Institut fur
Dynamik der Flugsysteme

IB.Nr.:. 515-83/3

"RKF45T" « A Runge~Kutta 4/5 Software Package
with User-Supplied Stops

Involving the Dependent Variables and First

Derivatives

L

Freigabe: Die Bearbeiter:
Dr. M.K. Horn

Dr, K.H. Well
Der Abteilungsleiter:

Der stellv. Institutsdirektor :

pef nstfiBaiedskermann

Dieser Bericht enthalt:

__J

Unterschriften:

LA g B0

Jaun W6 LS
1. [hernioe
V {

134

I Bilder

_ 3 Dmmmmm&abellen

Blatt davon

Ort:Oberpfaffenhofen |Datum: 28 1,1983 Bearbeiter: py gorn |[%¢°"" Dy Ho/rm

ABSTRACT

numerical analysis, Runge-Kutta algorithms, iteration schemes

The RKF45T software package, a fifth order Runge-Kutta integration package
with step size control, is adapted to include automatic stops whenever a zero
of any user-supplied, auxiliary function, PHI, vanishes. The program is
capable of switching between the PHI components to locate all zeros if
several components have vanishing points within a given step. The user is
allowed to redefine the PHI function or the ODE expression as each zero point
is located. The RKF45T program is described thoroughly with numerous exam-
ples illustrating the use of the program. The program listing is included in
the report. %

(This paper is printed by GML from the dataset df65.trap.text(apr).)

PREFACE

This report is one of a series of four volumes which are designed to treat
state/control-constraint optimal control problems involving piecewise con-
tinuous system equations including the extensive use of equation expressions
written in terms of linearly interpolated tabular data. The titles of the
volumes are listed below:

Volume 1 A FORTRAN Program for Solving State/Control-Constraint Optimal
Control Problems with System Equations Having Expressions
Involving Tabular Data

in which extensive use of linearly interpolated tabular data is made, treat-
ing the system truly as a piecewise continuous problem by halting the inte-
gration for equation updates as each table grid point is isolated. (See
reference [3].)

Volume 2 A Numerical Solution of State/Control-Constraint Optimal Control
Problems with Piecewise Continuous Derivatives Using RKF45T

in which constraint violation boundary crossings are isolated, and in which
discontinuities in the derivatives occur. (See reference [4].)

Volume 3 RKF45T--a Runge-Kutta 4/5 Software Package with User-Supplied
Stops Involving the Dependent Variables and First Derivatives

in which the user may actually halt the integration at any point which may be
described as a function of the independent variable, the dependent variables,
and the first derivatives. (Current report)

Volume 4 Subroutines for Handling Tabular Data Used in System Equations

in which a table structure is defined consistent with the example in Volume
1, and in which practical routines are provided for adjusting and analyzing
tabular functions. (See reference [5].)

CONTENTS

w W [\)NMN]

=

L

)]

~J

~

Lirbnun n
-P‘-D‘-N-F“-P‘I—‘

RO O DN
LM

oo 00 Co 00 o0
L I

Introduction

The PHI Function

.1 The Structure of the PHI Vector

.2 Sample PHI Components
.3 Convergence Regions
.4 Analysis of the PHI Funct1on

. The RKF45T Structure

.1 Subroutines in the RKF45T Package
.2 An Overview of the RKF45T analysis

. Calling Sequences for the RKF45T Package and User- Supplled

Subroutines
User-Supplied Subroutines
.1.1 Subroutine F .o
.1.2 Subroutine SUBPHI .
Calling Sequence and Operatlng Optlons for RKFAST
.2.1 The RKF45T Calling Sequence R EEE
.2.2 RKF45T Modes of Operation

. General Procedure in Subroutine TRAPPD

PHI Vanishes at TF

The Trapping Iteration

The Update of PHI Components § @

Trapping Additional Values within a leen Step

. Details of Subroutine TRAPPD

The Initialization Block for TRAPPD
Determining the Trapping Status of PHI
Choosing the Iteration Step Size

INDEX Shift

The Update of PHI Components

. The RKF45T System Communication with the User

.1 User Input into RKF45T . .
.2 Information Returned through the RKFAST Calllng Sequence
.3 Communication through the SUBPHI Calling Sequence .

7.3.1 Initialization of the Trapping Option
7.3.2 Update Calls to SUBPHI o %

. RKFST and Auxiliary Subroutines for the TRAPPD System

Subroutine RKFST . .
Subroutines TRAPPD, SHIFTI TSTAR MULTOP, and BOUNCD
Subroutine SCALED T EEE Y P Y
Subroutine VANISH

Subroutine PANIC

w P ww

w

O 000~

12

13
13
13
13

14

14
16
16
18
18

19

19
20
21
21
22

23

23
24
24
25
26

8.6 Subroutine FLAGCK TR R E P E R E TR 27
8.7 Subroutine OUTFLG B R EE T E R E T E R R TN 27
9. Special Features, Special Problems Y R 28
9.1 Controlling Constants O B T T T S S I 28
9.2 Special Features in RKFST s & R R 28
9.2.1 Vanishing PHI Components at the In1t1a1 Condltlons v W W W 29
9.2.2 The PANIC Option Activated through SETRAP ® W E D B G o6 W 29
9.3 The PANIC Option in TRAPPD P N L A 29
9.4 Order of the Scaled Solution o B @ B IES D ke s B & 30
9.5 PHI Vanishes throughout a Step T L 30
9.6 Print Options T " 30
9.7 User Update of the PHI Components and the leferentlal Equatlon
System ¢ i S EE R R 31
9.7.1 §Sign of the Vanlshlng Component P B oW & Hm R E E R B & W E 31
9.7.2 Changes in the PHI Vector 5 R U A 31
9.7.3 Updates in the Differential Equatlon System R R 32
9.8 Difficulties with the PHI Function 2 0E B & o oem e w m Gn e g 32
9.9 The Bouncing PHI Function P ARG W B B & m w de se w W B M s a3
10. Applications £ 3 0§ B oW W ¥ s & 8 B e ¥ & F o4 oW o & ¥ 3§ 3 om o O%
10.1 Dense Output at Specified Values of the Independent Variable . 34
10.2 Update in the ODE System Using the Combination Moda 5w o & hE 36
10.3 Large system of Stopping Conditions B E] d 5D B m B 38
10.4 Tabular Data Expressions in ODE Systems d 3 2w T B & 40
10.5 A Highly Oscillatory Problem P I I T VI T I e sy 44
10.6 A Large Convergence Region T 2R AR e m e E S R 45
10.7 A Bouncing PHI Function A N 46
11. Conclusions TR E R R N R R 47
12. References ¥ A G 4 BB EH I 6 AR EEREREE R &S 54
Appendix A. Program Listing for RKF45T and Related Subroutines . o DD

Appendix B. SUBPHI subroutines and resulting output for examples in
§10. s s @ oW i W E 8 § B @ @ § 88 Mow @ & 3 8§ R B mOWE § 8 0@ J12

1. INTRODUCTION

During the numerical solution of the initial value problem

(1) o 1 f(t:Y) » y(to) = Yo,

one may frequently request information about the solution whenever a compo-
nent of a constraint function vanishes, i.e., whenever PHI(J)=0. Examples of
such constraint functions may range from isolating specific values of a par-
ticular dependent variable to analyzing complicated functions involving the
independent variable, the dependent variables, and their derivatives. Typi-
cal examples include locating important points along the integration path,
such as perigee or apogee of an orbit, as well as isolating singularities or
stopping the solution at specified values of a dependent variable (or a func-
tion of the dependent variables). A priori knowledge of the conditions for
satisfying such constraints, however, is generally unavailable. Thus, some
iterative procedure must be used to adjust the integration step size in order
to locate the values of the independent variable at which the components of
the constraint vector vanish. The cost of such iterations, however, may be
prohibitive if the problem requires frequent analysis of such constraints. An
algorithm, then, is needed which can stop the numerical integration in an
efficient manner whenever a user-supplied, constraint equation is satisfied.

While Runge-Kutta (RK) algorithms are effective in solving certain classes of
ordinary differential equations (0ODEs), their efficiency depends upon their
ability to use large step sizes while generating the solution. Such iterative
schemes, requiring repeated reductions in the step size, however, could
demand too much additional computing time. Scaled Runge-Kutta algorithms
exist which enable one to determine the solution anywhere within a given
integration step at only a slight increase in computing time [2]. These sca-
led methods, which are used in conjunction with existing RK algorithms, are
ideally suited for iterative schemes and are used to evaluate the solution at
intermediate points throughout any integration step.

The RKF45 software package, developed by H.A. Watts and L.F. Shampine [6] is
modified to provide an efficient integration stop whenever a component of a
user-supplied, constraint vector, PHI(J), vanishes. The majority of the
analysis of this constraint function, PHI is treated in additional subrou-
tines (TRAPPD and associated routines), thus requiring only minor modifica-
tions to the original RKF45 system. To distinguish between the original and
modified versions, the package which handles the constraint functions is
referred to as RKF45T and is, in fact, the RKF45 package when the trapping
option is not activated.

Zeros of the PHI components are identified by detecting sign changes as the
PHI vector is monitored after each integration step. Once a sign change is
observed (or once a zero has been "stepped on"), the integration is temporar-
ily halted, and the analysis is shifted into separate subroutines for isolat-
ing the vanishing point (or points). If derivatives (or derivative estimates)
of PHI are provided, a Newton-Rhapson (or secant) method will be used to iso-
late T*, the wvalue of the independent variable at which a PHI component
vanishes. If the derivative values provided produce unacceptable T¥* esti-
mates, a false-position (or perhaps half interval) estimate is used to
determine T¥. If several components vanish within a given step (not necessar-

ily at the same point) each zero will be isolated in order in the direction of
the integration. (The trapping iteration is capable of switching between the
PHI components.) The user is informed of the vanishing of a PHI component
through an update call to SUBPHI (the user-supplied subroutine for evaluating
the PHI and PHIP components.) If more than one component vanishes at a spe-
cific point, a separate update call is made to SUBPHI for each vanishing
component. During the update call, the user may print information, change the
PHI expressions, or even change the differential equation system itself.
Several modes of the trapping option are available so that the analysis may
remain within the integration routine or may return to the user after an
update, depending upon the requested mode.

Certain types of PHI functions may pose particular difficulties, for example,
multiple zeros within a given integration step, relatively flat PHI compo-
nents (having a large convergence region), or "bouncing' PHI functions (ones
which do not change sign as they pass through zero). Several precautionary
measures and several emergency features have been included to handle these
situations, but the nature of the problem lies with the PHI component itself
(or with its relation to the numerical solution of the differential
equations) rather than with the iteration procedure. The user must understand
the vectors being analyzed in order to interpret the trapping results (or
difficulties).

This report presents a description of the basic (RKF45) program, as well as
the documentation of the modifications to the original scftware package. The
program listing is given in Appendix A. (Further documentation of the ori-
ginal RKF45 package is contained in comment cards in the program listing).
This report is structured so that the user may refer to specific sections
without reading the entire report (with related sections being referenced.)
Examples illustrating the use of the RKF45T package are presented.

This report is actually one of a series of four reports designed to be used in
the solution of the optimal control problem when discontinuities occur in the
ODE or in higher derivatives of the ODE. Volume 1 of this set [3] illustrates
the use of the RKF45T package for problems in which extensive use is made of
linearly interpolated tabular data, with RKF45T halting the integration at
each grid point in the tables. Volume 2 [4] demonstrates the use of RKF45T
when a small number of discontinuities occur in the ODE, with an inequality
constraint, depending upon t, y, and y', analyzed using the RKF45T package.
Volume 4 of the set [5] describes the tabular structure to be used in Volume
1. The current volume illustrates further uses of the RKF45T package.

2. THE PHI FUNCTION

The inclusion of the PHI vector in the RKF45T package gives the user a great
deal of programming flexibility during the solution of a system of ODEs. Rea-
sons for temporarily halting the integration may be as simple as requesting
dense output at specified increments of the independent variable or as com-
plicated as isolating particular values of expressions in the dependent vari-
able and its derivatives. Even the simplest of stopping conditions, however,
can often be analyzed more efficiently as a component of the PHI vector than
as a separate stopping condition in the driving program.

The problem of 1locating a specified value of a given expression,
$(t,y,y') = %o, may be formulated as one of locating the vanishing points of
the function .

PHI = &(t,y,y') - %o

By treating a vector PHI, the RKF45T program is able to locate the vanishing
points for any number of stopping conditions during the integration, switch-
ing between the components of PHI to isolate the zeros in the direction of
the integration. Added flexibility is provided in an updating feature which
gives the user the opportunity to print information and even to change the
PHI function or the differential equations whenever a zero component of PHI
is isolated. These updates may be made without returning to the driving pro-
gram.

2.1 The Structure of the PHI Vector

The user-supplied PHI vector may be expressed as a function of t, y, and y'.
While the analysis of this vector is fairly straightforward, the user should
keep in mind that certain difficulties can arise while isolating the zeros of
a PHI component even though the integration is proceeding smoothly. Difficul-
ties in the PHI analysis might occur, for example, due to effects from errors
in the integration. These difficulties occur regardless of the iteration
scheme used. Thus, the user must have some understanding of the PHI vector
being provided. (Emergency analysis can be activated, but this, in general,
is inefficient. See §§9.2.2, 9.3, and 10.5.)

2.2 Sample PHI Components

Examples of simple but useful PHI components might included:

° Independent variable increments, PHI(1)=T-TPRINT, where TPRINT is
increased each time PHI(1)=0 is isolated,

° Dependent variable stops, PHI(2)=Y(3)-YPRINT,

® A function of T, Y, and Y', say perigee or apogee of an elliptic orbit,
i.e., VeR=0, PHI(3) = YP(1)*Y(1) + YP(2)*Y(2) + YP(3)*Y(3),

or

° Grid values for interpolating tabular data, PHI(4)=(MACHUP-M)*(M-MACHLO)
where MACHUP and MACHLO are entries in a table and where M may depend
upon T, Y, and Y'. MACHUP and MACHLO may be incremented when PHI(4) van-
ishes, so that the bracketing values of the new region are used.

Such functions change sign as they pass through a zero point identifying con-
ditions for activating an option to isolate a zero. The identification proc-
ess may encounter difficulties if the PHI components change sign more than
once within a given step or if they '"bounce" on the zero value, i.e., if PHI
has the same sign on both sides of a zero. A good understanding of the PHI
components, however, will avoid the need to monitor the PHI vector carefully.

2.3 Convergence Regions

The user is seeking the value T* for which a component of PHI, say PHI(J),
vanishes. In general, however, an iterative process can only approximate the
zero of PHI(J). Thus, a neighborhood of T* exists in which any value of T will
satisfy the requirements that |PHI(J)| be less than a prescribed tolerance.
(While this tolerance may be quite small, certain restrictions, e.g., the
integration accuracy, dictate a limiting lower bound. Therefore, a conver-
gence region exists whose size depends upon the tolerance requested and the
nature of the PHI component itself.(See Figure 1.)

