
CONSISTENT MULTI-VIEW TEXTURING OF DETAILED 3D SURFACE MODELS

K. Davydovaa, G. Kuschka, L. Hoegnerb, P. Reinartza, U. Stillab

a Remote Sensing Technology Institute, German Aerospace Center (DLR), D-82234 Wessling, Germany -
(ksenia.davydova, georg.kuschk, peter.reinartz)@dlr.de

b Photogrammetry & Remote Sensing, Technische Universitaet Muenchen (TUM), Arcisstr. 21, 80333 Munich, Germany-
(stilla, ludwig.hoegner)@tum.de

Commission VI, WG VI/4

KEY WORDS: Multi-texturing, 3D model, Large-scale, Aerial images, MRF, Seam visibility, Urban

ABSTRACT:

Texture mapping techniques are used to achieve a high degree of realism for computer generated large-scale and detailed 3D surface
models by extracting the texture information from photographic images and applying it to the object surfaces. Due to the fact that a
single image cannot capture all parts of the scene, a number of images should be taken. However, texturing the object surfaces from
several images can lead to lighting variations between the neighboring texture fragments. In this paper we describe the creation of a
textured 3D scene from overlapping aerial images using a Markov Random Field energy minimization framework. We aim to maximize
the quality of the generated texture mosaic, preserving the resolution from the original images, and at the same time to minimize the
seam visibilities between adjacent fragments. As input data we use a triangulated mesh of the city center of Munich and multiple
camera views of the scene from different directions.

1. INTRODUCTION

1.1 Motivation

3D computer visualization of the real world plays an increasing
role in today’s information society. It has already found its way
into several applications: street view perspectives on maps (e.g.
Google-Earth); virtual 3D city models, which are used for ur-
ban planning and reconstruction, computer gaming (Frueh et al.,
2004); real-time environmental and physical simulations for dis-
aster management; 3D scanning for virtual cultural heritage con-
servation (Alj et al., 2012). However, for all these applications
the accurate and realistic appearance of the objects is required.
That could be achieved by texture mapping.
Texture mapping can be generally defined as a computer graphic
technique used to map a two-dimensional (2D) texture space (im-
ages) to a three-dimensional (3D) model space. A number of
images should be taken to reconstruct the textured geometrical
model, because a single image cannot capture all parts of a 3D
model. The surface of a 3D model is defined as a set of poly-
gons (commonly triangular mesh), so that the coordinates of each
polygonal vertex can be found from the images on the assump-
tions that the images and the 3D model are registered within a
global coordinate system. In other words, each image can be
back-projected onto the surface to generate a texture fragment.
The combination of these texture fragments yield the so-called
texture map.
From different types of images one can extract different infor-
mation. Texturing the 3D building models from thermal infrared
(IR) images can be used for the thermal inspections (Iwaszczuk
et al., 2011) and monitoring (Kolecki et al., 2010), together with
heat leakage detection on building facades (own citation). How-
ever, the low resolution and small field of view of IR cameras are
serious problems, when models are textured with IR images (own
citation). Using multispectral images for texturing 3D models al-
lows quantitative evaluation or study of the materials lying on the
object surface (Pelagottia et al., 2009). In this case the problem
is addressed only to texture small test sites. With the progress in
computer systems and algorithmic improvements it becomes pos-

sible to texture the digital object surfaces with texture information
from photographic images to achieve a high degree of realism of
computer generated digital models. Therefore, in our paper we
aim to texture a real-world and large-scale 3D city model by ap-
plying the high-resolution aerial photographic images.

