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The behavior tree formalism as introduced recently to the application of mission manage-

ment of unmanned aerial vehicles does provide for internal memory of mission plans. This

is an important drawback for even simple plans such as waypoint sequences, because the

information about visited waypoints must be stored outside of the plan execution engine.

In this paper, two approaches are presented in order to provide tasks with states inside

behavior trees: The first allows to embed regular state machines in a specialized behavior

tree task. The second provides new memory and reset tasks in order to store information

directly in the tree. Both approaches are shown to solve the waypoint following plan and

promise to be applicable to a much broader range of mission management problems.
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Behavior Trees with Stateful Tasks

Andreas Klöckner

Abstract The behavior tree formalism as introduced recently to the application of
mission management of unmanned aerial vehicles does provide for internal memory
of mission plans. This is an important drawback for even simple plans such as
waypoint sequences, because the information about visited waypoints must be stored
outside of the plan execution engine. In this paper, two approaches are presented in
order to provide tasks with states inside behavior trees: The first allows to embed
regular state machines in a specialized behavior tree task. The second provides
new memory and reset tasks in order to store information directly in the tree. Both
approaches are shown to solve the waypoint following plan and promise to be
applicable to a much broader range of mission management problems.

1 Introduction

Current research aims at developing a number of different capabilities for unmanned
aerial systems (UASs). Research groups engage in fields such as collision avoidance,
formation flying or physical interaction with the environment. These capabilities do
not only grow more and more diverse, but also integrate a number of low-level skills
of the systems.

Additionally, practitioners seek to use UASs for an increasing range of different
missions. Solar platforms e. g. are supposed to fly non-stop for several days and
receive different missions as specified by the user during the flight. The operating
cost of such a system is mainly determined by the personnel needed to operate the
aircraft. Current solar aircraft constantly require multiple crew members to monitor
the aircraft, weather, and traffic conditions.
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In order to more efficiently deliver industrially relevant missions, the number and
workload of the personnel must be decreased. This can be achieved by increasing the
autonomous functions of the systems, which handle all the capabilities of the aircraft.
Nonspecialist crew members must additionally be able to specify all conceivable
missions targeted with the UAS. A scalable, intuitive, and flexible technique is thus
needed for UAS autonomy.

Behavior trees were introduced to solve this challenge [5, 10]. They organize
capabilities of the UAS in a tree of increasingly complex behaviors by using a
standardized and simple interface. The formalism was first introduced for steering
non-player characters in computer games [4]. It is argued that behavior trees combine
a number of advantageous properties of state machines, scripting, and planning
techniques [1].

However, behavior trees have a fundamental disadvantage: Behavior trees continu-
ously adapt to changing input signals and do not have internal memory. They do thus
not inherently provide means to implement behaviors requiring such internal state.
This is especially important for UAS missions. These typically include behaviors
such as following waypoint sequences, during which the fact of having reached a
waypoint is only asserted by the sensor signals for limited duration. Mission plans
implementing waypoint sequences thus require states to remember the visited way-
points. Unfortunately, this cannot be implemented easily in the standard behavior
tree framework.

Researchers have invented ad-hoc solutions to this problem by describing spe-
cialized versions of the canonical behavior tree building blocks. While these are
very practical solutions, they usually confound the logics of e. g. sequence with the
memory introduced into the system. This paper thus describes two more general
approaches in order to increase the system’s modularity. The contributions of the
paper are as follows:

• The formalism of conventional behavior trees is introduced in Sec. 2 and the
shortcomings of state-free behavior tree implementations is shown at hand of a
simple waypoint-following example in Sec. 3.

• In order to remedy this shortcoming two generic solutions are presented: Sec. 4
integrates state machines into regular behavior trees. In Sec 5, new task types
handling memory within the behavior tree formalism are introduced.

• Both approaches are evaluated in the concluding Sec. 6.

2 Behavior Trees

Similar to hierarchical finite state machines, behavior trees use a hierarchy of opera-
tional modes to structure a complex mission. In a behavior tree, tasks are used instead
of states and mode switches are triggered by internal statuses instead of external
events.

A task is self-contained and goal-directed: it can be executed without a further
framework in order to achieve a goal. A UAS mission e. g. would be composed of
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basic tasks, such as flying towards waypoints and probing the state of the aircraft.
These basic tasks are composed in a tree structure to arbitrary complexity using
generic composite tasks.

In order for the tasks to be modularly interchangeable, all tasks have the same
interface to their parent tasks: All tasks report a status to their parent node, which can
be either Running, Success, or Failure in the most basic behavior tree implementation.
The parent nodes can activate and deactivate their children depending on their internal
logics. A complete mission plan is executed by activating the root node of the tree.