[0} 04 \, ©2 %\

TLa TR2 TLa } TRa

Figure 1. Convergence regions for ¢ functions. |¢i| < tolerance for
™ € (TL;, TR3), 1=1,2,3.

2.4 Analysis of the PHI Function

Communication between the RKF45T package and the user occurs, in part,
through the calling sequence of the user-supplied subroutine, SUBPHI, which
computes the PHI component values (See §4.1.2). During the solution of the
ODE system, SUBPHI is referenced after each successful integration step to
evaluate the PHI components. The integration continues with the PHI vector
monitored in SETRAP until a sign change is detected in any component or until
a component has vanished at the end of a given step. At this point, the inte-
gration is halted and the analysis is switched to the TRAPPD subroutine to
isolate the components of PHI vanishing within that step.

In subroutine TRAPPD an iterative procedure is used to isolate the first com-
ponent of PHI to change signs. (If the zero is located at the end of the
integration step, no iterations are required.) The user is informed of the
vanishing point through an update call to SUBPHI, which identifies the compo-
nent and gives the user certain information about that function. (The proce-
dure used in subroutine TRAPPD is described in § 5.) If multiple components
of PHI vanish at the same point, a separate update is made for each vanishing
component. The trapping routine may then continue to locate further vanishing
components within that step or may return to the basic integration package
(and possibly to the user) depending upon the mode of operation selected.

3. THE RKF45T STRUCTURE

The RKF45T integration package, with an option to stop the integration should
a constraint vector be satisfied, is a modification of the RKF45 system
developed by H.A. Watts and L.F. Shampine [6]. The core of the integration
system is a fifth order Runge-Kutta method due to E. Fehlberg [1], having an
embedded fourth order solution for step size control. Modifications to the
RKF45 subroutines have been inserted in blocks as far as possible, to avoid
reformulating the existing modular structure of the RKF45 package. The major-
ity of the work done in analyzing a constraint function is managed through an
additional subroutine, TRAPPD, which is referenced once the integrator
(through subroutine SETRAP) detects a sign change (or a vanishing value) of a
component of the constraint vector, PHI. TRAPPD references a number of sub-
routines during its normal operation. Additional subroutines, SCALED,
VANISH, and PANIC, are major subroutines which treat particular situations
arising during the analysis in TRAPPD or SETRAP. The subroutines FLAGCK and
OUTFLG are attached to the integrator itself for analysis of the operation
parameters. In addition, the user may switch modes of operation easily, even
activating the trapping option after the integration has begun.

3.1 Subroutines in the RKF45T Package

The basic tasks of each of the subroutines in the RKF45T package are
described below:

RKF45T is an interfacing routine between the driving program and RKFST.
RKF45T partitions the WORK array and references FLAGCK for possi-
ble adjustments to some internal parameters before referencing
RKFST. Before returning to the user RKF45T again references FLAGCK
(for further adjustments to intermal flags) and OUTFLG to print
warning messages if the integration or trapping procedure has not
gone as planned.

RKFST is the decision making routine for the solution of the ODE. RKFST
analyzes the step size, deciding the initial step length, estimat-
ing the accuracy of each step, and making further adjustments to
the step size. Flags are set and adjusted in RKFST to determine
the success or failure of the integration. RKFST references SETRAP
after each step to monitor the PHI vector.

FEHL evaluates the Runge-Kutta solution at T + H.

SETRAP serves as the interfacing routine between RKFST and TRAPPD, moni-
toring the PHI vector after each integration step and deciding when
TRAPPD should be referenced.

TRAPPD organizes the search for the =zeros of PHI(INDEX), referencing
BOUNCD, TSTAR, SHIFTI, and MULTOP to perform simple tasks.

VANISH studies PHI functions which may have vanished throughout the trap-
ping interval (or which have vanished at the initial conditions).

-

PANIC is an emergency routine which studies the PHI components through-
out the interval if problems have arisen during the analysis.

SCALED computes the solution at any given T value within a given inte-
gration step.

FLAGCK makes internal IFLAG adjustments.

OUTFLG prints warning messages designated by IFLAG.

3.2 An Overview of the RKF45T analysis

The RKF45 package is a well tested, production software package. The modifi-
cations forming the RKF45T system would still be considered to be a research
code. Thus, problems encountered during the use of the program are probably
due to the modifications in the code or to user error.

The software package evaluates the derivative, selects the step size automat-
ically (including the initial step size), and advances the solution in the
manner requested by the user. Any problems encountered during the solution,
whether due to difficulties in the ODE system or due to user input or
response, are indicated by the parameter IFLAG. Certucin values of IFLAG
indicate that problems have arisen, which are sufficiently severe, that a
continued attempt at integrating will terminate the program. (See Table 1.)
During the solution, the dependent variables, Y, and their derivatives, YP,
(stored in WORK array locations 1 through NEQN) always correspond to the val-
ue, T, of the independent variable, although T may not have reached TOUT or
may not even have been advanced a single step since being referenced by the
driving program (as indicated by the parameter IFLAG.)

If a constraint vector PHI is being analyzed, each component is monitored as
the integration proceeds. Whenever any component changes sign over an inte-
gration step or vanishes at the end of the step, the integration is temporar-
ily interrupted and the analysis is shifted to the TRAPPD subroutine to
isolate the zeros of PHI or to permit updating of any vanishing component of
PHI. Once the PHI vector has been analyzed, the user is informed of the
location of vanishing values of PHI isolated by TRAPPD, and the integration
is continued or the solution is returned to the driving program, according to
the user's specifications.

4. CALLING SEQUENCES FOR THE RKF45T PACKAGE AND USER-SUPPLIED
SUBROUTINES

A basic understanding of the parameters used in referencing the RKF45T pack-
age and the user-supplied subroutines, F and SUBPHI, is needed before the
actual communication between the user and the RKF45T package can be
discussed. In this section these parameters, including the various modes of
operation will be defined. The actual interaction between the user's program
and the RKF45T package is discussed in §7.

4.1 User-Supplied Subroutines

The user is required to supply two subroutines which are used in conjunction
with the RKF45T package, both being listed in an external reference statement
in the referencing program.

4.1.1 Subroutine F

Subroutine F, having calling sequence F(T,Y,YP), evaluates YP, the deriva-
tive of vector, Y. The input parameters are:

T the independent variable, and
Y the dependent variable, dimensioned NEQN in the referencing sub-
routines

with the returned values

YP the user-supplied derivative of the vector Y (egqn. 1), dimensioned
NEQN in the referencing subroutines.

-

Parameters T, Y, YP are double precision variables.

4.1.2 Subroutine SUBPHI

Subroutine SUBPHI, having calling sequence SUBPHI(NPHI, INDEX, T, Y, YP, PHI,
PHIP, KOUNTR, UPDATE, IVAN, BOUNCE, ABSER) evaluates the user supplied con-
straint vector, PHI, for analysis in the RKF45T program. The rather lengthy
calling sequence provides considerable flexibility for the user, so that SUB-
PHI may perform far more tasks than simply evaluating the PHI function. The
input parameters are listed below.

NPHI gives the dimension of the constraint vector PHI (and of its deriv-
ative PHIP),

INDEX equals zero if the analysis of PHI is still handled in RKFST/SETRAP
or designates the component of PHI currently being analyzed in
TRAPPD if a sign change in a PHI component has been observed. (If
INDEX is not zero, the analysis has shifted into the TRAPPD
routine.) INDEX may change values during the trapping process as
the iteration converges to the first component (and eventually to
each component) that experiences a sign change over the inte-
gration step being analyzed,

T is the independent variable,

Y is a vector of the dependent variables, dimensioned NEQN in the
referencing subroutines,

yp is the derivative of Y, a vector dimensioned NEQN in the referenc-
ing subroutines,

KOUNTR counts the number of zeros isolated by TRAPPD (KOUNTR=0 indicates
the initialization phase in SUBPHI),

UPDATE a logical parameter, designates the status of the trapping proce-
dure,
IVAN a logical parameter, indicates whether or not a PHI component has

vanished throughout the interval from T to T¥,

BOUNCE a logical parameter, indicates whether or not a PHI component has
"bounced'" on a zero, and

ABSER is a user-supplied absolute error tolerance used in defining the
convergence of the PHI wvector (the default wvalue being
DMAX1{RELERR,ABSERR}, integration tolerances for RKF45T).

Returned values (user-subplied) for UPDATE=.FALSE. are:

PHY the constraint vector, dimensioned NPHI in referencing routines,
and
PHIP the derivative (or derivative estimate) of the PHI vector, dimen-

sioned NPHI in the referencing routines. (If the derivative or
derivative estimate of any PHI is unavailable, that PHIP value
should be set equal to zero.)

Again, T, Y, YP, as well as, ABSER, PHI, and PHIP, are double precision vari-
ables, while UPDATE, IVAN, and BOUNCE are logical variables.

The parameters, INDEX, KOUNTR, UPDATE, BOUNCE, and IVAN, are provided for the
user's benefit and may be changed after the initial call to SUBPHI without
affecting the integration or trapping routines. Because the primary function
of these parameters is to communicate information to the user, they will be
discussed in greater detail in §7.

4.2 Calling Sequence and Operating Options for RKF45T

The initial and final interaction between the user and the RKF45T package
occurs through the calling sequence of RKF45T. If a PHI vector is being ana-
lyzed, further communication occurs when the vanishing point of a PHI compo-
nent is isolated, but the information about the ultimate success or failure
of the integration is generally given by the RKF45T parameters. Since the
returned solution and flags depend upon the mode of operation selected, the
user should fully understand the information returned by the RKF45T program
as well as the various modes of operation.

4.2.1 The RKF45T Calling Sequence

The user supplies the following information to the integration package:

F, SUBPHI

NPHI

NEQN

TOUT

RELERR
ABSERR
IFLAG

WORK

IWORK

user-supplied subroutines (given in external reference state-
ments in the driving program) with calling sequences described
in 84.1,

the number of components of vector, PHI.

the number of components of the dependent variable, Y,

the initial value of the dependent variable, Y, dimensioned NEQN
the initial value of the independent variable,

the desired value of the independent variable upon return to the
user (in a continuous mode of operation) or the indicator for the
integration direction (and +the limiting wvalue of T in a
step-by-step mode),

an accuracy estimate for the relative error in the solution,

an accuracy estimate for the absolute error in the solution,

a flag designating the mode of operation selected (See § 4.2.2.),
a work array that masks information which is needed by the pro-
gram but which is generally not needed by the user (See Table
2.a.), and

an integer work array that masks information which is needed by

the program but which is generally not needed by the user (See
Table 2.b.).

Returned parameters are:

b

Y

IFLAG

WORK

IWORK

the current value of the independent variable (not necessarily
TOUT)

the value of the dependent variable at T
a flag designating the status of the integration,

the work array with new values which are generally not needed by
the user (See Table 2.a.), and

the integer work array with new values which are generally not
needed by the user (See Table 2.b.).

Parameters Y, T, TOUT, RELERR, ABSERR, and WORK are double precision vari-

ables.

4.2.2 RKF45T Modes of Operation

The RKF45T integration package may be operated in several modes. More specif-
ically, the integrator itself may be operated in two different ways: (1) in a
step-by-step mode, with the solution being returned to the user after each
"step, or (2) in a continuous mode, with the solution being returned to the

o 3 &

user when the integration has reached TOUT. In addition, there are several
trapping options, corresponding, in part, to the mode used in the
integration. The trapping option may be activated during the initial call to
the integrator or may be started during the solution of the ODE system.

Each mode of operation is identified by the parameter IFLAG. In the basic
integrator, IFLAG=-1 activates the step-by-step mode, while IFLAG=1 acti-
vates the continuous mode. Upon return to the user IFLAG is set equal to =2 or
+2, respectively, unless TOUT has been reached in the step-by-step mode, in
which case IFLAG=2. Similar modes of operation are available with the trap-
ping option, but with two options for both the step-by-step mode and the
continuous mode. Also, similar flags are used: (1) IFLAG=-10 or -15 for the
step-by-step mode or (2) IFLAG=10 or 15 for the continuous mode, with return
values of =20, -25, 20, and 25, respectively. (For the "late start" option
the starting flag is shifted -1 or +1, depending upon the mode used. The
shifted values are then reset to standard IFLAG values by the RKF45T package.
(See § 4.2.2.6.)) The two, step-by-step modes may return to the user before
the integration has reached TOUT, whereas the continuous modes return the
solution at TOUT (unless difficulties are encountered during the
integration.) The user should study the two continuous modes carefully.
Although each is designed to handle a different type of problem, one of the
two modes is generally sufficient to treat any problem. Both of these methods
isolate all vanishing points of PHI throughout the interval of integration,
providing communication between the software package and the user whenever a
component of PHI vanishes. (Thus, printing data, changing the PHI function,
and even changing the ODE system are possible without ever returning to the
driving program.)

4.2.2.1 Step-by-Step Mode (with Trapping Option)

The simplest mode of operation is the step-by-step mode (IFLAG=-10). This
option is also the least efficient mode and should be used only when the sol-
ution must be carefully monitored. The solution will be advanced a single
step and returned to the user. If a component of the PHI function vanishes
during the step, the solution is returned at the "trapped" point. If several
components of PHI vanish during the step, the solution is returned at the
value of T corresponding to the first PHI component to vanish. After a compo-
nent of PHI has been "trapped", an update is made in the SUBPHI routine,
giving the user an immediate opportunity to identify the component. (Also, if
several components vanish at that value of T, an update call will be made for
each component.) Although the solution is returned at the "trapped" point,
the conditions at the end of the step, TF, YF, and YPF, are stored in the WORK
array if the user should need them. (See §7.2.) If no component of PHI has
"vanished" during the step, the solution is returned at the end of the step.
If TOUT is reached, IFLAG will be reset to +2. Otherwise, IFLAG=-20, which is
the value needed for continuing the integration in this mode until TOUT is
reached. :

4.2.2.2 Trapping Step-by-Trapping Step Mode

A similar mode of operation is the trapping step-by-trapping step mode.
IFLAG=~15 activates a mode of operation, which is a combination of the
step-by-step and the continuous integration options. The integration itself
is advanced in the continuous mode, with a return to the user being activated
whenever a vanishing component of PHI has been isolated within a particular
step. Conditions and update procedures are similar to those for the

« 11 =

step-by-step mode. If TOUT is reached, IFLAG will be reset to +2. Otherwise,
.~ IFLAG=-25, which is the value needed for continuing the integration until
TOUT is reached. Values at the end of the integration step, TF, YF, YPF, are
returned in the WORK array locations. (See § 7.2.) The efficiency of the
trapping step-by-trapping step mode decreases with the increasing number of
returns to the user, due, in part, to the overhead involved in referencing
the integration subroutines. The user should investigate the possibilities
of using a fully continuous mode before selecting the trapping
step-by-trapping step mode.

4.2.2.3 Single Trapping Mode (Continuous)

The single trap mode of operation isolates each vanishing value of PHT,
advancing the solution from the most recently trapped point. If several com-
ponents vanish at a specific value of T, all components are identified, each
in a separate update call to SUBPHI. Should several components of the PHI
vector vanish within a given step, but at different values of T, this mode of
operation will isolate the first vanishing point and continue the integration
from that point. The further vanishing values will be isolated on subsequent
steps. This mode of operation permits update in both the PHI function and the
differential equation system. Because the ODE may be updated, however, the
PHI vector (and its zero points) may also change after the trapped point,
Thus, the integration and PHI function analysis must be started again at the
trapped point.