1.2 Related Work

In the ideal case, i.e. same lighting conditions in the multiple
camera views, perfect perpendicular looking angles and ideal ge-
ometric model, the texturing of a real object from photographic
images is straightforward and seamless. However, these condi-
tions are difficult (in practice nearly impossible) to achieve and
one has to overcome the problems connected with it. In the last
few years, several texturing methods of 3D models from multi-
ple images were developed to solve these problems. Some tech-
niques suggest to blend (pixel-wise color averaging) the textures
from several images per face to build a texture map. First in-
troduced in (Debevec et al., 1996) the View-Dependent texture-
mapping method renders the 3D models by a view-dependent
combination of images. For a given view, the textures are typi-
cally blended based on the closest position of two neighbor views
from the view-point (the smallest angle between the face normal
and the view direction of the input camera). To smooth the visi-
ble seams due to assigning the different images to the neighboring
faces, weighted averaging is applied. The authors in (Wang et al.,
2001) compute the correct weights for blending by image pro-
cessing. The steps of reconstruction, warping, prefiltering, and
resampling in order to warp reference textures to the desired po-
sition are applied afterwards (Wang et al., 2001). This is then
treated as a restoration problem and is solved to construct a fi-
nal optimal texture. An innovative texture mapping method was
proposed in (Baumberg, 2002). The author decomposes each in-
put image into a low frequency band camera image and into a
high frequency band camera image. The images are blended af-
terwards in each frequency domain independently and the results
are combined to generate a final texture mosaic. However, in all
these approaches, blending the textures from several images per
face to build a texture map leads to ghosting and blurring arti-



facts.
Other methods search for the criterion based on which the assign-
ment of one best view per face is done. In (Rocchini et al., 1999)
the best image is identified as the one on which the projection of
all triangle vertices exist and the angle between the direction of
the vertex normal and the camera is the smallest. To produce a
smooth join when a mesh face is on the adjacency border between
different observed images, the weighted blending of correspond-
ing adjacent image sections is applied afterwards, followed by a
piecewise local registration procedure, further improving the ac-
curacy of the blending process. The authors in (Frueh et al., 2004)
apply texture mapping on an existing 3D city model from the im-
ages obtained at oblique angles. They propose to find the optimal
image for mapping every single triangle of the 3D geometrical
model based on parameters such as occlusion, resolution, sur-
face normal orientation and coherence between adjacent faces.
In (Iwaszczuk et al., 2013) quality for the “best” texture selection
is measured as function of occlusion, angles between normal of
the investigated face and direction to the projection center and its
distance to the projection center. However, this algorithm gives
only the reference texture for each face to the frame or frames
where this face has the best quality. Therefore this procedure can
be done prior to the texture extraction.
Due to the selection of the single “best” image for each triangle
the seams are not avoided if the images are taken under different
illumination conditions. The method proposed by (Lempitsky
and Ivanov, 2007) is formulated as a discrete labeling problem,
where the images are related to labels, which should be assigned
to each mesh face. The solution to the problem is connected to a
Markov Random Field (MRF) energy minimization problem with
two terms. The first term, called data term, describes the quality
of the given texture. This criterion is based on the angle between
the local viewing direction of the corresponding view and the face
normal. The second term, called regularization term, defines the
consistency between neighboring faces. The authors in (Allene et
al., 2008) proposed to calculate the data term related to the pro-
jection area of the 3D triangle in image space. A method in (Gal
et al., 2010) introduces the assignment of the faces with a set
of transformed images, which compensate the geometric errors,
and, applying Poisson blending, removes lighting variations.
The methodology proposed in this paper is based on the Markov
Random Field approach which allows not only the selection of
one best view per face using a special criterion, but also simul-
taneously apply regularization on the texture assignment to min-
imize seam visibilities on the face boundaries. Additionally, it
helps to avoid the intensity blending as well as image resampling
on all stages of the process (Lempitsky and Ivanov, 2007). This
guarantees that the resolution of the resulting texture is basically
the same as in the original views.

2. METHODOLOGY

2.1 Energy function formulation

On a given set of images {I1, . . . , In}, providing the texture in-
formation, each triangular face {t1, . . . , tm} of the 3D model is
projected. We check whether a triangular face looks towards a
given camera as it is shown in Figure 1 and store its 2D coor-
dinates. Because triangles may be visible in several images, we
aim to find the image with the “best” texture for these faces. This
problem is formulated as a discrete labeling problem, where the
images are related to the labels L = {l1, . . . , ln}, which should
be assigned to each triangular face taking into account additional
information about the interaction between the neighboring trian-
gles. We then define the texture mosaic by F = {f1, . . . , fm},
which describes the texturing (labelling) of all triangular faces ti.

Figure 1: Texture determination. Red arrows represent the nor-
mal vectors of each triangle.

Figure 2: Geometry of the angle between a face’s normal vector
and the looking vector of the camera.

