gain and robustness
in terms of beam stability. Classically, large unfurlable mesh
reflector antennas in conjunction with feed arrays are adopted to
illuminate a certain region on ground with high gain. An inherent
problem of such reflector-feed configurations is that these systems
are prone to feed element failures. In the worst case, this could
result in a ’blind’ spot, where no communication is possible. This
paper introduces a robust antenna concept, which combines the
virtue of reflector antennas, namely the large aperture, with the
advantage of direct radiating planar array antennas, which is
the beam stability in the presence of element failures. In order
to unfold its full potential this concept makes use of digital
beamforming techniques, which allow to control the illumination
in a flexible way.

Index Terms—digital beamforming, DBF, multiple-input
multiple-output, MIMO, defocused, reflector antennas, satellite
communications

I. I NTRODUCTION

A NTENNA concepts with application to communications
satellites have been studied extensively in the past years.

In this context large unfoldable mesh reflector antennas rep-
resent a mature technology, which is employed on many
communications systems. In conjunction with feed arrays these
reflectors are able to illuminate communication cells on the
Earth surface with high gain. Consequently, a lot of effort has
been put in the optimization of feed antennas [1] as well as
entire reflector-feed configurations [2]–[5].

Already in the 1990s the idea of beamforming has been
investigated for communications systems [6]. However, beam-
forming has been carried out by means of analog networks.
A few years later the concept of digital beamforming (DBF)
found one’s way into satellite communications [7].

This paper attempts to bring array-fed reflector antennas in
symbiosis with digital beamforming in a different way. The
innovation lies in the fact that the reflector is intentionally
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Fig. 1: Cut view of a reflector with center-offset fed by a
two-dimensional planar array. The reflector is defocused by
introducing a linear shift of the feed array.

defocused and therefore relies on DBF techniques in order
to be operated efficiently. The main goal of this concept is to
improve the robustness of such systems in the presence of feed
element failures, which also enables to efficiently compensate
for feed element deterioration. This allows to abstain from
redundant electronics and therefore reduces costs.

II. D EFOCUSEDREFLECTORANTENNAS

The basic concept of a (single) reflector antenna is to
transform a primary field, incident on the reflector, into a
secondary field, which is usually referred to asthe field or
the pattern of the array-fed reflector antenna. The source of
the primary field is typically a feed antenna or an array of feed
antennas. A widely established reflector type is the parabolic
reflector, whose surface may be described in cartesian coordi-
nates according to

z =
1

4F
(x2 + y2) . (1)

As schematically indicated in Fig. 1F is the distance between
the apex of the reflector and the focal point(0, 0, F ) given
in local antenna coordinates(x, y, z). Characteristic for such
reflectors is that they concentrate the field of an incident plane
wave in a small region. If the plane wave impinges the reflector
in negativez-direction the point of highest field strength is the
focal point(0, 0, F ), short focus. In order to illuminate a large
angular domain several feed elements are arranged in the focal
plane, each illuminating a distinct essentially non-overlapping
solid angle.
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parameter symbol value
frequency f 1.25 GHz
diameter D 15 m
focal length F 10 m
center-offset O 5.5 m
feed array shift d 0.55 m
feed element spacing 1.0λ
number of feed elements N 9× 9

TABLE I: Geometrical parameters for a reflector design ex-
ample at an L-band frequency. The feed element spacing is
identical for both dimensions of the two-dimensional feed
array.

Defocused reflector antennas have been suggested for in-
stance in [8]–[10], partly out of field-theoretical interests
but also as a method to shape the pattern. In the context
of this paper the term ’defocused’ shall be understood in a
quite general way, meaning that adjacent feed elements may
have a substantial overlap in their corresponding patterns.
Insofar, direct radiating arrays can be regarded as a limit of
this defocused antenna concept, where all element patterns
perfectly coincide. Of course, this state can never be reached
with reflector based antennas. However, a certain degree of
defocusing would certainly improve the robustness in terms
of pattern shape stability in case of feed element failures.