4.2.2.4 Multiple Trapping Mode (Continuous)

The second form of continuous integration, the multiple trap option, searches
for all vanishing values of PHI throughout a given step and then advances the
solution from the end of the step taken. The multiple trap option does not
allow updates in the differential equation system, but does permit updates in
the PHI function itself. If an update in the PHI function occurs, however,
further vanishing values of PHI are sought only between the last trapped
point and the end of the step. (If the newly introduced PHI function vanishes
over a previously studied region, these values are not considered to be
applicable to the problem. Otherwise, the new PHI function should have been
analyzed as that region was being studied.) This mode of operation is ideal-
ly suited to treat dense output at specified increments of the independent
variable, because the requested output point may be shifted forward at each
update of that PHI component, allowing all points to be isolated throughout
the step with no further derivative evaluation expense. (See example 1, §10.)

4.2.2.5 Combination Trapping Mode (Continuous)

The multiple trap mode may be used in conjunction with the single trap mode.
This combination option is actually a multiple trap mode which stops locating
additional zeros within a given step once a PHI component, designated as a
single trap component, is isolated. The PHI vector is partitioned, with the
first M components being analyzed in the multiple trap manner and the remain-
ing NPHI-M components, in the single trap manner. Properties of each option
apply to their corresponding PHI components.

The combination option is activated using the same IFLAG values as in the
multiple trapping option. The information for designating the combination
option (as opposed to the normal multiple trapping option) occurs in subrou-=

...12...

tine SUBPHI. (This rather indirect means of activating the option helps
avoid further deviations from the standard RKF45 calling sequence, and per-
mits users of the standard continuous options to ignore the mode completely.)
The user must partition the PHI vector so that the first M components are
those which will be analyzed in the multiple trapping sense. The limit M is
conveyed by the user through the parameter INDEX on the first call to SUBPHI
(at which time KOUNTR=0). Failure to supply an initial INDEX (when IFLAG=15)
simply applies the multiple trap mode to the entire vector, i.e., the default
value in RKF45T is NPHI. (Once information from INDEX is obtained on the ini-
tial call to SUBPHI, INDEX is reset (to zero) in RKFST, and user changes to
the parameter no longer affect the RKF45T package.) Activating the combina-
tion mode is most easily described by example. (See example 2, §10.)

4.2.2.6 The Late Start Option

The user may choose to advance the ODE solution for some time before activat-
ing the trapping option. Rather than reinitializing the entire integration,
the user may select IFLAG so that only the section of the program needed to
activate the trapping option is set. The standard trapping options are still
available, but the IFLAG designation is IFLAG=-16,-11,11,16, corresponding
to the options IFLAG=-15,-10,10,15, respectively. During the initialization,
IFLAG is reset to its appropriate value. Since the options are the same, the
"late start" is not considered to be an actual mode of operation and so is not
generally mentioned with the other options throughout this report.

5. GENERAL PROCEDURE IN SUBROUTINE TRAPPD

Subroutine TRAPPD handles the major part of the analysis of the vector func-
tion PHI once any component of PHI experiences a sign change over a given
step or vanishes at the end of a step. To simplify the analysis in TRAPPD, a
number of subroutines are referenced to perform basic tasks such as selecting
the new zero estimate point or shifting indices. In addition, several funda-
mental routines are referenced, namely, PANIC, SCALED, and VANISH, to treat
particular important conditions which may arise. TRAPPD, then, may be consid-
ered as the final judge concerning the success of the search.

TRAPPD attempts to locate the zeros of the PHI components which have changed
sign over the integration step or which have vanished at the end of the step
(within the specified tolerance). Since several components of PHI may have
changed sign over a given step, INDEX indicates that particular component
(having experienced a sign change) which has the largest magnitude at the
most recently analyzed point across the boundary. INDEX may be shifted
between components as the trapping procedure continues, assuring that the
component which most strongly violates the sign change restriction is being
trapped. Thus, the zeros of the PHI components are isolated in order in the
direction of integratiom.

- 13 =
5.1 PHI Vanishes at TF

Several situations may exist upon entry into TRAPPD. The simplest conditions
to analyze occurs when PHI(INDEX) has 'vanished" at TF, i.e., when
|PHIF(INDEX) | is less than the prescribed tolerance. The integrator has man-
aged to step on a zero of at least one component of PHI, and no trapping iter-
ation is necessary. An update is made for PHI(INDEX) and for any other PHI
component which may also have vanished, and the analysis is returned to the
RKFST routine. (If another component of PHI had changed signs during the
integration step, but had failed to vanish at TF, INDEX would have designated
that component. Thus, if |PHIF(INDEX)| < tolerance, several components may
have vanished at TF, but none should have vanished between T and TF.)

5.2 The Trapping lteration

The detailed analysis in TRAPPD occurs when at least one component of PHI has
changed sign and has not yet vanished. If several zeros occur within the
step, the INDEX parameter will be shifted automatically until the first van-
ishing component is isolated. The trapping portion of the subroutine esti-
mates the vanishing point, T¥*, calls SCALED to evaluate the solution at T¥,
shifts INDEX if another component, having experienced a sign change, is of
greater magnitude, and continues '"trapping" until convergence is achieved.
The analysis is then shifted to the update section of the routine, where the
user is given the opportunity to update the PHI function, the solution, or
the differential equations, depending upon the mode of operation designated
by the user.

5.3 The Update of PHI Components

Once the first vanishing component of PHI has been isolated, the analysis
shifts to the update section during which SUBPHI is referenced, giving the
user a chance to update conditions without returning to the driving program.
Before the user has access to the situation, however, TRAPPD sets certain
flags and analyzes the PHI function to inform the user of possible difficul-
ties. (See § 6.5.) A separate update call is made to SUBPHI for each
component of the PHI vector which has vanished at the current value of T¥,
with the parameter INDEX indicating the component of PHI being updated.

5.4 Trapping Additional Values within a Given Step

If the multiple trapping mode of operation is used, all vanishing values of
PHI within a given step are isolated. Once the first vanishing component of
PHI is trapped and updated, the PHI vector is reevaluated at TF (to assure
correct values, since PHI may have been updated). Then L.he PHI vector is ana-
lyzed to see if any components have changed sign between the trapped point
and TF. If additional components need analyzing, the trapping iteration is
repeated. ,

- & =

If a combination of the multiple and single trapping modes is used, further
vanishing points are sought until a zero of a PHI component corresponding to
the single trap mode is isolated. The integration will then be continued
from this zero point.

6. DETAILS OF SUBROUTINE TRAPPD

The analysis in subroutine TRAPPD is handled in several blocks, with addi-
tional subroutines being referenced to treat special problems which may
arise. TRAPPD is referenced whenever a component of PHI has either changed
sign over an integration.step or vanished within the specified tolerance at
the end of the step, i.e., at TF. If several components of PHI have vanished
at TF or changed sign over a given step, the parameter INDEX designates the
component from this set, having the largest magnitude at TF. All decisions
for estimating the first vanishing point for the PHI components will be made
using PHI(INDEX). As the trapping iteration continues, however, INDEX may be
switched between components as the values of PHI across the boundary change,
assuring that the component which most strongly violates the sign change cri-
terion is being trapped. Trapped and related subroutines are listed in
Appendix A. .

6.1 The Initialization Block for TRAPPD

The initialization part of TRAPPD contains two safety features: (1) the
"bouncing' analysis, and (2) the PANIC option. In addition, a standard print-
ing option is available, although the option should generally be activated
only if the PHI analysis encounters difficulties. The initialization block
labels the PHI components and sets other parameters used internally by the
trapping analysis.

The user may need to understand the labeling of the points used in the trap-
ping analysis. Bracketing values of T for locating T (the predicted value at
which PHI(INDEX) will vanish) are established in RKFST and points are labeled
before entry into TRAPPD. TRAPPD then reduces the bracketing interval until
the zero point is isolated. PHI and PHIP vectors are associated with each
labeled point. The solution, however, is stored only at T, TF, and T2 (where
T2 is the current estimate of T*). The initial conditions are labeled "L",
the final conditions, "R". (If the emergency analysis has been used in
RKF45T, "L" and "R" are end points of a substep of the integration step
length, h. Otherwise, "L" conditions are those at "0", and "R" conditions are
those at "F".) T* estimates are labeled "2" with the initial "2" values
being those at "L". (See Figure 2.)

Subroutine BOUNCE is referenced upon entry into TRAPPD in order to see if any
component of PHI has been labeled improperly. The idea of a "bouncing'" PHI
component, i.e., a component which does not change sign as it passes through
zero, 1is detrimental to the analysis in TRAPPD (and in general, the only
means of detecting such a zero is to step on it). If such a zero has been
isolated, however, an incorrect sign may have been imposed by TRAPPD, and a
correction is in order. (The detection of a bouncing PHI function is not as

Point labeling:
initially Iy 2 : ‘ 2 R

During 1st : . : . g
iteration L 2 : : R

During 2nd ; - 4 :
iteration L . 2 R

During 3rd " , .
iteration L 2 R

End points
for 4th = . .
iteration L R

Figure 2. Point labelling during trapping iteration. "L" denotes'left end
point, "R", right end point, and "2", the current estimate of T¥,
the vanishing point.

far-fetched as one might think, particularly in analyzing constraint

equations in which the solution stays within a narrow band about the con-

straint for a while and then diverges.) The bouncing analysis is protection
which requires little computing time and whigh is necessary for some of the
proposed applications of RKF45T. The problem of "bouncing' PHI functions and

the BOUNCE analysis is described thoroughly in §9.9.

An emergency feature, PANIC, is also available in the initialization block of
TRAPPD (if no PANIC feature is active in RKFST). This feature is not recom-
mended for general use. The user may reference PANIC to print information
about PHI throughout the integration step. This emergency option is difficult
to activate (intentionally) because of the amount of additional computing
time required. If major difficulties occur during the trapping procedure,
e.g., if the maximum number of derivative evaluations is exceeded, TRAPPD
references PANIC itself in order to print out PHI values throughout the step
before terminating the analysis. Means of activating the PANIC option are
given in §§ 8.5, 9.2.2, and 9.3.)

s 16 w
6.2 Determining the Trapping Status of PHI

Upon entry into TRAPPD, the current status of the PHI components must be
checked. Since several components may have changed sign over the interval or
vanished at TF, the parameter INDEX indicates the component of PHI which most
strongly violates the convergence criteria for the vector. Thus, if
PHI(INDEX) satisfies the convergence criterion at TF, the components of PHI
have failed to change sign over the integration step or have vanished (within
the prescribed tolerance) at TF. In this case, the trapping iteration is not
activated. Instead an immediate update in PHI is possible. An additional saf-
ety check concerning the PHI vector is made. If PHI(INDEX) has changed signs
(without vanishing at TF), the trapping option is activated. If PHI(INDEX)
has neither changed sign nor vanished at TF, an error has occurred in the
analysis in SETRAP, and TRAPPD should not have been referenced. In this case
a warning message is printed, and the program is terminated.

6.3 Choosing the Iteration Step Size

The trapping routine must estimate the wvalue of T* for which PHI (INDEX) will
vanish. The ideal situation is to have a sufficiently smooth PHI function
over the current bounds (T, TF), so that a Newton-Rhapson iteration may be
used. In practice, however, one must take certain precautionary measures.
Possible choices of the T* estimate are:

1. Newton-Rhapson (or secant method if derivaltive approximations are used)
2. False-Position, or
3. Half-Interval

The Newton-Rhapson estimate will be chosen as long as the estimated value of
T# remains within the trapping bounds. If this value of T% does violate the
trapping bounds, the false-position estimate will be used to give the iter-
ation a "kick" and hopefully to move the trapping bounds out of the problem
area. (See Figure 3.)

The Newton-Rhapson estimate needs further discussion. The user is asked to
provide derivative values of PHI (or derivative estimates) in the calling
sequence of SUBPHI. To "deactivate" the Newton-Rhapson estimate, the PHIP
values may be set to zero. TRAPPD will then reset them to the unit round-off
value which will give an invalid Newton estimate. If the PHIP values are dif-
ficult to generate, secant values may be determined easily in SUBPHI by
merely using the PHI values before and after the current PHI evaluation, giv-
ing a reasonable derivative estimate and requiring the storage of only the T
value from the previous step. (See example 2, §10.)

The Newton-Rhapson estimate is initially generated from the end point at
which |PHI(INDEX)| is smaller, unless PHI(INDEX) vanishes at T, in which case
the "R" bound, i.e., TF, is used. During the iteration, the Newton estimate
is made from the previous T# point (unless T* has not yet moved outside of the
"vanished region" about TL.)

An initially vanishing PHI(INDEX) can occur if the component has vanished on
the previous step and changes sign over the current step. Because PHI(INDEX)

- 17 -

is near zero at "TL" (within the prescribed tolerance), the false position
estimate will remain close to TL, thus necessitating the half interval esti-
mate if the Newton-Rhapson value is unacceptable or repeats a previous T#*
value. (See Figure 3.)

CEjVMNewtoﬁ;Rhapsbn esfimate,i (b) Newtoh;RhApson estimate,

TNR, starting from TL TNR, starting from TR
(unacceptable). Switch to
False-Position

(¢c) ¢ vanishes at TL. If the false-position estimate, TFP, is
unacceptable, use Newton-Rhapson estimate, TNR, starting from TR
or half interval estimate, THI.

Figure 3. T¥* estimates for the vanishing point of & = PHI(INDEX) TNR =
Newton-Rhapson estimate, TF = False-postion estimate, and THI =
Half-interval estimate.

The selected T# value determines the iteration interval, (T, T¥%) which must
be larger than TBOUND*TAVG, where TBOUND is related to the machine precision,
and where TAVG is an average magnitude of T. If the interval is too small,
IFLAG is set equal to 97, the iteration is halted, and the subroutine PANIC
will be referenced to print out values of PHI and T throughout the interval
before the program is returned to the user. The values of T, Y, and YP will be
set to conditions at TL, the last point analyzed for which PHI(INDEX) did not
change sign over the interval. If the integration interval is of acceptable
length, the iteration proceeds by calling subroutine SCALED to generate the
scaled solution at T¥*.

- 18 =

6.4 INDEX Shift

Once subroutine SCALED has determined the solution at T¥%, the most recent
iteration point, the PHI vector must be analyzed to assure that INDEX indi-
cates that component which most strongly violates the convergence criteria.
The only possiblilty of a shift in INDEX occurs when multiple components of
PHI experience a sign change over the interval (TL, T#*). (See Figure 4.)

If several components do change sign over the (TL,T*) interval, INDEX desig-
nates the component of that set having the largest magnitude at T®. If INDEX

has been shifted, iteration parameters are reset and the convergence test is
made.