Obviously, not from all images a given triangle could be seen
equally. The criterion to measure the quality of a triangle texture
observed in each image Ij is based on two parameters:

1. The angle between a face’s normal vector and the looking
vector of the camera (αdiff ). The larger the angle (closer to
180◦) the more preferable the texture from that image (see
Figure 2);

2. The visible area of the projected triangle in the image. Let
us denote the projected area of triangle ti in image Ij as
P(ti, Ij). The visible area parameter of this projected area
is defined as V is(P(ti, Ij)). The bigger this value the more
preferable the texture from that image (as it allows for finer
texture details).

To compute the visible area V is(P(ti, Ij)) of the triangle, a z-
buffering approach is used. The main idea of this approach states
to rasterize and sort all triangular faces of the 3D model accord-
ing to the distance from the camera view. The algorithm starts
with projecting each triangular face to the image plane, begin-
ning from the furthest face. Then for each interior pixel of the
triangular face the corresponding depth value is computed. We
check if the depth value of the current pixel in image-space is
smaller than the corresponding value in the z-buffer and assign to
this pixel a unique identifier (the index of the currently processed
triangle). When the pixel is farther away than the old one, no ac-
tion is taken. After processing all triangular faces, the visibility
of each triangular face is computed using the previously assigned
unique identifiers per pixel.
The number of pixels of each fully or partially visible triangular
face in the rendered image is calculated as shown in Figure 3a
and 3b correspondingly. The set of visible pixels for the yellow
triangle in both Figures 3 is defined by the grid area of blue color
around it. In mathematical notation, this parameter for visibility
can be written as following:

V is(P(ti, Ij)) =
∑

(p,q)∈P

{
1 if (p,q) is visible
0 if (p,q) is not visible (1)

Finally, the two quality measurements αdiff and V is(P(ti, Ij))
are combined together to generate the criterion for the best texture



per triangular face defined as:

score(ti, Ij) = αdiff (ti, Ij) · V is(P(ti, Ij)) (2)

which is larger for triangles with better quality.
Applying only this criterion to texture the 3D model will show
visible seams between the neighboring triangles if they are tex-
tured from images taken under different lighting conditions. To
penalize these seams, but at the same time maximizing the visual
quality of the triangles for each possible combinations of texture
information in the mosaic, MRF energy minimization with two
terms is applied:

E(F) = Edata(F) + λ · Eprior(F). (3)

The first term considers the constraints related to the data by en-
forcing the solution to be consistent with the observations. If we
define the label assigned to each face as fi the first term is then
generated as:

Edata(F) = − 1

N1

m∑
i=1

score(fi) (4)

where N1 is a normalization constant.
The second term reflects the interactions between adjacent trian-
gles. In this paper it is based on matching the color informa-
tion of these adjacent triangles. Measuring the color similarity
of adjacent triangles is done based on the triangle’s visible pixels
in the image, computing the average RGB color per triangle as
C̄(ti, Ij). In mathematical notation it can be expressed as fol-
lowing:

C̄R(ti, Ij) =
p1R + p2R + p3R + ...+ pnR

n
(5)

C̄G(ti, Ij) =
p1G + p2G + p3G + ...+ pnG

n
(6)

C̄B(ti, Ij) =
p1B + p2B + p3B + ...+ pnB

n
(7)

where n is the number of visible pixels and (pkR, pkG, pkB) is
one of the visible pixels of a triangular face ti in image Ij . For
adjacent faces, which share one edge, the seam visibility is then
measured by Euclidean distance in RGB color space:

Eprior(F ) =
1

N2

∑
(i,j)∈N

min(T, dist(C̄(fi), C̄(fj)))

=
1

N2

∑
(i,j)∈N

V (fi, fj) (8)

where T is a truncated constant,N is a set of nodes and V (fi, fj)
is a potential function assigned between nodes fi and fj . The re-

(a) (b)

Figure 3: Determining the number of visible pixels (blue) for the
yellow triangle. (a) Fully visible triangle. (b) Partially visible
triangle.

sults are normalized with constant N2 between [0,1]. In other
words, the closer a color metric is to 0, the less visible seam be-
tween adjacent triangular faces. The abovementioned truncation
constant T in regularization term Eprior(F ) was introduced in
order to preserve very strong color boundaries between adjacent
regions arising from truly color differences. This parameter en-
forces the labeling F to keep a few regions with significant varia-
tions of labels among neighboring sites (Veksler, 2007) (see Fig-
ure 4). This property is typically called discontinuity-preserving.