The basic task types as mentioned above can be classified as actions and conditions.
They actually interact with the aircraft’s systems and determine their status based on
custom implementation. Composite tasks are more generic and determine their status
based on their internal logic and the statuses of their children. The most common
composite tasks are selectors and sequences. A very basic behavior tree system thus
provides the following four types of tasks:

Actions provide interfaces to the aircraft system in order to change the its environ-
ment. They typically send low-level commands to the autopilot or payloads.

Conditions are used to test properties of the environment with boolean-valued
functions. Examples are probing for minimal altitudes or a sufficient energy status.
Conditions are specialized actions, because they cannot have Running status.

Selectors try to execute their children according to their priority and return Success,
if one of their children is successful. Selectors are typically used to provide several
alternatives to achieve a common goal. When comparing to logic, selectors can be
regarded as an OR-operator.

Sequences activate all of their children one after another and return Success, only
if all of their children are successful. They describe a series of tasks in order to
achieve higher-level goals. Sequences correspond to the logical AND-operator.

Figure 1 demonstrates using behavior trees for the simple example of harvesting
energy with a solar aircraft. The sequence in Fig. 1a activates its second child, if a
surplus of energy is available. The second child consists of a selector to provide two
strategies for maximizing the potential energy (see Fig. 1b). The first ensures that a
given ceiling altitude is not exceeded and the second commands the aircraft to climb
to that altitude.

harvest
→

surplus? potential!

(a) A sequence is used to describe the harvest-
ing strategy by gathering potential energy, if
a surplus of energy is asserted.

potential

?

ceiling? climb!

(b) The selector maximizes the potential en-
ergy either by holding a ceiling altitude or by
climbing.

Fig. 1: Simple tasks can be connected hierarchically in a behavior tree in order to
describe the energy harvesting strategy of a solar-powered aircraft. See [7].
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Note that the statuses within a behavior tree are continuously evaluated. Each
composite task reacts immediately to changes in its sub-tasks. This is opposed to
the semantics of e. g. state machines, which retain once active states unless specific
changes in the inputs trigger a change of states. Behavior trees do not include such
internal memory by default in order to provide the modular logics as outlined above.
This makes them very reactive, but prevents implementing behavior requiring internal
memory.

Extensions to the basic notion of a behavior tree laid out here are proposed in the
literature. Additional composite task types are e. g. parallel tasks used to execute
multiple children simultaneously. Semaphores can be used to guard shared resources
and loops repeat a task multiple times. Millington’s textbook [9] provides a more
detailed overview of behavior trees and common additional task types.

3 Behavior Trees in Mission Management

Taking the technology from the computer game industry, behavior trees were in-
troduced to the UAS community to modularize control and mission management
systems [10, 5]. Behavior trees provide a number of advantages for these application
compared to the state-of-the-art technology of finite state machines.

The growing number of capabilities provided by a UAS makes it difficult to
maintain mission plans built as state machines for versatile aircraft, since every
change requires rewiring wide parts of the mission plan. Behavior trees provide
superior scalability in this case because of the standard interface of all tasks and
because of the implicit switch logics. This makes it possible to modularly add,
remove, and exchange arbitrary tasks at arbitrary locations in the tree without the
need for global changes to the plan.

Additionally, the goal-directed semantics of behavior trees provide a very intuitive
way of reading and building mission plans. Since each task can be used to achieve
a sub-goal, higher-level goals can easily be composed by combining these tasks.
Reading a behavior tree is intuitive on this very detailed level, but also on a high
abstraction, where the actual leaf nodes are hidden from the user. This feature makes
it also easy to provide an intuitive library of re-usable building blocks.

The close proximity of the basic composite tasks and logical operators additionally
provides for means of validating mission plans [6, 2]. There are also approaches to
behavior tree analysis building on translations to other formalisms such as hybrid
dynamical systems [8].

Despite the conceptional advantages of behavior trees, there are certain things that
cannot be done with standard behavior tree implementations. In particular, behavior
trees in their canonical formulation do not have internal states and do not allow for
proper initialization and termination of tasks. Behavior tree sequences e. g. restart a
higher-priority sub-task, whenever it does not return Success anymore. This makes it
hard to implement actual sequences such as simple waypoints in behavior trees.
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Figure 2a shows a simple, rectangular waypoint plan to be flown by a UAS. This
plan cannot easily implemented as a behavior tree because of the missing internal
state. A naı̈ve behavior tree implementation is shown in Fig. 2b. It contains the four
waypoints as instances of a waypoint task taken from a task library in a sequence. A
loop decorator is intended to repeat the waypoint sequence, once it has completed.