To demonstrate this concept consider the cut view of a
parabolic reflector in Fig. 1. The center-offsetO has been
introduced in order to mitigate multipath effects occurring
between the feed array and the reflector. This requires the
feed array being tilted by an angle

θt = 2 arctan

(

O

2F

)

(2)

towards the center of the projected aperture of diameterD.
In the focused case the feed array would run through the
focal point (0, 0, F ), as indicated by the dashed feed array.
Here, the defocusing is achieved by a linear shiftd of the
feed array as sketched in Fig. 1. The question whether a shift
in this or the opposite direction is preferable depends on how
well the reflector can be illuminated by the feed antennas. In
principle, both shift directions are reasonable, at least from an
electrical point of view. With regard to cost effectivenessa
design goal is to select a low number of feed elements. This
results in a relatively large element spacing of 1.0λ for 9× 9
patch elements arranged in a rectangular grid. Figure 2 shows
the simulation results of the nine far-field gain patternsGi

corresponding to the individual feed elements in the centerrow
(in the plane of Fig. 1) of the array. These patterns have been
computed with the EM-simulation software TICRA GRASP10
[11], on the basis of a microstrip patch model for the feed
elements as presented in [12]. The parameters for the design
example are summarized in Table I. In order to determine
the fields as accurately as possible also multipath propagation
between the reflector and the feed array, modeled as a perfectly
conducting metal plate, has been taken into account. As can be
observed by comparing the patterns of the defocused system in
Fig. 2a with the conventional beams in Fig. 2b, the gain loss is
in the order of 6 dB. At the same time the defocused patterns
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Fig. 2: Beam patterns in a cut view corresponding to the nine
elements in the center row of the feed array for the defocused
reflector (a) and for the conventional reflector (b). The dashed
curves represent patterns after MVDR beamforming according
to equation (13). The dotted red beams represent a MVDR
beam forϑ = 0 ◦.

show a significant broadening. Clearly, such a system could not
be operated in the usual way where each beam illuminates a
distinct cell with a high gain beam. This is especially important
if a high co-polar isolation in case of the reuse of frequency
bands is required. In the following the performance of such a
defocused reflector concept shall be investigated on the basis
of two selected beamforming approaches.

III. S IGNAL MODEL AND DBF TECHNIQUES

Principally, different operation modes for reflector antennas
mounted on satellites must be discriminated. For instance,ra-
dio broadcasting usually requires an entire country or continent
to be homogeneously illuminated by the reflector antenna.
In communications typically small cells are illuminated with
high gain beams. Each of these applications involves pattern
optimization with certain goals and constraints. For example
in satellite communications an optimization goal would be
the minimization of the pattern sidelobes in the entire access
domain while keeping the gain in the desired cell at a
maximum. Here, the performance of the defocused reflector
concept shall be demonstrated at the example of point-to-point
communications adopting MIMO (multiple-input multiple-
output) principles, similar to the concept presented in [6].
Starting point for the digital beamforming techniques is a
model for the received channel signals

u = As + v . (3)

The array response matrix

A =
[

a(ϑ1, ϕ1) a(ϑ2, ϕ2) · · · a(ϑM , ϕM )
]

(4)
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Fig. 3: System model of the digital feed array. The received
signals are digitized and combined in the DBF unit.

collectsM complex array manifold vectorsa, each associated
with a certain direction(ϑ, ϕ). For instance, the direction
(ϑ1, ϕ1) could be associated with the user of interest, while
the M − 1 other directions represent other users in the same
frequency band to be suppressed. The corresponding signals
are combined in the vector

s =
[

s1(ϑ1, ϕ1) s2(ϑ2, ϕ2) · · · sM (ϑM , ϕM )
]T

, (5)

where{.}T symbolizes transpose. In this context the complex
array manifold vector

a(ϑ, ϕ) =
[

E1(ϑ, ϕ) E2(ϑ, ϕ) · · · EN (ϑ, ϕ)
]T

(6)

contains the co-polar electric far field patternsE, after deflec-
tion at the reflector, as function of the spherical angles(ϑ, ϕ)
defined in the local antenna coordinate system. It is important
to note that these complex amplitude patterns are so called
embedded patterns. Each receiver channel is superimposed by
thermal receiver noisev. This system model is graphically
illustrated in Fig. 3, where the feed array with analog-to-digital
(A/D) converters and digital beamforming unit is depicted.
Note, in order to keep a clear representation, amplifiers, filters,
mixers and other components of the receiver electronics have
been omitted.