(a) (b)

Figure 4: Different types of pairwise regularization terms. (a)
The linear regularization function without truncation constant (T
= 0). (b) The linear regularization function with truncation con-
stant(T 6= 0), stopping the increasing penalty of color differences
above a given threshold.

Finally, combining the presented functions and inserting them
into Equation (3), the overall energy function is computed as:

E(F) = − 1

N1

m∑
i=1

score(fi)+

λ · 1

N2

∑
(i,j)∈N

min(T, dist(C̄(fi), C̄(fj))) (9)

2.2 Energy optimization

MRF probabilistic models solve discrete labeling problems via
energy minimization, which is equivalent to finding a MAP esti-
mation of the labeling F = {f1, . . . , fm}:

F̂ = arg max
F

E(F). (10)

For minimization of our energy function within a MAP-MRF
framework a graph cut algorithm is chosen. The main goal of the
method is to construct a specialized graph for the energy func-
tion to be minimized such that the minimum cut on the graph
also minimizes the energy either globally or locally (Boykov et
al., 2001), (Kolmogorov and Rother, 2006). The minimum cut
is computed very efficiently by maximum flow algorithm due to
their equivalence stated by the Ford and Fulkerson theorem (Ford
and Fulkerson, 1962).
For the energy function in Equation (9) the graph nodes corre-
spond to the triangular faces of a 3D mesh and each node has a
set of possible labels, corresponding to the image indices where
to extract the texture from. Because the number of possible la-
bels is more than two in our work, the problem is formulated as a
multi-label problem, which from a combinatorial point of view is
NP-hard. The only solution is to use an approximation. The two
most popular state-of-the art algorithms, α-expansion and α−β-
swap, introduced in (Boykov et al., 2001), are chosen in our work
to approximate the energy minimum of E(F) for the finite num-
ber of labels L. The concept of these technique can be described
according to (Blake A., 2011) as following: At each iteration the
algorithms make a decision about either the site keeps its old la-
bel or switches to a new label. The swap is a move from current



Figure 5: Example of an aerial image of the inner city of Munich.

Figure 6: Triangulated digital surface model.

labeling F to new labeling F’ in one iteration, when some sites of
α labels in F become β labels in F’ and some sites of β labels in
F become α labels in F’. The expansion is a move from current
labeling F to new labeling F’ in one iteration, when a set of labels
in F changed to α label. As a result, the problem is reduced to
binary labelling (α and β), which is solvable exactly with graph
cut. Applying the α-expansion and α − β-swap algorithms we
search for the best label for each triangular face and at the same
time penalizing the seam visibilities between neighboring faces.

3. DATA

For the multi-view texturing of geometrical objects aerial image
data of the inner city of Munich was taken, using the 3K+ camera
system from (Kurz et al., 2007). The distance from the camera to
the scene is about 2 km, with a ground sampling distance (GSD)
of about 0.2 m per pixel. The triangulated DSM and 4 images to
texture it are the input parameters for this work. The images are
chosen in such a way that each area of the scene is visible at least
from one image. The DSM has a size of 2000×2000 pixels and
covers an area of 400×400m.
The implementation is done using the graph cut minimization
software provided by (Szeliski et al., 2006), using the libraries
provided by (Boykov et al., 2001), (Boykov and Kolmogorov,
2004) and (Kolmogorov and Zabin, 2004).

4. RESULTS

In this section the proposed fully automatic method for creating
a textured 3D surface models is validated under different condi-
tions. We vary the two parameters in Equation (9): The truncation
constant T and the balancing parameter λ.
In order to compare the roles of the two terms in energy func-
tion in Equation (9) we start with λ = 0. In this case the second

(a)

(b)

Figure 7: Textured inner city Munich model. (a) Textured city
model for λ = 0.0. (b) Textured city model for λ = 0.5 (α-
expansion algorithm, T = 0).