®4

2

@3 N

Iteration : 0 1 2 3 4

INDEX: 1 2 3 3 2

Figure 4. Changes in parameter INDEX. Decisions for chosing T* are based on
the characteristics of PHI(INDEX). (In this example, T% values
are selected for illustrative purposes and not by a
Newton-Rhapson or false-position procedure.)

6.5 The Update of PHI Components

Once the first vanishing component of PHI has been isolated, the analysis
shifts to the update section during which SUBPHI is referenced, giving the
user a chance to update conditions without returning to the driving program.
Before the user has access to the situation, however, TRAPPD sets certain
flags and analyzes the PHI function to inform the user of possible difficul-
ties. TRAPPD references VANISH to determine whether or not the solution has
vanished throughout the entire integration step. (See §8.3.) Then, TRAPPD
references SUBPHI for each component of PHI which has vanished, passing
important information to the user through the parameters UPDATE, INDEX, IVAN,
and KOUNTR. During the updating portion (UPDATE=.TRUE.), UPDATE indicates

- 19 =

that TRAPPD is in its updating mode, while INDEX=J, indicates that PHI(J) has
vanished within the prescribed tolerance (with separate calls to SUBPHI for
each PHI(J) which has vanished). The logical parameter, IVAN, is included to
avoid possible confusion in iterpreting the updating procedure (particularly
if PHI or the differential equations system is being altered). During a given
integration step, a particular PHI component may have vanished throughout the
entire step. IVAN=.TRUE. informs the user that PHI(INDEX) has vanished
throughout the entire step. IVAN=.FALSE. informs the user that PHI(INDEX) has
passed out of any '"vanished" region during the integration step. The addi-
tional term, KOUNTR, is a counting parameter. For the first call to SUBPHI
(during the intialization process), KOUNTR=0, giving the user a flag for set-
ting any dinitialization parameters mneeded in evaluating terms in the
user-supplied subroutine SUBPHI. Each time a zero of a PHI component has been
isolated, KOUNTR is incremented by unity before the update call to SUBPHI. If
several components of PHI vanish at one value of T, KOUNTR will be incre-
mented as each component is updated. These four parameters are included to
aid the user, who may change them without affecting the RKF45T system.

The PHI component being updated will be treated as if it were passing through
zero (with an artificially imposed sign if necessary.) If the component
actually bounces on a zero (and the user does not correct the sign error, the
analysis will continue with the incorrect sign. The sign correction will
occur on a subsequent step due to the analysis in subroutine BOUNCD, and the
user will be given the opportunity to repeat the step if the incorrect sign
has caused computational difficulties. The "bouncing' analysis is described
thoroughly in §9.9.

7. THE RKF45T SYSTEM COMMUNICATION WITH THE USER

While a general overview of the RKF45T package is needed to understand the
basic workings of the program and to analyze any difficulties arising during
the solution, another view of the software package is equally important,
namely, the '"black box" view. The communication between the user and the
RKF45T system occurs through the calling sequence of both the RKF45T and the
SUBPHI subroutines. Parameters are included which inform the user of the gen-
eral progress of the integration or trapping, as well as of the occurrence of
possible difficulties. Thus, both calling sequences must be carefully stu-
died, so that the user can take full advantage of the information at hand.

7.1 User Input into RKF45T

The parameters for the RKF45T calling sequence are described in §4.2.1, and,
along with the description of the modes of operation (84.2.2), define the
input required to solve the ODE. Briefly, the first two parameters, F and
SUBPHI, define the functions to be analyzed during the solution of the ODE
system, with the next two parameters, NPHI and NEQN, defining the dimensions
of the system. The remaining parameters necessary for defining the initial
value problem, Y and T (the initial values of the dependent variables and the
independent variable, respectively), are listed next, with TOUT designating
both the direction of the integration and the final value of T requested. The

- 20 =

relative and absolute precision estimate of the integration is requested
through RELERR and ABSERR, respectively. IFLAG, which designates the mode of
operation of the integrator, is described in §4.2.2. The WORK and IWORK
arrays store parameters needed by the RKF45T system, the partitioning of WORK
being given in Table 2.a and that of IWORK, in Table 2.b.

7.2 Information Returned through the RKF45T Calling Sequence

The RKF45T calling sequence returns the solution, Y, at the current value of
the independent variable, T. In addition, YP, the derivative of Y, is also
available at T, but is stored in WORK array locations, 1 through NEQN. Thus,
as the solution is advanced, the initial values of T, Y, and YP are updated,
so that T, Y, and YP always correspond to the current point, regardless of
the condition of the integration. The parameter IFLAG informs the user of the
success, temporary suspension, or failure of the integration and should be
carefully monitored. Values of IFLAG, returned to the user, are listed in
Table 1, along with a description of the difficulties encountered. (These
values are also found in the program listing.)

The goal of the RKF45T integrator is to reach TOUT. Unless IFLAG indicates an
error, this goal is achieved in the continuous integration mode, as well as
in the continuous trapping modes. The step-by-step mode (both with and with-
out the trapping option) and the trapping step-by-trapping step mode,
however, may return the solution at any intermediate point even though the
integration is proceeding normally. Thus, for the step-by-step mode IFLAG is
set equal to 2 when TOUT is achieved. If the user wishes to continue the inte-
gration in the original mode, IFLAG must be set equal to -2, =-20, or =25,
respectively.

If the user sets RELERR too small (though still positive), RKFST resets the
parameter to a minimum acceptable value and returns this value to the driving
program with a warning IFLAG=3. The integration will proceed as long as the
user does not change RELERR to a smaller number, and IFLAG will be reset
automatically in RKFST. If the user fails to supply a convergence tolerance
for PHI or if he supplies an unacceptable value, the integration tolerance
will be used (i.e., tolerance=DMAX1{RELERR, ABSERR}).

Changes in IFLAG should be monitored to determine the current status of the
integration. The user should not blindly accept the values of T, Y, and YP as
being the conditions at TOUT (or as being an acceptable solution at T). Val-
unes of IFLAG returned by RKF45T are listed in Table 1, along with the value of
T, (to which Y and YP correspond).

The parameters stored in the WORK and IWORK arrays are also changed during
the solution of the problem. The location of these parameters is listed in
Tables 2.a and 2.b. Of greatest importance to the user are the storage
locations of

- 21 -

Parameter: Location:
YP, the derivative of ¥ at T) 1, ..., NEQN
H, the predicted step length for the subseqg- NEQN + 1
quent step
TE; the value of T at the end of the previous 10 NEQN + 2

step (the trapping option may have halted
the integration between T and TF)

YF, the value of Y at TF 10 NEQN + 3
through
11 NEQN + 2

YPF, the value of YP at TF 11 NEQN + 3
through
12 NEQN + 2

7.3 Communication through the SUBPHI Calling Sequence

The calling sequence fer subroutine SUBPHI provides a great deal of informa-
tion for the user's benefit, particularly during the update portion of the
program. The user is required to provide the PHI and PHIP values. (If PHIP
expressions are not known, estimates or zero values are acceptable, where a
zero value will activate a false position estimate in the trapping routine.)
The remaining parameters in the calling sequence have been included for the
user's benefit and are not needed by the RKF45T system. The user is not
required to respond to any parameter in the calling sequence, other than by
supplying the PHI and PHIP values.

7.3.1 |Initialization of the Trapping Option

If the trapping feature of the RKF45T package is being used, an initializa-
tion call is made to SUBPHI before the first integration step is made. This
initialization call is identified by the parameter KOUNTR, KOUNTR=0. The user
may wish to convey certain information to the RKF45T package during this
initial call to SUBPHI. (Default values of parameters needed by RKF45T have
already been set so that the system will attempt to solve the problem, but
the nature of the PHI function may require special treatment for an effective
solution.) Upon return to the RKFST system, KOUNTR is incremented by unity.
Thus, the user may include an initialization block within SUBPHI, using
KOUNTR=0 as the designating flag. (KOUNTR will remain greater than zero
unless the integration is reinitialized, unless the bouncing analysis gives a
warning through KOUNTR, or unless the user tampers with the value.)

7.3.1.1 User Requested Tolerances
The convergence of the trapping iteration may not need to be as precise as

the integration accuracy. (In fact, for certain classes of PHI functions,
integration accuracy may not be attainable.) Thus, the user may want to spe-

- 22 =

cify a relative error and/or absolute error tolerance for the PHI components.
This separate error tolerance, ABSER, may be set during the initial call to
SUBPHI with the default value (or with an unacceptable value) being set equal
to the requested integration tolerance, DMAX1(RELERR,ABSERR). The parameters
are then protected on further calls to SUBPHI so that changes by the user
will not affect their values in the RKF45T system. If a relative error con-
vergence is appropriate, the user should scale the PHI values by suitable
factors.

7.3.1.2 Initialization of the Combination (Multiple and Single Trap) Option

The user may wish to activate the combination trapping mode (84.2.2.5) which
uses the multiple trapping mode for PHI(J), J £ M, and the single trapping
mode for PHI(M+1), ..., PHI(NPHI). The combination trapping mode (which is a
special form of the multiple trapping mode), is activated with the same IFLAG
as the multiple trapping mode (IFLAG=15). During the initial call to SUBPHI
(KOUNTR=0), the user simply resets INDEX, INDEX=M. Failure to identify the
partitioning value M or failure to supply an acceptable value of M applies
the multiple trapping option to the entire vector, i.e., the default value is
NPHI. (Changes to INDEX affect RKF45T only at the initial call to SUBPHI.
Otherwise, the parameter is protected in the program and is used merely to
inform the user of the current value of PHI being analyzed in TRAPPD or being
updated after a successful trap.)

»

7.3.2 Update Calls to SUBPHI

Once the trapping option has isolated a vanishing value of PHI, an update
call is made to SUBPHI so that the user may make any adjustments desired. The
logical parameter UPDATE=.TRUE., identifies the update mode while the param-
eter INDEX designates the component of PHI currently being updated. If
several components of PHI have vanished at a given value of T, an update call
will be made for each vanishing component. KOUNTR is incremented by unity
after each update call and designates the number of vanishing points of PHI
isolated during the integration (unless the user has tampered with the
values). KOUNTR is provided solely for the user's information and may be
adjusted freely without affecting the RKF45T package. If users wish to ignore
the updating feature, they should simply activate an immediate return to
TRAPPD whenever UPDATE=.TRUE.

TRAPPD assumes that PHI will change sign as it passes through zero. There-
fore, if PHI(INDEX) has vanished within the specified tolerance but has not
"stepped over" the zero point into the adjacent area, a sign change in PHI
will be imposed artificially. If the integration step size is so small that
the subsequent step has also failed to cross over the zero point, subroutine
VANISH will detect the condition and the sign of PHI will reflect conditions
at the begining of the step. (See Figure 5 and §9.5.) If updates are being
made in the PHI function or in the differential equations, the user may wish
to monitor IVAN so that the system is not updated twice in the same vanishing
region. If the user changes the value of PHI at update, the user-supplied
sign will be kept.

If a "bouncing" PHI component has disturbed the trapping analysis, an update
call is made to SUBPHI indicating a corrected sign for PHI(INDEX). In this
update case (and in no other case), BOUNCE=.TRUE.. The use may request that

- 23 -

q:z/ 7/
D3 L . e n
_(<]
_/’f /——--""-1 *

— e

Figure 5. The sign of PHI(INDEX) at update. PHI(1) has crossed the boundary
into the "new" region. PHI(2) has not yet crossed the boundary.
Therefore an "artificial" sign change must be imposed. PHI(3) has
vanished throughout the entire step.

the step be repeated by adjusting KOUNTR. Details of the "bouncing" analysis
and update are given in §9.9.

8. RKFST AND AUXILIARY SUBROUTINES FOR THE TRAPPD SYSTEM

While subroutine TRAPPD performs the majority of the analysis concerning the
PHI vector, several additional subroutines are referenced to treat partic-
ular situations. In addition, RKFST handles some of the PHI vector analysis
before switching into the TRAPPD system. Subroutine SCALED evaluates the sca-
led solution at each point requested by TRAPPD, while VANISH studies the sol-
ution throughout the interval during the updating portion of TRAPPD. PANIC is
an emergency routine referenced by the RKFST system if TRAPPD is unable to
isolate a vanishing component of PHI.

8.1 Subroutine RKFST

The structure of RKFST is basically that of RKFS in the RKF45 package. Cer-
tain changes have been made to analyze the PHI vector before switching the
analysis to TRAPPD, but these changes have been inserted in two major blocks
so as to affect the RKFST structure as little as possible. Any additional
changes involve recognizing flags for the trapping option and are minor in
nature. If the trapping option is not activated, an internal flag, LFLAG=0)
skirts the PHI vector analysis with only minor flag indicators being checked
during the integration.

= 94 =

In the initialization block in RKFST, a section has been inserted to evaluate
the PHI vector and to set the parameters needed by the trapping options. This
section can be activated separately from the initialization process for the
integration, making the "late start" possible without restarting the entire
integration. (This basically avoids reevaluating the estimated starting val-
ue for the step size, which, in theory, is less accurate than the step size
predicted after a successful integration step.)

The second large "block" inserted into the integration analysis is actually a
subroutine call to SETRAP. All additional analysis of the PHI vector, occur-
ring before TRAPPD is referenced, occurs in SETRAP. After the PHI function is
evaluated at the end of the step (in SETRAP), the analysis will be shifted
into the TRAPPD system if any component has changed sign over the step or has
vanished at the end of the step. Otherwise, the analysis returns to RKFST to
continue the integration. (The condition in which a PHI component vanishes at
the beginning of the first integration step is handled in this block instead
of in the initialization block since the analysis requires information within
the first step rather than just at the beginning of the step. The listing for
RKF45T and SETRAP is found in Appendix A.

8.2 Subroutines TRAPPD, SHIFTI, TSTAR, MULTOP, and BOUNCD

Subroutine TRAPPD organizes the search for the zeros of the PHI components.
To streamline the analysis in TRAPPD, several auxiliary subroutines are ref-
erenced to perform such tasks as selecting the T* values, i.e., the vanishing
point estimates, switching INDEX wvalues, etc. TRAPPD itself has been
described thoroughly in 6. The additional subroutines used in the analysis in
TRAPPD include: SHIFTI, TSTAR, MULTOP, and BOUNCD. SHIFTI checks to see if
TRAPPD should switch to a new PHI component in the zero search, i.e., SHIFTI
checks to see if a new PHI component more strongly violates the boundary con-
ditions than PHI(INDEX). (Index shifting is described in 6.4.) TSTAR uses
the approach given in §6.3 to select the new T* value, the estimate of the
vanishing point of PHI(INDEX). MULTOP is referenced if the multiple trapping
(or combination trapping) option is in use to see if additional zeros lie
between the just isolated zero and TF. BOUNCD is referenced at the beginning
of each TRAPPD call to see if PHI actually "bounced" on the previously iso-
lated zero point rather than passing through zero. (The problem of a bouncing
PHI component is discussed in §9.9.)