The core operation in the DBF unit is the combination of the
individual received signalsu, yielding the beamformer output

uDBF = wTu . (7)

Finding meaningful weightsw is a research field on its
own, known as pattern synthesis problem. In this context
two beamforming concepts shall be considered, which can be
derived from a power expression of the beamformer output
according to

PDBF = E{|uDBF|
2} (8)

= |wTAs|2 + wTE{vvH}w∗ , (9)

with E{.} denoting expectation value,{.}∗ conjugate complex
and {.}H conjugate complex transpose. Here, statistically
independent signal and noise contributions are assumed. The
expressionE{vvH} is known as noise channel covariance

matrix Rv, which might be estimated from samples of the data
stream. Then an optimization problem

minimize wTRvw∗ (10)

subject to wTA = c (11)

can be formulated, which has the analytic solution

w∗ = R−1

v A(AHR−1

v A)−1c∗ . (12)

The vectorc is a so called constraint vector, which may be
chosen almost arbitrarily, depending on the application. If one
recalls the above example,c would have a ’1’ associated to the
direction of interest, and zeros in the directions to be damped.
In the literature this solution is known asLinear Constraint
Minimum Variance (LCMV) beamformer [13]. A special case
of this beamformer is theMinimum Variance Distortionless
Response (MVDR) beamformer, that is obtained forM = 1,
giving

w∗ =
c∗R−1

v a

aHR−1

v a
. (13)

MVDR beamforming can be understood as a spatial matched
filter and as such optimizes the gain or equivalently the signal-
to-noise ratio (SNR) in the respective direction of interest.
In the context of this paper, the purpose of the MVDR
beamformer is to demonstrate the maximum achievable gain
in a certain direction, which is of special interest under failure
conditions.

The MVDR solution interpreted in terms of DBF gain is
shown in Fig. 2 as dashed red curves. It is important to note,
that these curves are the result when foreach angleϑ a beam is
formed. This means for each angleϑ the individual patterns
(81 in our case) are combined on the basis of the MVDR
weights given in equation (13). Just for illustration purposes a
single MVDR beam forϑ = 0 ◦ has been plotted. Comparing
the dashed curves from Figures 2a and 2b it becomes evident
that in case of the defocused antenna the high gain is recovered
by means of digital beamforming almost as well as in the
reference case. A slight degradation in gain, especially atthe
borders of the illuminated domain, is inevitable, since the
defocused reflector radiates a certain amount of energy beyond
the access range of±5 ◦.

An important question is whether the defocusing handicaps
the antenna in terms of beam shaping. There seem to be no
obvious limitations as can be seen from the two-dimensional
pattern plots in Fig. 4. Here, a scenario is considered where
three other users to be damped are present under the polar
angles(ξ = −4 ◦, ζ = 4 ◦), (2 ◦, 3 ◦) and (1 ◦,−2 ◦). Note,
the polar angles are linked to the spherical coordinates via

ξ = ϑ cosϕ , (14)

ζ = ϑ sinϕ . (15)

The beam has been steered to the direction of interest at
(−2 ◦,−2 ◦) using LCMV beamforming. In order to pro-
nounce the suppressed directions, in total four zero constraints
have been placed in a quadratic grid at each direction to
be suppressed. This can, for example, be observed at the
pattern zero at(−4 ◦, 4 ◦) in Fig. 4b. The maximum gain with
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(a) defocused reflector
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(b) conventional reflector

Fig. 4: Two-dimensional pattern plots with three suppressed
directions at(−4 ◦, 4 ◦), (2 ◦, 3 ◦) and(1 ◦,−2 ◦) using LCMV
beamforming according to equation (12) for the defocused
case (a) and the conventional reflector (b).

reflector defocused conventional
ϑ, ◦ 0.0 3.56 0.0 3.56
GMVDR(ϑ), dB 43.53 43.07 44.33 43.98
GMVDR,fail(ϑ), dB 42.08 42.04 34.52 37.51
∆G(ϑ), dB -1.46 -1.03 -9.82 -6.48

TABLE II: Performance comparison after MVDR beamform-
ing in terms of gain loss in the presence of feed failures.

the conventional reflector is 0.58 dB higher compared to the
defocused case.