(regularization) term does not influence the results. To each trian-
gle the texture with the best quality value is assigned without any
smoothness constraints. The result is demonstrated in Figure 7a.
It can be seen that texturing the model based only on the quality
parameter (data term) leads to so-called patchy or noisy results.
Next, we take the regularization term in Equation (9) into account
and run the α-expansion for λ = 0.5 and T = 0 (see Figure 7b).
We can see the significant improvements of the texture mosaic:
the texture information looks sufficiently smooth. However, for
such large-scale model the differences between α-expansion and
α− β-swap algorithms can not be visually distinguished. There-
fore, we present the result for influence of the λ parameter only
for the expansion algorithm.
In order to investigate the influence of T on the results detailed
views of two sample areas highlighted with blue rectangles on
Figure 7a are presented for both algorithms (see Figure 8 and 9).
We start with the α-expansion algorithm and put λ equal to 0.5.
Its influence on the texturing process together with the presence
of the truncation constant T in the model is shown in Figure 8.
In Figure 8a and 8c it can be observed that the texture is getting
partially blurred when the truncation constant T = 0. One pos-
sible explanation can be that with T = 0 the boundaries between
the regions are not preserved, leading to an oversmoothing. An-
other reason can be addressed to the size of the triangles: The
triangles belonging to the facade sides are bigger compared to
the triangles on the roofs due to a sparser point cloud in these re-
gions. For these large triangles the average color computation is
not completely valid anymore. The situation is different when the
truncation constant is set to T = 0.1 (see Figure 8b and 8d). This
parameter enforces the labeling F to keep a few regions with sig-



nificant variations of labels among neighboring triangles. There-
fore, we can see the obvious texture improvement of the resulting
model. However, in Figure 8b we still can see the texture distor-
tion between the pedestrian zone and the building. This can be
associated with geometrical inaccuracies in the model.

(a) (b)

(c) (d)

Figure 8: Selected areas of the textured city model with λ = 0.5
(using the α-expansion algorithm). (a) T = 0; (b) T = 0.1; (c) T =
0; (d) T = 0.1

(a) (b)

(c) (d)

Figure 9: Selected areas of the textured city model with λ = 0.5
(using the α− β swap algorithm). (a) T = 0; (b) T = 0.1; (c) T =
0; (d) T = 0.1

Now we are turning to the α − β swap algorithm. Here we use
the same parameter values as for the α-expansion algorithm. The
overall results look similar to the α-expansion algorithm (see Fig-
ure 9). If we examine the building’s facade in Figure 9a we see
that it is totally blurred and the building in Figure 9c is blurred
partially, if the truncation constant T is equal to 0. The reason is
the same as was described above for the α-expansion algorithm.
Now, turning to the situation when the truncation constant T =
0.1, we can see the obvious texture improvement of the resulting
model (see Figure 9b and 9d). This happened again due to the pa-
rameter’s ability to enforce the labeling F to keep a few regions
with significant variations of texture information among them.

Expansion Swap

ncycles
time
(sec)

ncycles
time
(sec)

T
=0

λ = 0.1 7 173.08 7 185.17

λ = 0.5 6 148.41 5 139.89

T
=0

.1 λ = 0.1 6 136.41 6 205.09

λ = 0.5 6 119.15 6 222.05

Table 1: Textured city model characteristics for α-expansion and
α − β swap algorithms: Number of cycles the algorithm takes
to converge (ncycles); Time the algorithm takes to converge in
seconds.

The quantitative characteristics of the α-expansion and the α−β
swap algorithms are summarized in Table 1. In order to demon-
strate the behavior of the energy function during the optimiza-
tion process, its values are plotted with respect to the time (in
seconds) for the two minimization algorithms, α-expansion and
α−β swap. The results for λ = 0.5 and T = 0 are shown in Figure
10.

Expansion
Swap

time (s)

E
ne

rg
y

Figure 10: Energy minimization function with respect to time (in
seconds) for α-expansion and α− β swap algorithms (T = 0 and
λ = 0.5).

Regarding the obtained results, where we investigated the influ-
ence of the balancing parameter λ and the truncation constant T
on method’s performance by running two energy minimization
algorithms, α-expansion and α-β swap, we can conclude that:

• By finding a good trade-off between the data term and reg-
ularization term in Equation (9) we can improve the visual
quality of our textured model. Some lighting variations are
still present, especially on the buildings with sophisticated
design (the facades and roofs contain many features).