8.3 Subroutine SCALED

Subroutine SCALED is referenced to perform two tasks, with ISCALE being the
designating parameter. For ISCALE=1, SCALED generates the additional deriva-
tive evaluations needed to form the scaled solution. For ISCALE=2, SCALED
evaluates the actual scaled solution. Since scaled solutions of orders four
and five are available, the wuser must set the logical parameter,
FIFTH=.FALSE. to form the fourth order solution or FIFTH=.TRUE. to form the
fifth order solution. (See Table 3.) The procedure followed by SCALED is
essentially the same for both the fourth and fifth order solutions, although
the F2, ..., F10 vectors, which are, in part, storage parameters, may be
labeled differently. SCALED is listed in Appendix A.

- DB -
8.4 Subroutine VANISH

The convergence criteria imposed upon the vector PHI actually defines a
region in which that component is said to vanish, i.e., there exists an
interval over which the PHI component satisfies the convergence criteria.
Thus, if a vanishing component of PHI is isolated on one step and that same
component vanishes on the subsequent step, the user does not know whether or
not the solution remained within the vanished region or whether the solution
has passed out of the vanished region and "stepped on another zero". Such
information may be important to the user, partlcularly if the PHI vector or
ODE system is being updated. (See Figure 6.) —

- 5 T
. / \ b
1

Figure 6. Two types of PHI components vanishing at the beginning and end of
a given step. PHI(1) vanishes at both end points of the step but
not throughout the entire step, while PHI(2) '"vanishes"
everywhere within the step. Two distinct zeros of PHI(1) have
been located, while a 'convergence neighborhood" of PHI(2) has
been found. At update of PHI(2), IVAN=.TRUE. to indicate that the
subroutine has "vanished" throughout the step.

The updating procedure in TRAPPD begins by referencing VANISH. If no compo-
nent has vanished both initially and finally, the analysis is returned to
TRAPPD to continue the update. Otherwise, each component which has vanished
initially and finally is studied to see if it has also vanished throughout
the entire trapping interval. If the multiple trapping option is being used,
the initial value of T for the trapping bound is the most recent value iso-
lated by TRAPPD. Otherwise, the initial wvalue for T corresponds to the
beginning of the integration step. The other trapping bound is the current
"vanishing point'" isolated by the TRAPPD routine, i.e., T2 if the trapping
iteration has been used, or TF if the integrator 'stepped on a zero" and no
trapping was necessary. Three equally spaced subdivisions are used as the
mesh to test for "total" vanishing, although this number may be increased by
the user if desired. (See Table 3.)

_26-

Subroutine VANISH is also referenced in a special mode if a PHI component has
vanished during the initialization of the integration problem. The sign of
the PHI component needs to be set properly for trapping identification. The
user, however, may not be able to set the initial PHI values correctly.
Round-off from a zero value or an incorrect sign on zero (+0 or -0) could
result in an improper interpretation of trapping conditions. Thus, VANISH is
referenced by SETRAP, and the sign of the vanishing component at the initial
condition is set equal to the sign of the component at the first nonvanishing
substep generated in VANISH or at TF if the solution vanished throughout the
entire step. An update call to SUBPHI is then made from RKFST with the cor-
rected sign for component PHI(INDEX). The user may change PHI(INDEX) during
this update call, and RKF45T will make no further changes to the updated com-
ponent.

8.5 Subroutine PANIC

An emergency routine is provided to study the PHI vector throughout the inte-
gration step, including output of T, Y, YP, PHI, and PHIP. PANIC is refer-
enced by the RKF45T system if subroutine TRAPPD fails to isolate a zero of
the PHI function once conditions have indicated. that a PHI component has
changed signs over an integration step. (Exceeding the maximum limit on iter-
ations and reducing the trapping bounds below an acceptable limit are the two
errors which cause PANIC to be referenced by RKF45T.) The user may also
activate the PANIC option, but, in general, the use of the subroutine is not
recommended and is deliberately awkward to start. Subroutine PANIC is listed
in Appendix A. ~

The user may activate PANIC in two ways. If a user wishes to monitor PHI when-
ever the analysis shifts into subroutine TRAPPD, the logical parameter, NOT-
FAL, which is normally set equal to .FALSE. in a data statement in TRAPPD
must be reset to equal .TRUE.. With this change, PANIC will be referenced
each time the analysis switches to subroutine TRAPPD, i.e., each time RKFST
detects that a PHI component has changed sign over the interval or that a PHI
component has vanished at the end of the integration step. The PANIC subrou-
tine will print the wvalues of T, Y, YP, PHI, and PHIP at ten equally spaced
points throughout the integration step including at TF. (The density of out-
put spacing may be adjusted by the user by changing the parameters POINTS
and NPOINT (double precision and integer values). (See comment cards in the
program listing of PANIC). The conditions at TF generated by the defining RK
algorithm are then printed, since the scaled solution (either of fourth or
fifth order accuracy) is not identical to the solution given by the defining
formula and so may give slightly different PHI values.

The second means of activating PANIC analyzes the PHI function over each
integration step, although the printing option may be suppressed. Such a mode
of operation may be of importance if the user fears that the PHI function is
oscillating frequently during the integration. "Frequently" is a relative
term, which is actually defined in terms of the integration step size. (See
example 5, §10.) This PANIC mode is activated in SETRAP through the use of
the logical parameter, NOTFAL. (NOTFAL in SETRAP and TRAPPD are different
parameters and are neither held in common nor passed between subroutines in
the calling sequence. If PANIC is referenced through SETRAP, it will not be
referenced in TRAPPD, regardless of the value of NOTFAL. (See §§9.2.2 and
9.3, and the PANIC listing in Appendix A.) If NOTFAL is reset to equal
*.TRUE., SETRAP will reference PANIC after each successful integration step. A

- 27 =

mesh refinement will be made in PANIC (normally set to ten subintervals), and
the PHI vector will be studied at each point, in sequence, from T to TF. Any
sign change over a subinterval will activate an immediate return to RKFST and
TRAPPD with T and the bracketing subinterval value as limits for the trapping
iteratiom.

A warning is in order. If the multiple trap option (§4.2.2.4) is used, fur-
ther vanishing points will be sought between any isolated zero and TF. Thus,
the thorough search of the PANIC option may be "washed over" by the TRAPPD
routine searching for additional roots. Thus, the multiple trapping option
will be reset to a single trap option if the emergency feature is used in
RKFST. To reiterate, the panic options are emergency options and should be
used only as such. A warning message will be printed on the initial call to
PANIC to inform the user that an emergency procedure is being activated.

8.6 Subroutine FLAGCK

The parameter IFLAG designates the mode of operation of the RKF45T package.
The number of available options in RKF45T has been increased from that of the
RKF45 with IFLAG designating both the integration and the trapping mode. In
RKFST, however, IFLAG needs to direct only the integration decisions with the
trapping option decisions made in subroutine TRAPPD. FLAGCK is again refer-
enced to reset IFLAG to a standard value for integration with a second flag,
LFLAG, being set to identify the trapping option. (LFLAG=0 implies no trap-
ping option, while LFLAG=-1, -2, 1, 2, identifies the step-by-step trapping
mode, the trapping step-by-trapping step mode, the single trapping mode, and
the multiple (or combination) trapping mode, respectively. FLAGCK is refer-
enced before a return to the user. If a non-trapping mode has been used, no
changes are made to IFLAG. If a trapping mode has been used, IFLAG will be
reset to indicate that the trapping mode is in effect. If difficulties have
been encountered, IFLAG will not be reset and will serve as a warning to the
user.

8.7 Subroutine OUTFLG

The IFLAG parameter should be carefully monitored since any change from a
standard value indicates that difficulties have been encountered during the
integration or during the trapping iteration. Some values of IFLAG will
cause the program to terminate if the user fails to respond to the designated
problem. Other values serve as minor warnings to the user. Subroutine OUTFLG
will print a warning message, identifying the possible cause of the difficul-
ties. These messages are available in the program listing. OUTFLG is
provided simply to help the user recognize possible difficulties quickly (and
without having to monitor IFLAG in the driving routine). If IFLAG is an
appropriate value for continuing, no message is printed. OUTFLG is activated
by setting the logical parameter, FLGOUT=.TRUE. in subroutine RKF45T. The
RKF45T package has been modified so that any terminal error gives a printed
warning (with IFLAG value) before the program is stopped.

9. SPECIAL FEATURES, SPECIAL PROBLEMS

Although the analysis of the wuser-supplied PHI vector is, in theory,
straightforward, the actual iteration process may encounter difficulties due
to the nature of the PHI function. To demand that the user supply a "suffi-
ciently smooth" PHI vector is a restriction that will often be ignored. To
protect the iteration process from all "insufficiently smooth" PHI compo-
nents, however, is impossible. Thus, a compromise must be reached.

An attempt has been made to provide the user with sufficient options to cover
a wide range of applications of user-supplied stopping conditions, handling
the additional analysis in an efficient manner while still including a good
number of safety features. If the user suspects that certain difficulties may
arise, he may include special emergency options in the analysis. Because
these emergency features may reduce the efficiency of the RKF45T package,
they should be used only when the added expense will be offset by the infor-
mation gained. Because these features are to be used only in emergencies,
they are deliberately difficult to activate.

Prospective users of the RKF45T package should note that even well behaved
PHI components may be difficult to analyze. Examples of such problems are
given in §10. The difficulties encountered in the analysis of such a function
are generally due to the nature of the PHI vector (or due to its relation to
the solution or the manner in which the solution is generated) and will be
encountered regardless of the iterative procedure.

9.1 Controlling Constants

Many of the special features of the RKF45T package involve constants which
must be set by the user. Some of the constants are machine dependent number
or safety limits and need to be set only once for a given computing system.
Others have 'standard" supplied values, which may be reset by the informed
and/or desperate user. Additional constants activate certain emergency
options and must be reset from their standard values. All are given in data
statements in their respective subroutines. Table 3 gives standard values of
these constants and describes their purpose, with further clarification of
some parameters available in the program listing.

9.2 Special Features in RKFST

Most refinements to the RKF45T package occur in subroutines which have been
attached to the basic integration package. Two special features, however, are
activated in SETRAP.

- 29 =

9.2.1 Vanishing PHI Components at the Initial Conditions

Special analysis of the initial conditions must be treated since the user may
not know that a PHI component vanishes initially and since the sign of the
vanishing component (+0 or =-0) may not be properly set for continuing into
the next region. These "initial conditions" refer to the PHI vector at the
beginning of the integration (or at the first step using the trapping mode if
the '"late start" option is being used) and not to the conditions at the
beginning of each step. If any component of PHI has vanished initially, VAN-
ISH is referenced in a special mode, and the sign of the zero is given that of
the value of the PHI component at the first substep. An update call is then
made to SUBPHI for each vanishing component at which time the user may alter
the sign. Any user-altered sign will be used to identify the next sign
change.

9.2.2 The PANIC Option Activated through SETRAP

The PANIC option, described in Section 8.4, should be used only as an emer-
gency measure. This option refines the step size mesh, giving dense output
of the PHI vector within the step. The first subinterval, (Tj-;, Tj), indi-
cating a sign change in (or the vanishing of) a component of PHI, will acti-
vate a return to SETRAP and will shift the analysis to TRAPPD with Tj-1 and Tj
as the bracketing values for the trapping interval. This PANIC scheme should
be activated only if the user fears the PHI function experiences multiple
zeros within single integration steps. (Such zeros might go undetected alto-
gether or at least part of the zeros might be overlooked.) (See example 5,
§10.) To activate the option, the user must reset NOTFAL in the data state-
ment SETRAP. A print-no print option is also available for this mode being
activated in subroutine PANIC. JPRINT=0 suppresses the printing altogether,
while JPRINT=1 prints T and the PHI values throughout the step. Regardless of
the printing option selected, a warning message will be printed at the first
call to PANIC from SETRAP. The mesh size for the subintervals is regulated by
the parameters POINTS and NPOINT given in a data statement in PANIC. (Stand-
ard values are 10.0D0 and 10, respectively.)

9.3 The PANIC Option in TRAPPD

Users may activate the PANIC option upon entry into TRAPPD, by setting
NOTFAL=.TRUE.. (The standard value, NOTFAL=.FALSE., is set in a data state-
ment in TRAPPD. See Table 3.) This emergency feature will print values of
the T, Y, YP, PHI, and PHIP at a specified number of points throughout the
integration step. The analysis will then be continued in the normal fashion
in TRAPPD. Printing options in PANIC should also be set. The standard print-
ing option, IPRINT=1, prints T and PHI throughout the interval. Setting
IPRINT=2 gives additional information, Y, YP, and PHIP throughout the step.
The number of output points may be changed from the standard value (10) by
changing POINTS and NPOINT in the data statement in PANIGC.

- 30 -
9.4 Order of the Scaled Solution

Two scaled solutions are available in the SCALED subroutine, one of 4th and
one of 5th order accuracy. In general, the 4th order solution is sufficiently
accurate and requires only one additional derivative evaluation for a given
step. The fifth order solution, requiring 5 additional derivative evalu-
ations, is also included. The logical parameter, FIFTH designates the scaled
solution to be generated. FIFTH=.FALSE. causes the 4th order scaled solution
to be evaluated with FIFTH=.TRUE. giving the 5th order scaled solution.

9.5 PHI Vanishes throughout a Step

Certain difficulties may arise in the analysis of the PHI function if a com=-
ponent vanishes at the beginning of a step as well as at the end of the step
(or at a trapped point). The component may have vanished on the previous step
(giving the vanishing value at the beginning of the step), passed out of the
"vanishing region" during the step, and again vanished at TF (or T*). This
component may also have remained within the "vanished" region throughout the
step. If the integration is being advanced using large steps, the former sit-
uation is quite possible, while if the dintegration is encountering
difficulties, the naturally restricted step size could be so small that the
PHI function has still remained within the vanishing region. A PHI component
which vanishes throughout the entire step may also represent a function which
has a very large radius of curvature, and consequently a very large conver-
gence region. (See example 6, §10.)

Subroutine VANISH is referenced to study components which have vanished at T
and T*. (See §8.3.) The component is studied at NPOINT evenly spaced points
through out the substep, (T, T*), and the user is informed if the component
vanishes at each of the inserted values (IVAN=.TRUE.) during the update call
to SUBPHI.

9.6 Print Options

Various print options are available throughout the RKF45T system. Most of
these options involve the emergency features of the program or warnings when
difficulties have arisen. Subroutine OUTFLG has been included to print out
values of IFLAG and clarifications when IFLAG indicates diffieculties have
arisen during the solution of the ODE or during the trapping iteration. No
messages are printed if the IFLAG indicates that the solution is proceeding
normally. OUTFLG is referenced by subroutine RKF45T only if FLGOUT is set
equal to .TRUE..

Printing options are also available in TRAPPD with IOPT=0 suppressing the
print statements. IOPT=1 will give conditions upon entry into TRAPPD .and
upon update of each vanishing component.

Subroutine PANIC also includes print statements which are described in §§8.4,
8.2.2, and 9.3. -

- 31 -

9.7 User Update of the PHI Components and the Differential Equation Sys-
tem :

The user is given the opportunity to update the PHI vector or the differen=-
tial equation system whenever a vanishing value of a PHI component is iso-
lated. An update call is made for each component of PHI to have vanished
(i.e., to have satisfied the tolerance criteria) at the point T*. The parame-
ter INDEX designates the value of PHI currently being updated. Because this
updating feature can provide such computational efficiency and flexibility
in programming, the user should understand the updating portion thoroughly.