1
x =+500m
y =+500m

2
x =+500m
y =−500m

3
x =−500m
y =−500m

4
x =−500m
y =+500m

(a) The example mission consists of four way-
points arranged in a rectangular flight plan. The
plan is to be flown by a small research UAS.

(b) An implementation using state-free behavior
trees will prove unable to describe a waypoint
plan, such as shown in Fig. 2a.

Fig. 2: Common segments of UAS missions consists of a set of waypoints to be visited
by the UAS. These missions must be representable with a behavior tree for practical
applications. This example shows the four waypoints used as a demonstration of this
required capability.

The behavior tree is built using the Modelica BehaviorTrees library [7]. The
library provides a generic framework to graphically compose behavior trees (see
Fig. 3a). It also contains extensions to the behavior trees formalism such as the
additional Accept status for tasks, which can be activated (see [5]). Application
specific libraries can be derived easily in an object-oriented fashion. The waypoint
task in Fig. 3b is e. g. composed of a condition to assert a proximity of 100 m to the
waypoint and a steering task commanding a heading angle to the UAS. The signals
are exchanged with the UAS model through embedded blackboard components.

As mentioned before, the implementation with standard behavior tree tasks fails
to complete the mission as intended. Figure 4 shows the results of a simulation with
a simplified UAS model. The UAS correctly approaches the first waypoint and then
activates the second waypoint task. However, as soon as the proximity radius of the
first waypoint is left by the UAS, the plan re-engages the first waypoint task. This
leads to the UAS flying in circles at the boundary of the first waypoint’s proximity
radius.
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(a) The Modelica BehaviorTrees library provides
a general behavior trees framework. Task li-
braries as e. g. for this paper can be derived easily.

(b) The waypoint following task is implemented
with a selector. It checks, if the UAS is inside a
proximity radius of 100 m to the waypoint, and
approaches the waypoint otherwise.

Fig. 3: All plans in this paper are built with the Modelica BehaviorTrees library [7].

(a) The UAS flies to the first waypoint and then
starts to move around this waypoint in an infinite
circle.

(b) The behavior is caused by re-activating the
first waypoint, when the second leads the UAS
out of the proximity circle of the first waypoint.

Fig. 4: The state-free conventional behavior tree is unable to implement the intended
mission correctly, because the state-free sequence falls back to higher priority sub-
tasks, when their success conditions are no longer fulfilled.

4 Embedding state machines inside behavior trees

For state transitions such as between waypoints, the typical engineering approach is
to use state machines. However, using state machines to model an entire mission plan
means to abandon the superior modularity of behavior trees. It is therefore desirable
to allow for a systematic integration of state machines inside behavior trees.

In order to allow for proper initialization and termination of tasks, a more compre-
hensive status cycle was already introduced in prior work [5, 7]. This modification
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effectively embeds a state machine in every task allowing to detect activation and
deactivation of the task. Since regular behavior tree actions may contain arbitrary
custom code, it is an obvious extension to also allow arbitrary state machines inside a
behavior tree task. A similar approach integrates both formalisms in a third execution
environment [11].

Figure 5 presents such an embedded state machine for the application described
above. It simply consists of the four waypoint states. Each of the waypoint states
generates a steering signal for the UAS simulation. The state machine is modeled by
the synchronous elements of the Modelica language [3]. It could thus be exchanged
by an arbitrary state machine described in the Modelica framework.

The waypoint states in Fig. 5b are hierarchically embedded in a running state.
This hierarchy layer is used to generate correct behavior tree statuses for passing
them up the tree. Another state, accept is used to allow the state machine to be
stopped by the tree logic. States for generating any other allowed status are also
provided in the BehaviorTrees library. The top-level states are switched using the
active flag generated by the parent tasks in the tree. The tree is shown in Fig. 5a
together with the blackboard interface to the UAS.

(a) A specialized behavior tree task is introduced
in order to embed a regular state machine inside
the behavior tree. The mission plan is addition-
ally equipped with blocks used to communicate
the state machine’s commands with the aircraft
model.

(b) The embedded state machine consists of
the four waypoint following states and top-level
states related to the behavior tree interface. The
top-level states generate a valid status to be used
in the behavior tree. They are switched by the
behavior tree’s active flag.

Fig. 5: In order to allow states in a behavior tree, it is combined with the common
technique of state machines.
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The resulting trajectory, when simulating the mission plan from Fig. 5 with the
UAS model, is shown in Fig. 6. The UAS now correctly follows the prescribed
waypoints in a square of each 1000 m height and width. Figure 6b also shows the
active states during the simulation. The states iterate the four waypoints as intended.
It should be noted that the Modelica state machine formalism only allows for one
transition per clock cycle. Therefore, the waypoint plan remains in its accept state
for one cycle at the beginning of the simulation. In the example, the state machine is
clocked with an interval of 1 s.