• Varying only the balancing parameter λ is not enough to get
a satisfying visual appearance of the model. Additionally
using a truncation constant T helps to preserve the bound-
aries between regions with significant texture variations. It
should be mentioned that in previous work the truncation
constant T was not taken into account.

• The comparison studies between the results obtained by run-
ning α-expansion and α-β swap algorithms show that α-
expansion algorithm out-performs the α-β swap. One ex-
ample of such differences is given in Figure 8a and 9a. Here
the building’s facade textured using α-β swap algorithm vi-
sually appears more blurred. Another example is shown in



Figure 11a - 11b. Here we examine the region highlighted
with blue rectangles. The magnified vesions are presented
in Figure 11c and 11d. From this example we can see that
α-expansion found a closer to optimal solution for textur-
ing the red roof than the α-β swap. This is consistent with
the evolution of the energy function with respect to the time
for both α-expansion and α− β swap algorithm, as demon-
strated in Figure 10. The values of the energy function found
by running the α-expansion algorithm are lower than for the
α − β swap algorithm. Additionally, from the results pre-
sented in Table 1 we can see that the amount of time the α-
expansion algorithm needs to find a local minimum is less
than for the α-β swap. This can be explained by the fact that
in one cycle the swap algorithm takes | L |2 iterations, and
for the expansion it is | L | iterations in one cycle.

(a) α-expansion (b) α-β swap

(c) α-expansion with λ = 0.5.
Zoomed area

(d) α-β swap with λ = 0.5.
Zoomed area

Figure 11: Comparison study between α-expansion and α-β
swap performances (λ = 0.5).

For the real-world dataset, which we used in this work for cre-
ation a textured 3D scene of the city center of Munich, there is
no public ground truth data available. Additionally, every other
author who is doing similar work uses/used his private dataset.
Thus, we can not compare the performance of our method against
theirs. This is one of the problems in the field of texturing 3D
models. It would be probably the most important work in the
future to provide a public dataset for making all the algorithms
comparable.
A limitation of the presented approach can be a significant dif-
ference in the size of adjacent triangles in a model, which in-
fluences the texture assignment. In the given data (obtained by
aerial image matching) this is the case when one triangle belongs
to the building’s facade and its neighbor to the roof. The trian-
gles belonging to the facades are bigger compared to the triangles
on the roofs due to a sparser point cloud in these regions. This
means that the projection of big triangles onto 2D image space
could cover many pixels with very different colors. As a result
the average RGB color of these triangles could be significant dif-
ferent from the average RGB color of the neighboring triangles
(which are on the roofs), even if the area close to the common
edge between triangles looks similar. Consequently, the texture
assignment is penalized, which is incorrect.

5. SUMMARY AND OUTLOOK

Our results confirm that a Markov Random Field energy mini-
mization approach enables us to perform fully automatic textur-
ing of large-scale 3D models from high-resolution photographic
images minimizing lighting variations across the areas where im-
ages are overlapping. In contradiction to previous approaches,
the use of Markov Random Fields energy minimization allows to
keep the resolution of the produced texture, which is essentially
the same as that of the original views. That means the detail-rich
information which is contained in high-resolution photographic
images, is completely transmitted to the reconstructed models.
Our technique is based on the techniques presented in (Allene et
al., 2008), (Gal et al., 2010) and (Lempitsky and Ivanov, 2007)
with a few modifications for the energy function: The first term,
which measures the visual details of each face, is computed as
a combination of a number of visible pixels of a given face and
the angle between the face’s normal and the looking vector of the
camera. The second term, which measures the color continuity
between adjacent faces, is computed as difference of the average
RGB color per triangle. Moreover, in previous works the prob-
lem was addressed only to texture small test sites. We extended
our multi-view texturing approach for large-scale scenes.
There are mainly two parameters in the Markov Random Field
energy minimization which influence the results: The trunca-
tion constant T and the balancing parameter λ. Both of them
should be set, because using only the balancing parameter λ is
not enough to get a satisfying visual appearance of the model.
This finding became one of the main benefits in this work. By
choosing appropriate values of these parameters we showed that
a close to optimal seam placement can be achieved. As possible
extension to this research additional post-processing steps can be
applied to perform further color corrections.
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