9.7.1 Sign of the Vanishing Component

Since a zero is seldom trapped exactly, some confusion about the sign of the
component may arise even though the magnitude is properly bounded, i.e., the
value of PHI(INDEX) may or may not have passed through the zero yet. TRAPPD
assumes that the PHI component will change sign as it passes through zero and
makes an artificial sign change if PHI has not yet changed signs. Thus, when
PHI enters the update portion of SUBPHI, the trapped component reflects the
sign of PHI in the region (T*, TF). (If the component vanished throughout the
entire region (T, T*), the sign is held constant, since the component has
remained in a "vanished" region.) If the user chooses to alter the PHI com-
ponent during the update, TRAPPD assumes that the user has given the altered
components the proper sign and makes no further adjustments to the PHI
vector. The user may actually change any component of PHI during the update,
but this might affect the analysis of other PHI components. (See §9.7.2.)
Thus, the user may overwrite the artificial sign change, if the particular
PHI compeonent is not correctly described and may make any additional changes
desired.

9.7.2 Changes in the PHI Vector

During an update call, only one PHI component is identifed as having
vanished, namely PHI(INDEX). If additional components have vanished, these
will be updated in separate calls to SUBPHI. In some applications, the user
may only wish to print information which would require no changes in the PHI
components. Other applications may actually require changes to the PHI
vector. During an update call for PHI(INDEX), the user may change any compo-
nent of PHI, but in doing so, may destroy information gained during the
trapping process. More specifically, the vector PHI represents the PHI vector
at T*#, the value of T for which at least one component of PHI vanishes. The
updating process analyzes |PHI(J)| as J increases, J=1,...,NPHI. Each van-
ishing component, INDEX, activates an update call to SUBPHI at which time
the user may change any component of PHI. If changes are made to PHI(J), J >
INDEX, however, the information gained during the trapping iteration is
altered before the user is informed of the status of that component at T,
Thus, such changes should be made only if the user fully understands the PHI
function at T¥*. In general, the user should only update the component
PHI(INDEX). Any changes to a PHI component must carry the correct sign (in-
cluding +0 or -0). Otherwise, further trapping regions will not be properly
identified.

- 32 -
9.7.3 Updates in the Differential Equation System

During an update call, the user may actually wish to change the ODE system
itself. For example, in a transfer orbit problem, one would want to incre-
ment the velocity at perigee of a particular revolution. (See example 2,
§10.) Such a change involves altering the state vector and, consequently,
the differential equations. Such changes are permissible in the single trap
option (or in the single trap partition of PHI in the combination option)
since the solution is advanced from T¥*, the trapping point. Of course, such
changes are also possible in the step-by-step or trapping step-by-trapping
step modes since any trapped solution activates a return to the user with
T=T*. The multiple trap option, however, is not an acceptable mode for an
ODE update since the solution is advanced from the end of the step, where
conditions in TRAPPD are still described by the original state vectors and
corresponding ODE values.

If the user changes the state vector or the differential equations, he must
reference F so that the proper derivative values are assigned at T*, and he
must reevaluate the PHI vector to reflect the altered state variables.

9.8 Difficulties with the PHI Function

The analysis in TRAPPD and associated subroutines assumes that the PHI func-
tion is "well behaved" and reasonably well understood. Basically, TRAPPD
assumes that a PHI component does not 'bounce" on a zero (i.e., TRAPPD
assumes that a PHI component changes sign as it passes through zero) and that
any component vanishes only once during a given integration step. In
addition, rather than isolating the actual zero of a PHI component, TRAPPD
isolates a point, T¥%, within a convergence region (TL, TR) (such that
| PHI (INDEX) | < TOLERANCE at T*.) If the radius of curvature of the PHI com-
ponent is large, T# may be some distance from the actual vanishing point of
PHI(INDEX), and, in fact, an accurate estimate of the vanishing point may be
impossible to achieve. Further difficulties may be encountered in the trap-
ping iteration itself if discontinuities of PHI or large values of |PHIP|
occur. Such difficulties will plague the user regardless of whether he uses
his own iterative scheme or a supplied routine.

Additional options are included in the TRAPPD system to help the user analyze
the PHI function if difficulties occur. The PANIC mode permits the user to
study the PHI function over a refined mesh at each integration step, helping
to isolate multiple zeros over a given step. (This refined mesh gives a much
denser output of PHI that may help trap "bouncing" components since these are
isolated only if the zero occurs near a mesh point. A far safer way to locate
such a vanishing point, however, is for the user to include the derivative of
that PHI component as an additional PHI component, i.e., to seek the vanish-
ing point of PHIP. (See example 7, §10.) Discontinuities or steep derivatives
which predict iteration steps sizes less than the permitted value will acti-
vate the PANIC routine to print out the PHI vector throughout the step if the
iteration fails to converge. Thus, the user has some help in locating diffi-
culties. The large convergence region, however, may pose a more difficult
problem. The user may gain some advantage by scaling the PHI function using
some sufficiently large value. If the zero location is strongly affected by
integration errors, there may be nothing that the user can do to locate the
zero precisely. During the update portion of TRAPPD, the user is informed if

- 35

a component has vanished over an entire integration step. In addition, the
PANIC option can also provide a good deal of information about the magnitude
of PHI throughout the step, so that the user can monitor the convergence
region to some extent. An additional PANIC call could be inserted during the
update portion of TRAPPD to study the convergence region, but this difficulty
is not anticipated for the current applications and so this option is not
included in RKF45T, although the user could make such a call from SUBPHI.

9.9 The Bouncing PHI Function

A PHI component which bounces, i.e., a component which fails to change sign
as it passes through zero, poses particular difficulties for the RKF45T pack-
age, since the zero detection technique requires a sign change in the PHI
component or an integration step coinciding with the zero point. Thus, in
general, such a zero will go undetected. The only case for which a bouncing
PHI component will be detected and updated is that in which the zero is
stepped upon. The simplest remedy for detecting the zeros of a bouncing PHI
component is to include the derivative of PHI as an additional PHI component.
Then the zero of the derivative should be detected and so the zero of the
desired bouncing PHI function.

If a bouncing zero is.detected further difficulites in the RKF45T analysis
arise. The RKF45T pacakge assumes that the PHI component will change sign as
it passes through zero and will "adjust" the sign artificially to reflect the
conditions it assumes will exist across the boundary. (See §7.3.2.) In the
case of a bouncing PHI function this sign adjustment is incorrect. The user
may override this sign change (or change the value of PHI altogether) and the
user-changed value will be used. In case the user does not recognize a zero
as a "bouncing zero", however, further safety checks are included in the
RKF45T package. (While the RKF45ST program is not designed to "trap" bouncing
zeros, the isolation of such a zero could confuse things greatly if the spe-
cial analysis were not included.)

The idea of a bouncing PHI function is not as far-fetched as one might think.
An example is presented in [4] in which an inequality constraint is handled
by analyzing an additional ODE which imposes a strong penalty when the con-
straint is violated and which has no contribution when the constraint is not
violated. The difficulty in analyzing such a function comes from the fact
that the optimal solution estimates generally stay near such boundaries dur-
ing a portion of the integration path. The user does not know in which
direction the ODE solution will diverge from the constraint (since in search-
ing for the optimal solution, the constraint equations may be violated).
Thus, an important application exists in which such a boundary analysis need-
ed.

The PHI components are checked at each entry into TRAPPD to see if a compo-
nent "bounced" (and consequently was given the incorrect sign) on the previ-
ous step. The requirements for the detection of a bouncing function are that:
|[PHI(I)| < tolerance at T and that |PHI(I)| > tolerance at TF. If a function
bounces and yet remains in the "vanished" region throughout the integration
step, the detection will be delayed until the solution again passes out of
the "vanished" region at TF. Any PHI component which has been identified as a
"bouncing" component over a given step will not be analyzed by the TRAPPD
subroutine over that step. Instead, the user will be informed of the bouncing
nature of the component and will be given the opportunity to have the step

- 34 -

repeated with whatever updated conditions he wishes to insert in the ODE or
PHT systems.

The bouncing component update is identified in SUBPHI by BOUNCE=.TRUE.,
UPDATE=.TRUE.. The parameter, KOUNTR, will be given the dummy value,
KOUNTR=-1. If changes in the ODE or PHI expressions are needed, the user
should make these changes and reference F if the derivatives need to be ree-
valuated. If the step is to be repeated, KOUNTR must be reset to KOUNTR=-2.
(KOUNTR will be reset to its previous value upon return to TRAPPD.) If the
user has demanded that the step be repeated, the analysis will be returned to
RKFST, and the step repeated with the user-supplied, corrected version of the
ODE or PHI system.

10. APPLICATIONS

The RKF45T package is applied to a variety of problems to illustrate the use
of its various options. Several of these examples represent simple inte-
gration problems which can be handled by the Runge-Kutta method exactly (neg-
lecting round-off error) so that the user may see the affects of the trapping
option without having_ the results contaminated by integration errors. Other
examples are more representative of practical applications. The basic
equations are given for each example as well as the essential components of
the corresponding SUBPHI routine and a summary of the results. Appendix B
lists the actual SUBPHI program used for each example along with the output
from the problem. The types of problems studied are:

1. the two body problem (elliptic orbit) requesting dense output at speci-
fied values of the independent variable,

2. the two body problem (elliptic orbit) transfer to a higher orbit after a
specified number of revolutions,

3. the restricted problem of three bodies with multiple stopping
conditions,

4, an ODE expression involving tabular data, with stops at the table grid
values,

5. a highly oscillatory PHI function,
6. a function having a large convergence region, and

7. a "Bouncing" PHI function.

10.1 Dense Output at Specified Values of the independent Variable

Users often monitor the solution of an ODE system by demanding dense output
at specified values of the independent variable. Such demands may severely
restrict the natural selection of the step size, i.e., the RK method is able
to take much larger steps than the user is permitting. By handling the dense

-~ 35 =

output restriction in a SUBPHI subroutine, however, the integrator is able to
chose its own step size, and the user receives the information requested.
Consider the two-body problem, elliptic orbit. The equations of motion are
y" + u y/r’ = 0, where y is a vector and where r = (y? + y2 + yg}l/z with yu, a
constant. A normalized version of the problem (in two dimensions) with p=1,
having a semi-major axis of unit length and period of 2w, has the following
initial conditions, expressed in terms of the eccentricity, e, 0%e<l:
y,(0)=1-e, y(0)=0, y;(0)=0, and y,(0)= {(l+e)/(1-e)}*/?, the conditions
being given at perigee. : :

Consider the normalized two body problem, eccentricity e=0.6, in which the
user wishes dense output at specified values of the independent variable. If
the time increment, TINCR, is constant, the problem can be handled using the
following SUBPHI program:

Subroutine Name: DENSEL .

Option: Multiple trap (IFLAG=15,25)
NPHI: 1
COMMON block: TIME1/TINCR/
Initialization: Set TPR = TINCR
PHI components PHI(1) =T - TPR

PHIP(1) = 1.0DO
Update: Print information;

increment TPR, TPR = TPR + TINCR;
reevaluate PHI(1)

A similar problem inveolving uneven spacing, requires a vector of output val-
ues (say, TPRINT) to be held in common with the driving routine or to be
stored in SUBPHI. Otherwise, the procedure is the same.

Subroutine Name: DENSE2

Option: Multiple trap (IFLAG=15,25)
NPHI: 1
COMMON block: TIME1/TPRINT(50)
Initialization: Set TPR = TPRINT(1)
PHI components PHI(1) =T - TPR

PHIP(1) = 1.0D0
Update: Print information;

increment TPR, TPR = TPRINT(KOUNTR+1);
update PHI, PHI(1)=T-TPR

In both problems the initialization block is identified by the parameter
KOUNTR=0. ABSER is not supplied (default value being integration precision)
since the Newton-Rhapson iteration converges to TPR in omne iteration. In
DENSE2 the counting parameter, KOUNTR, is used to increment the TPR value,
although a separate counter could have been set in the initialization block.
At each update call the time print-out value is shifted forward. The user
must also evaluate the updated PHI components. Listings of DENSE1l and DENSE2
are given in Appendix B along with a representative portion of the output,

Treating the problem of dense output at specified values of T by reducing the
step size to correspond to the output point, i.e., by setting IFLAG=1,
TOUT=DT, and then incrementing TOUT upon return, TOUT=TOUT+DT, until the
"final time is reached, proves to be a far less efficient means of solving the

- Bp -

problem, with the efficiency dropping markedly as the number of points
increases. (See below.)

The TRAPPD analysis is written assuming that PHI depends upon Y'. Thus, once
the scaled solution is evaluated, a derivative call is also made before SUB=-
PHI is referenced to determine the PHI components. In DENSE1l and DENSE2, how-
ever, the PHI vector is independent of Y' so that additional savings in
computing time could be made (one function call per output point). However,
because most practical PHI and PHIP functions include Y and Y', and because
some options included in TRAPPD require Y', the "wasted" evaluations for the
given example are considered an acceptable price. If the user is trapping PHI
functions a4/l of which are solely dependent upon time, and if these functions
involve a large number of stops, he should consider duplicating (and
renaming) subroutine TRAPPD and deactivating the F call after the SCALED call
in the modified routine. All other subroutines would remain the same. The
TRAPPD package itself should be kept as is, since this is the more general
program.

Number of Output Points

20 50 100 200 500 1000
NFE without 247 307 601 1195 2977 5947
trapping
NFE with 2b7 252 302 403 703 1203
trapping
NEXTRA 38 77 127 228 . 528 1028

(NEXTRA counts the evaluations required by the trapping iteration and
is included in the NFE with trapping count.)

10.2 Update in the ODE System Using the Combination Mode

The user may wish to change the differential equation system at certain
points during the solution. These points, themselves may not be clearly
defined, i.e., one may need an iterative procedure to locate them. Consider
the two body problem (example 1) in which the user wants to increment the
velocity at perigee during the second revolution to send the satellite into a
higher orbit.

During the solution, other information may also be requested which requires
no changes to the ODE during the update procedure, such as in example 1. By
properly structuring the PHI vector, the user may apply the multiple trap
mode to part of the PHI vector and the single trap mode to the remainder of
the vector. This combination mode is a special form of the multiple trap
mode which iterates using the multiple trap option until a T* value corre-
sponding to a single trap component of PHI, is isolated. The integration is
then continued from T#.

In the combination mode, the user must structure the PHI vector so that the
first MPART components are those to be trapped using the multiple trap mode.
The remaining NPHI-MPART components will be trapped in the single trap fash-

- 59 -

ion. Since the combination mode is a special form of the multiple trap mode,
the designating IFLAG is also 15 with the normal returned value being 25. The
value of MPART is conveyed to RKF45T during the initialization block in SUB-
PHI (designating flag, KOUNTR=0) by setting INDEX=MPART. (Failure to set
INDEX=MPART will apply the multiple trap option to all components of PHI,
i.e., the default value is NPHI.)