IV. PERFORMANCE UNDERFAILURE CONDITIONS

The major motivation to employ such a defocused reflector
concept is its robustness when individual or even multiple feed
elements drop out. Failure-critical components in this context
are usually the amplifiers. Here, a scenario is investigated
where the fifth and the eighth feed element in the center row
of the feed array have dropped out. The analogous results
to Fig. 2 are plotted in Fig. 5. Again the dashed red curve,
which represents the gain pattern after MVDR beamforming,
is of importance. Noticeable is that the gain drop in the center
at 0◦ is maximal, while the gain loss in the direction of
the eighth element is not as large but still significant for the
conventional reflector. This can be explained by the fact that
in the conventional case the patterns corresponding to the feed
elements at the border of the array are more strongly defocused
than the patterns of the center feed elements. In contrast,
the defocused reflector suffers much less from the failed
elements, which can be seen from the performance comparison
in Table II. Here, the gain before and after element failure for
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(b) conventional reflector

Fig. 5: Beam patterns in a cut view corresponding to the nine
elements in the center row of the feed array for the defocused
reflector (a) and for the conventional reflector (b). Here, the
fifth and the eighth element have dropped out. The dashed
curves represent patterns after MVDR beamforming according
to equation (13). The dotted red beams represent a MVDR
beam forϑ = 0 ◦.

two dedicated directions are compared. A first observation is
that the defocused reflector generally has a slightly reduced
gain after MVDR beamforming, as can be seen from the
row listing the gainGMVDR(ϑ) for the case when all feed
elements are operating (see Fig. 2). The next row shows the
gain GMVDR,fail(ϑ) in the directions of the two dropped out
feed elements. In the last row the difference in gain∆G(ϑ)
before and after feed element failure is presented. Here,
it becomes evident that the conventional reflector antenna
would be severely handicapped, without relying on redundancy
concepts and if not enough margin in terms of SNR had been
planned in the communications system design.

V. EXTENSION TO CURVED FEED ARRAY

A certain disadvantage of defocused reflector systems is the
gain roll-off towards the borders of the illuminated domain.
Here basically two options might be of interest. The first
possibility would simply involve additional feed elementsat

θt

Fig. 6: Curved feed array design.

the borders of the array in order to compensate the gain loss.
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A second option could be the use of a curved feed array
as sketched in Fig. 6. Here, again in dashed lines the feed
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(a) defocused reflector
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(b) defocused reflector with dropouts

Fig. 7: Beam patterns in a cut view corresponding to the
nine elements in the center row of the curved feed array
for the defocused reflector without element failures (a) and
with elements five and eight dropped out (b). The dashed
curves represent patterns after MVDR beamforming according
to equation (13).

array of the conventional reflector is drawn. The 2-D feed
array is bent such that the outer elements come closer to
the position of the outer feed elements of the conventional
feed array. Consequently, these elements will show a reduced
defocusing, as can be observed in the pattern cut plot in
Fig. 7a. In case of feed element failures this reflector-feed
concept shows a similar but slightly worse performance as
the defocused reflector in Fig. 5a. Assuming the same failure
scenario, the gain loss is -1.52 dB for zero degree direction
and -1.70dB at 3.56◦ (see Fig. 7b). Of course, the gain loss
in case of border element failures is now slightly increasedbut
still much better as in the conventional case. A more general
approach could be the optimization of the reflector surface
together with the feed array.

VI. CONCLUSION

This paper presents a study of a defocused reflector-feed
system concept employing digital beamforming techniques for
communication satellites. The defocusing has been achieved
by shifting the 2-D feed array away from the focal plane
towards the reflector. As a consequence the patterns asso-
ciated with the individual feed elements become broader at
simultaneously reduced maximum gain. By applying digital
beamforming techniques the high gain could be reconstructed
without any limitations. This concept combines the advantage
of reflector antennas, which is the large realizable aperture,
with the robustness of direct radiating arrays in the presence
of feed failures.
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