(a) The UAS repeatedly follows the four way-
points as intended on a square with each 1000 m
height and width.

(b) The state machine switches between the four
waypoint states as expected. The state machine
takes one clock cycle to start.

Fig. 6: The mission plan of integrated behavior trees and state machines is able to
correctly follow the intended mission plan. The state is stored exclusively in the
embedded state machine.

5 Stateful tasks for behavior trees

Although the solution described above provides for the desired functionality, it breaks
the modularity of continuously using behavior trees. For planning purposes it is more
convenient to provide the necessary states inside the behavior tree formalism. Several
authors thus describe special variants of the common composite tasks (selectors and
sequences) with stateful behavior. These variants are e. g. called “sequence*” [8] and
exist in addition to the regular state-free variants.

Since these extensions mix standard nodes such as a sequence with a memory
behavior, their modularity can be improved by separating the two behaviors. To this
end, this paper introduces a memory and a reset decorator:
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Memory decorators remember their status, after their child has entered a successful
or failed status. They thus modify the return status of their child task such that it
is prevented from being reactivated by the behavior tree.

Reset tasks send a new reset signal to their child task, when they are activated.
This signal is distributed through all composite nodes to the underlying memory
tasks. The reset task can thus be used to reset the memory tasks located in their
child branch.

These new tasks can be used together with a regular sequence to model the
behavior of previously introduced sequence* tasks (see Fig. 7b). However, the
memory and reset tasks can be used in a more arbitrary way, thus allowing more
flexible behaviors. In order to continuously evaluate the first child in Fig. 7b, the first
memory task could e. g. be removed. The composed sequence* task can now be used
in order to allow actual sequences in a behavior tree (see Fig. 7a).

(a) The conventional sequence task is replaced
in the behavior tree mission plan by a stateful
sequence* task.

(b) The sequence* task consists of a regular se-
quence task with subordinate memory tasks and
a superior reset task.

Fig. 7: Stateful behavior tree tasks are introduced in the waypoint plan as the se-
quence*, memory and reset tasks.

Figure 8 shows the results of a simulation with the mission plan defined in Fig. 7.
The sequence of waypoints is correctly followed repeatedly as intended. Figure 8b
additionally shows the statuses of the four waypoint tasks. It can be seen, that the
tasks return Accept after the proximity radius of the waypoint is left. These events are
marked with red circles in Fig. 8b. However, the superior memory task remembers
the Success status returned previously and prevents re-activating the waypoint tasks.
Only, when the loop task restarts the complete sequence at about t = 180s, all
memory tasks are reset and allow to steer towards the first waypoint again.
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(a) The UAS follows the four waypoints as ex-
pected. The dashed line reproduces results using
an embedded state machine for comparison.

(b) The waypoint statuses change between Ac-
cept, Running, and Success. Reactivation is pre-
vented by memory tasks in the sequence* task.

Fig. 8: Using the stateful tasks effectively solves the waypoint following mission
plan, while still providing for a modular behavior tree framework.

6 Conclusions

In the present paper, the technology of behavior trees was introduced and the need
for stateful tasks within behavior trees was motivated. Two solutions were proposed
in order to introduce such stateful tasks into the behavior tree formalism. The first
integrates state machines within behavior trees and the second introduces the new
memory and reset tasks.

Both solutions provide for accurate means to implement stateful behaviors such
as waypoint plans with behavior trees. An example waypoint plan is successfully
followed with both plans. The solutions are completely compatible to the existing
BehaviorTrees library [7] and Modelica state machines [3].

The first solution allows to integrate arbitrary state machines into arbitrary behav-
ior trees. This makes available the full power of well-understood state machines to
the mission designer. However, this technique forces the state machine to be clocked.
It thus introduces delays in the control flow. Additionally, the introduced time events
might prove problematic for complex UAS models and long-term mission simulation.

The new task types of the second solution use the same interface as all other
behavior tree tasks. They can thus literally introduce states in any place of a regular
behavior tree. This approach even increases the modularity of stateful tasks in a
behavior tree over the first approach. However, the theoretical properties of the
technique such as termination or dead-locks have not yet been investigated as is the
case for well-studied state machines.

Future research will target using the new approaches for industrially relevant
applications. More detailed extensions of the behavior tree formalism will need to be
developed when facing new challenges. In parallel, the theoretical properties of the
approaches will need to be investigated in order to prove their applicability to the
high standards of the aircraft industry.
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