The combination option is applied to the two body problem, an earth-satellite
problem, with initial conditions given at an arbitrary point along the orbit
path. Upon the second pass through perigee, the satellite will be boosted
into a higher orbit by incrementing the velocity. The RKF45T package will
continue to integrate the new system of equations until the final specified
time. For this problem, u=398601.3D0 km®/s?, with initial conditions:
Y(1)=-.7196D+4 km, Y(2)=-.1546D+4km, Y(3)=-.9840D+3 km, Y(4)=-.4201D+1 km/s,
Y(5)=-.8359D+1 km/s, and Y(6)=-.2074D+1 km/s.

The velocity increments to boost the satellite into a higher orbit require a
change in the ODE system. Therefore, the single trap mode is appropriate for
the corresponding PHI component. Other stopping conditions may involve no
updates to the state vector or differential equations. These could be better
handled in the multiple trap mode. Thus, the combination mode is
appropriate. In addition to perigee and apogee conditions, two additional
stopping conditions are requested for print out: specified values of T (even
spacing) and vanishing values of R". The PHI representations for the T and R"
stops are clear. Both the perigee and apogee stops, however, are defined by
VeR=0. The R" value may be used to distinguish between the positions, with R"
< 0 at apogee, R" > 0, at perigee.

For the combination mode, the PHI vector is structured so that the T and R"
stops are listed first with the apogee-perigee stops being the final compo-
nent in the array. IFLAG=15 with INDEX set equal to 2 during the initializa-
tion block in SUBPHI. These flags activate the combination mode, with PHI(1)
and PHI(2) trapped in the multiple trap manner and PHI(3), in the single trap
manner. During the update of PHI(3), R" is used to identify perigee. A count-
er, IPER, is set equal to zero initially and incremented each time perigee is
reached. When IPER=2, the transfer orbit conditions are activated.

Subroutine Name: TRANSF

Option: Combination mode (IFLAG=15,25, MPART=INDEX=2)
NPHI : 3 '
COMMON block: TIME/TINCR

Initialization: To activate the combination mode set INDEX=2 (MPART is set
equal to INDEX in RKF45T);
Set counter, IPER=0 for counting passes through perigee;
Set TPR=TINCR

PHI components PHI(1) =T - TPR
PHI(2) =R"
PHI(3) =V *R
PHIP(1) = 1.0D0
PHIP(2) = D(R")/DT (secant approximation)
PHIP(3) =V'*e R+ VeV
Update: Print information;
if INDEX=1, time print out update: increment TPR, TPR = TPR
+ TINCR;

if INDEX=2, no additional changes;

- 38 =

if INDEX=3, and position is apogee, RETURN;

if INDEX=3, and position is perigee, increment perigee
counter, IPER=IPER+1. If IPER=2, increment velocity, Y',
reevalutate F(T,Y,Y') with new conditions, reevaluate
PHI(3), RETURN.

Details of the independent variable stop are given in example 1. The vanish-
ing R" points involve the second derivative of a scalar function,
B = (X3 + Y00 4 LY + 0% #02% TL5/R ~ RVA/R

where R = {Y2 + Y2 + Y2}'/2 and where R' = {Y;Y{ + Y, Y5 + Y5Y5}/R . The R"
values are of great importance as the perigee-apogee indicator.

During the initialization block in SUBPHI, the perigee counter and the first
T print out value are set. ABSERR, the error tolerance, is ignored which
imposes the integration tolerances. During the perigee update for the trans-
fer orbit, the state vector is changed (increased by 5%) necessitating the
evaluation of both the PHI(3) and PHIP(3) values. The SUBPHI program, TRANSF,
and results are given in Appendix B. Figure 7 illustrates the stopping condi-
tions (schematically) and the transfer orbit.

PERIGEE APOGEE

<t

Figure 7. Vanishing PHI(3) values for transfer orbit problem. Perigee and
apogee are located.

10.3 Large system of Stopping Conditions

The user may wish to employ a large system of stopping conditions involving
printing, PHI updates, and/or ODE updates. Thus, single, multiple, or combi-
nation options could be applicable depending upon the problem. The restricted
problem of three bodies (a body of negligible mass, orbiting around two
"heavy" bodies) is a good test problem, since at certain points several func-
tions of practical interest vanish, e.g., as the radius reaches a minimum, a

- 39 =

velocity component vanishes, and V*R = 0. Such a problem provides a good test
of RKF45T's ability to switch between components during a given step.

The equations of motion for the restricted three body problem are: Y,=Y,,
Y, =Y, , along with

Yy =2V, +Y, ~u* (Y, +u) /R1® -u(Y, -p¥)/R2%, and
Y1:=-2Y1'+Y2-u*Y2/R13 = uYz/R23,
with initial conditions:
Y, (0)=1.2, Y,(0)=0, Y (0)=0, and Y,(0)=-1.04935750983031990726.

The constant u=1/82.45, with w*=1-y, R1*={(Y,+u)? + Y2} and R2%={(Y,-u*)? +
Yz}

The satellite will recover initial conditions at T=6.19216933131963970674. A
necessary (but not sufficient) condition for the success of the ODE solution
is that the Jacobi integral, J = {Y4*+Y2%-Y?-Y3}/2 - w*/R1 - u/R2, remain
constant during the integration.

The restricted three body problem is solved with eight stopping conditions
imposed. The first five components have physical significance, being vanish-
ing values of the state vector or points where the velocity and position vec-
tor are perpendicular. The expressions for the corresponding PHIP components
are clear. The remaining stopping conditions are more artificial in nature,
being non-zero specified values of the dependent variables: Y4=0.5, Y,=-0.6,
and V,=1.0). The Jacobi integral could be included as a PHI function, but the
user really only wants to know 7if the value explodes and does not need to know
exactly where. Thus, monitoring the value at each integration step is really
a sufficient analysis. The structure of SUBPHI is 51mp1e since only print out
is requested. An additional section is added, however, to monitor the Jacobi
integral during the integration (flags: INDEX—O UPDATE=.FALSE.)

Subroutine Name: RP3B1, RP3B2

Option: Multiple trap (IFLAG=15,25)

NPHI : 8

COMMON block: None

Initialization: Set parameters for monitoring the Jacobi integral

PHI components PHI(1) =V R
PHI(2) =Y(1)
PHI(3) =Y(2)

PHI(4) = Y(3)

PHI(5) = Y(4)

PHI(6) = Y(1) -0.5D0

PHI(7) = ¥(2) +0.6D0

PHI(8) = Y(3) - 1.0D0

PHIP(1) =V'e R+ V eV

PHIP(I+1) = YP(I), I =1,2,3,4

PHIP(I45) = YRP(L), I= 1,28
Update: Print information;

no changes are made to the ODE or state vector

- 4O =

The Jacobi integral is monitored in both RP3B1 and RP3B2 but is not listed as
a PHI component.

Two SUBPHI programs, RP3B1 and RP3B2, are presented having identical stops
but different monitoring sections for the Jacobi integral. Output, along
with listings is presented in Appendix B. Figure 8 illustrates the stopping
conditions for the given PHI components. Several comments about the pre-
sented results are needed. If the exact solution could be generated, several
components of PHI would vanish simultaneously at specific values of T along
the particle path. The initial condition stops (1,2,3) for example occur at
T=0. Stops (7,8,9), (14,15,16), and (20,21,22) should also occur simultane-
ously. In addition, there should be three stops at TF. These stopping
conditions are: (1) the velocity in the Y, or Y, direction vanishes, (2) the
velocity and the radius are perpendicular, and (3) either Y, or Y, vanishes
(depending upon the particular T value). (In the print out in Appendix B, Y,
is designated X and Y,,Y, with corresponding velocities being V and V .)
Stops (1,2,3), occurring at the initial conditions, are not contaminated by
integration errors, and so the updates are simultaneous. As the integration
proceeds, however, errors in position and velocity perturb the zero points of
the PHI components from their true values. Thus, with strict tolerances
imposed, the three stopping conditions are satisfied at three different val-
unes of T. Stops (7,8,9) and (20,21,22), at ¥,=0 (X=0), occur during the most
"difficult" part of the solution, i.e., the magnitude of the position vector
reaches a minimum at this point causing a "near singularity" in the differen-
tial equations and, copnsequently, severely reduced integration step size to
maintain the requested accuracy. In this region, the "simultaneous" vanish-
ing points occur within a time space of 0.0026, whereas the stop (14,15,16)
(at maximum position vector) occurs within a time space of 0.00016. (The
requested integration and trapping tolerances are 1.D-06 with the global
error achieved at TF being less than 1.8D-04.) The remaining multiple stop-
ping point illustrates an important difficulty. A PHI function which vanishes
at the final conditions may not be detected because errors in the solution
have shifted the zero slightly beyond the final time. (These zeros, which
would be isolated on subsequent steps, have not yet been detected at TF.)
Thus, only the stop, Y =0, which precedes its true =zero, is actually
detected. The user should always be aware of vanishing difficulties at the
final time.

10.4 Tabular Data Expressions in ODE Systems

In engineering applications, the differential equations often include param-
eters which are determined from tabular data. The drag coefficient, for exam-
ple, may be expressed as a function of Mach number, altitude and lift
coefficient. If the tables are treated using constant values or bilinear
interpolation, discontinuities in the function or its derivatives occur at
the grid mesh defining the table. Even the slight discontinuities in slopes
in the tables may be amplified further by the expressions involved in the
ODE, seriously affecting the integration accuracy.

In theory, the user should stop at each discontinuity, since piecewise conti-
nuity is needed for a valid RK algorithm. In practice, however, a good soft-
ware package may be able to isolate the discontinuities to some degree,
giving a reasonable estimate of the solution. The "natural trapping" ability
of the given integrator involves rejecting steps near discontinuities until
the step size is small enough that the abrupt changes no longer violate the

- 4] =

(27,28,29)
(14,15,16) (10,19) (1,2,3)

Figure 8. Orbit for the restricted problem of three bodies with stopping
points marked.

specified tolerance bounds. Although this '"natural trapping" feature of a
program requires no analysis by the user, the convergence regions are vaguely
defined and execution is inefficient. Thus, the user should have some under-
standing of the effect of the interpolation scheme on the integration.

Consider an example involving the integration of a two dimensional step func-
tion, similar to the integration of a set of building blocks. Setting
YP(1)=AA1*T and YP(2)=AAl with Y(0) = Y{0) = 0.50D0, (where AAl is the value
of the step function at the particular (Y., Y3) point (See Figure 9.)), gives
a solution that is a set of connected parabolic or straight line segments.
The simplicity of the problem allows one to analyze the effects of the dis-
continuities on the "trapped" and the "untrapped" problem, i.e., the
integration is exact (except for round-off) and the grid crossings can be
determined analytically to check the accuracy of the trapping procedure,

The application of the trapping option requires that the particular plane
segment covering the solution point at TO represent the F function over the
entire domain until a grid value is isolated. Then the F function is updated
to reflect the new region of the table, i.e., as the PHI components stop on
the grid entries, the plane segments are changed. The PHI components are
written as parabolas with with zeros at the current bracketing bounds. Thus,
PHI(1)=(X1-Y(1))*(Y(1)-X0) and PHI2=(Y1-Y(2))*(Y¥(2)-Y0), where X0, X1, YO,
Y1 are the grid values which bracket Y(1) and Y(2), respectively. Any point
within the current bounding values gives PHI(I) > 0, while all points outside
of the current bounds give PHI(I) < 0. The iteration converges to the X1 or Y1
bound if the corresponding PHIP < 0 and to the X0 or YO bound if the PHIP > 0.
The F value is held constant until a boundary is trapped. The bounds (X0, X1)
or (Y0, Y1) are shifted and the plane representing F is reset and held at the

& 59

Figure 9. Discontinuous ODE expression, a step function.

new value until the next boundary is crossed. (See Figure 10.) (A challenging
problem involving extensive use of tabular data is presented in [3])

Subroutine Name: TABLE

Option: Single trap (IFLAG=10,20)

NPHI : 2 ' '

COMMON block: GRID/AA,XX,YY,IX,IY/
FVAL/AALl/

Initialization: Set X0, X1, Y0, Y1; set ABSER

PHI components PHI(1) = (X1-Y(1))*(Y(1)-X0)

nn

PHI.(2) (Y1-Y(2))*(Y(2)=-Y0)

PHIP(1) = ((X1+X0)=2*Y(1))*YP(1)

PHIP(2) = ((Y1+Y0)=-2%Y(2))*YP(2)
Update: Print Ty YE1); ¥(2)4

shift bracketing indices;
shift X0, X1, YO, Y1, AAl;
evaluate F, set PHI(INDEX)=0, and evaluate PHIP(INDEX)

The grid partition is defined in the main program as XX(I), YY(J), with the F
values being AA(I,J), I=1,...,9, J=1,...,9, and being held in common. IX, IY

= HE =

-«
Y2

Figure 10. The plane surfaces defining the F function. The plane surface
remains constant until the grid value is isolated. At update, the
plane surface is redefined and this value will be used until the
next grid value is isolated.

define the indices for the bracketing values, XX(IX) £ Y(1)<XX(IX+1), YY(IY)
< Y(2)<YY(IY+1), and AAl = AA(IX,IY). X0 and X1 are the current bounds for
Y(1), with YO and Y1 being those for Y(2). During update, IX or IY is shifted
forward or backward depending upon which border is crossed. The X0, X1, YO,
Y1 values as well as the AAl value are shifted to the new XX, YY values. (If
the trapping iteration converged to a point not yet across the boundary, the
"trapped value" of Y(INDEX) is used instead of the corresponding XX or YY
value to give the proper sign to the new PHI component.) ABSER is set auto-
matically to integration precision.

The grid values have been set in unit increments for easy identification in
the output. In addition, the simplicity of the defining problem permits the
trapping precision to be checked analytically. Thus, the error due to the
trapping precision can be seen. Appendix B contains the SUBPHI listing along
with the computed results showing the trapping stops and corresponding coor-
dinates. The problem has also been run with exact stopping conditions, the
time corresponding to the grid crossings being listed along with the inte-
gration results at T=1.0. The results achieved by "natural" trapping using
RKF45 are also presented showing the number of additional derivative evalu-

- 44 =

ations required when the integrator attempts to locate the points of
discontinuity itself.

10.5 A Highly Oscillatory Problem

During the solution of an ODE system, a PHI function may vanish several times
within a given step. Since the trapping procedure is activated only if a sign
change is observed, zeros of the PHI component could easily go undetected.
The user may activate the PANIC mode during the integration so the solution
is monitored throughout each integration step. Any detected sign change or
vanishing component will activate TRAPPD. This PANIC analysis is expensive
since the derivative is calculated at each substep for the PHI evaluation. If
PANIC is referenced in SETRAP, the user should apply the single trap contin-
uous meode (or the step-by-step modes). Since the multiple trap mode is likely
to step over additional zeros, the option will be shifted to the single-trap
option if the panic option is active in SETRAP.

The term "high oscillatory" is a relative one, depending in part, upon the
integration step size. Thus, the analysis of PHI(1)=SIN(OSC*PI*T) poses no
difficulties as long as the integration step size is less than 1/0SC. If the
natural step size of the integration, however, steps over two or more zeros,
these vanishing points (or part of these points) may go undetected. As an
example, consider an ODE system with a polynomial solution of order less than
five. Because the truncation error terms are zero in the RKF45T package,
large step sizes will be attempted (restricted only by an imposed limit on
the allowable step size increase in RKFST). The PHI function is sinusoidal
with a period of 2/0SC. Two examples, 0SC=5.0D0 and 0SC=10.0D0, are presented
with PANIC activated in SETRAP by setting NOTFAL=.TRUE.. The example
0SC=5.0D0 is repeated without the PANIC option.

Subroutine Name: O0SCIL8

Option: Single trap (IFLAG=10,20)

PANIC Option: in SETRAP, NOTFAL=.TRUE.

NPHI : 1

COMMON block: NOSC/0SC

ODE: Y'=4T*+3T2+2T+1, ¥Y=0 at T=0
Initialization: none ;

PHI components PHI(1) DSIN(OSC*PI*T)

PHIP(2) = DCOS(0SC#PI*T)*0SC+*PI

Update: Print T, PHI and Y

Without the use of the PANIC option in SETRAP, only the initial and final
zeros were isolated. All intermediate points were missed. With the PANIC
option in RKFST, however, all zeros were isolated for both 0SC=5.0D0 and
0SC=10.0D0. The 0SC=10.0D0 is included since the PANIC mesh points coincide
with the zeros of the PHI function. SUBPHI and output for both values of 0SC
are given in Appendix B.

As long as the mesh refinement in PANIC isolates only one zero per substep,
no difficulties should be encountered. If multiple zeros occur within a mesh
grid, the user should consider using a step-by-step mode and monitor PHI at

u &5 -

each step. If PHI is actually oscillating so quickly over the integration
steps, another integration method may be preferable.

10.6 A Large Convergence Region

One of the most difficult problems to analyze concerns determining the van-
ishing point when the convergence region is large. If the derivative of a
PHI component is nearly zero in the vacinity of a vanishing point, the con-
vergence region can be quite large, and locating the zero point accurately
may be impossible (regardless of the iteration procedure.) Detection of the
problem, however, is quite simple since the user need only monitor the PHIP
values. In some applications the vanishing region of PHI is the important
feature rather than the exact zero location (e.g., interpolation from tabular
data or bounding a control parameter) in which case the large convergence
region poses no difficulty.

To illustrate a PHI component having a flat convergence region a simple
polynomial is considered, PHI(1)=(T=2)**IPOW. The zero occurs at T=2 with the
flatness controlled by the parameter IPOW. The ODE is not of importance for
the example. Consider the two body problem (example 1) with eccentricity=0,
i.e., a circular orbit, and apply the PANIC option in SETRAP to better iden-
tify the convergence region.

Subroutine Name: FLAT

Option: Single trap (IFLAG=10,20)
PANIC Option: in SETRAP, NOTFAL=.TRUE.
NPHI: 1

COMMON block: EXPO/IPOW,POWER, IPOWM1
Initialization: none

PHI components PHI(1)

(T-2.0D0)**IPOW

PHIP(2)

Il

POWER*(T~-2.0D0)**IPOWM1
Update: Print T, PHI and PHIP

The values of IPOW, IPOWM1(=IPOW-1), and POWER (double precision value of
IPOW) are held in common with the driving program. The example is run with
IPOW=3, 5, and 9 to show the degree of flatness of the PHI component. PHIP is
also monitored to inform the user of the flatness. The example is also run
without the PANIC option in RKFST to show the zero estimate. In such cases,
PHIP provides an important indication of the flatness difficulties. Greater
accuracy is achieved using PANIC because the limits are closer to the zero
points. The accuracy using the standard option, however, is quite acceptable.
No warning message has been printed concerning '"vanishing throughout the
step" since the problem was contrived to show the convergence region of a
single zero. In general, the user would include such a warning which would
give another indication of the extreme flatness of the PHI function.

w 4B
10.7 A Bouncing PHI Function

The TRAPPD analysis is not designed to handle a "bouncing" PHI component,
i.e., a vanishing component which does not change signs as it passes through
zero. (The example in §10.6, for IPOW=2,4,..., is an example of such a bounc-
ing function.) The user may finesse the location of the zeros, however, by
including the corresponding PHIP as an additional PHI component. The
location of the PHIP zero will automatically locate the zero of the PHI com-
ponent by '"'stepping" on it. The major difficulty in the TRAPPD strategy
comes with the sign adjustment. If the user reevaluates the PHI(INDEX) compo-
nent at update, then he must give PHI(INDEX) the sign associated with the
region "across the boundary" or the same zero will be trapped again. If no
update of PHI (or reevaluation of PHI) is made, TRAPPD automatically adjusts
the sign (even for a "bouncing' function).

Polynomials provide a simple but effective test for 'bouncing" PHI
components. Three such polynomials (in even powers) are studied. Their
derivatives are also given as PHI components. The zeros to be located are
T=3, 6, 10, and 12 (See PHI statements). An extraneous zero will also be iso-
lated since the PHIP component (treated as a PHI component) has an additional
zero not corresponding to an original PHI zero). Since the zeros of the PHIP
components being analyzed as PHI components are not of interest no print out
has been made of these zeros. Figure 11 illustrates the PHI(I) components,
I=1,3,5 being studied..

24

Figure 11. PHI components which "bounce' on zero'.

Subroutine Name: BOUNCE

Option: Single trap (IFLAG=10,20)
PANIC Option: in SETRAP, NOTFAL=.TRUE.
"NPHI: 6

.

COMMON block: none
Initialization: none

PHI components PHI(1)
PHI(3)
PHI(5)

(T-3.0D0)**4 * (T=-6.0D0)%¥*2
(T=10.D0)**6
(T=-12.D0)**8

with derivatives also a PHI components
PHI(2) = PHIP(1)

PHI(4) = PHIP(2)
PHI(6) = PHIP(3)
Update: - Print T, PHI and PHIP

PHI(I), I=2,4,6 are essential for this approach to the problem. (The deriva-
tives, PHIP(I), I=2,4,6, may be approximated by secants or may be set equal
to zero activating a false position estimate of the zero points in TRAPPD).
All zeros of the PHI components are isolated. The lack of accuracy in some
zeros comes from the flatness of the PHI curves. (See example 6.) rather than
from the "bouncing" effects. The SUBPHI 1listing and output for this example
are given in Appendix B.

11. CONCLUSIONS .

The RKF45T software package extends the RKF45 package to include intermediate
integration stops whenever components of a user-supplied function vanish.
These PHI components may be a function of the independent variable, the
dependent variables, or their derivatives. Should multiple zeros occur at a
given point or within a given step, each zero will be isolated in order,
i.e., in the direction of the integration. After each zero is isolated, an
update call is made to SUBPHI (the user-supplied subroutine for evaluating
the PHI components) at which time the user may print information or change
the PHI functions or even the differential equations themselves. Several
modes of operation are available so that the user may execute the integration
in a step-by-step fashion or in a continuous fashion (corresponding to the
RKF45 options) with intermediate communication to the user occurring at the
update for each vanishing PHI component. Safety features are included which
may be activated if the PHI function analysis indicates difficulties are
occurring. The trapping feature performs well for the examples presented. The
success of this feature, however, may depend upon the user's understanding of
the PHI components before applying the trapping options. The examples pre-
sented show a wide range of applications, but are, in part, academic in
nature. Practical examples involving the solution of of optimal control prob=
lems with discontinuities in the differential equations or higher
derivatives are given in [3] and [4].

= LB =

Table 1. IFLAG values returned from the RKF45T package.

=2

+2

=25

+20

+25

T+ 1 step

TOUT

T + 1 step

TOuT

TOUT

Step-by-step integration without trapping option. Inte-
gration is proceeding normally. TOUT has not been
reached.

Continuous integration without trapping option, or
step-by-step or trapping step-by-trapping step option
with TOUT having been reached.

(Normal mode for advancing the solution in the contin-
uous mode after TOUT has been reached. For continuing in
the step-by-step or trapping step-by-trapping step mode,
IFLAG must be reset. In all cases, TOUT must be reset.)

Trapping step-by-trapping step mode stopping at a zero
value of a PHI component. (Before the return to the
driving program, an update call was made to SUBPHI iden-
tifying the component of PHI which had vanished.)

Step-by-step mode with trapping option. If a zero has
vanished at the current T value, an update call has
already been made to SUBPHI identifying the component of
PHI which has vanished.)

Continuous integration with trapping option. Update
calls to SUBPHI have informed the user of each vanishing
point. PHI, Y, and the differential equations may be
altered at each update call. The integration is contin-
ued from the trapped point each time a zero is isolated.

Continuous integration with trapping option. Update
calls to SUBPHI have informed the user of each vanishing
point. PHI and Y may be altered at each update call but
no updates in the differential equation expressions are
permitted. If several zeros lie within the given step
all should be detected by the RKF45T package. The inte-
gration is continued from the end of the integration
step rather than from the isolated zero point.

IFLAG values if difficulties have been encountered during the
integration or trapping.

+94

TL

The trapping option is being used. Too many iterations
were required in TRAPPD. PANIC has printed out informa-
tion concerning PHI, and the solution is returned at TL,
the last point analyzed which has not passed through the
zero point. Calling RKF45T without changing IFLAG will
terminate the program. Resetting IFLAG will continue
the integration and zero search but may waste computing
time or lead to an "infinite loop" because of difficul-
ties in the PHI component.

57

+3

+

+5

+6

+7

+8

TL

Initial T

T < TOUT

T < TOUT

T < TOUT

T < TOUT

Initial T

-~ 49 -

The trapping option is being used. The trapping bounds
have become too close. The same exit procedure is used
as with IFLAG = 94,

RELERR is too small. RKFST has reset the wvalue. The
integration will continue if RKF45T is referenced again.
No ste has been taken. (IFLAG will be reset by RKF45T.)

More than 3000 derivative evaluations (more than 500)
steps have been used in generating the solution. If
RKF54T is referenced again, the function counter will be
reset to 0 and the integratio will be continued. (IFLAG
will be reset by RKF45T.)

A pure relative error is being requrested, and the sol-
ution is identically zero. An absolute error toleracne
must be used to continue the integration. The
step-by-step mode may be a good way to proceed. Terminal
error if ABSERR remanis zero.

The requested accuracy could not be acheived using the
minimum allowable step size. Terminal error.

Too much output is restricting the mnatural step size
choice. RKF45T may be inefficient for solving this
problem. Perhaps the user should consider the trapping
option 20, 25 with PHI(J)=T-TOUT, in which TOUT is
updated at each zero point of PHI. (See example 1, §10.)
A step-by-step mode may also be applicable. Terminal
error if the user does not reset IFLAG.

Invalid input parameters, occurring if:
NEQN = 0,

T=TOUT and |IFLAG| .ne. 1

(T may equal TOUT when the problem is initialized. This
sets up internal parameters for the integration includ-
ing the initial derivative evaluation, resets IFLAG = -2
or +2, and returns to the user for printing out initial
YP values.).

RELERR or ABSERR < 0,

IFLAG error

for the non-trapping option: IFLAG = 0, IFLAG < -2, or
IFLAG < 8

for the trapping option: IFLAG # -25, -20, -15, -10, 10,
15, 20, 25.

- 50 -

Table 2.a. The partitioning of the WORK array for the RKF45T package

¢} 1 NEQN YP values at T

K1M NEQN+1 s Step size estimate, H

K1 NEQN+2 2 NEQN+1 Fl, ODE evaluation

K2 2 NEQN+2 3 NEQN+1 F2, ODE evaluation

K3 3 NEQN+2 4 NEQN+1 F3, ODE evaluation

K& 4 NEQN+2 5 NEQN+1 F4, ODE evaluation

K5 5 NEQN+2 6 NEQN+1 F5, ODE evaluation

Ké 6 NEQN+2 7 NEQN+1 F6, ODE evaluation

K7 7 NEQN+2 8 NEQN+1 F7, ODE evaluation

K8 8 NEQN+2 9 NEQN+1 F8, ODE evaluation

K9 9 NEQN+2 . 10 NEQN+1 F9, ODE evaluatiou

KTF 10 NEQN+2 -- TF, T value at end of integra-

tion step (for trapping option)

K10 10 NEQN+3 11 NEQN+2 YF, solution ét TF

K11 11 NEQN+3 12 NEQN+2 YPF, derivative of Y at TF

K12 12 NEQN+3 13 NEQN+2 Y2, solution at T2

K13 13 NEQN+3 14 NEQN+2 YP2, derivative of Y at T2

K14 14 NEQN+3 15 NEQN+2 PHIO, PHI vector at T

K15 14 NEQN+3 15 NEQN+2 PHIPO, derivative of PHI at T
+ NPHI + 2 NPHI

K16 14 NEQN+3 14 NEQN+2 PHI2, PHI vector at T2
+ 2 NPHI + 3 NPHI

K17 14 NEQN+3 14 NEQN+2 PHIPO, derivative of PHI at T2
+ 3 NPHI + 4 NPHI

K18 14 NEQN+3 14 NEQN+2 PHIF, PHI vector at TF
+ 4 NPHI + 5 NPHI

K19 14 NEQN+3 14 NEQN+2 PHIPF, derivative of PHI at TF
+ 5 NPHI + 6 NPHI

K20 14 NEQN+3 14 NEQN+2 PHIR, PHI vector at TR

+ 6 NPHI + 7 NPHI

K21

K22

K23

K24

K25

K26

KSAVRE

KSAVAE

14
* 7

14
+ 7

14
+ 8

14
+ 9

14
+10

14
+11

14
+13

14
+13

NEQN+3
NPHI

NEQN+3
NPHI

NEQN+3
NPHI

NEQN-+3
NPHI

NEQN+3
NPHI

NEQN+3
NPHI

NEQN+3
NPHI

NEQN+3
NPHI

14
+10

14
+11

14
+12

NEQN+2
NPHI

NEQN+2
NPHI

NEQN+2
NPHI

NEQN+2
NPHI

NEQN+2
NPHI

NEQN+2
NPHI

- 51 =

PHIPR, derivative of PHI at TR

PHIL, PHI vector at TL

PHIPL, derivative of PHI at TL

PHIB, information about bouncing

PHI components

PHIV, information about vanish-
ing PHI components

PHIPV, derivative of PHIV

RELERR value saved

ABSERR value saved

- 52 =

Table 2.b. The partitioning of the IWORK array for the RKF45T package

10

NFE

NREJ

NEXTRA

KOP

INIT

IFLAG
KFLAG

LFLAG

ISTART

KOUNTR

The number of derivative evaluations used by RKF45T (NFE
includes NEXTRA)

The number of rejected steps encountered in RKF45T dur-
ing the solution of the ODE

The number of derivative evaluations required by the
trapping option (NEXTRA is included in NFE)

Counting index in RKFST to guard agains too many output
points

Index in RKFST which shifts analysis into or away from
the initialization block in RKFST

A flag which defines the mode of operation for RKF45T
Safety flag which protects IFLAG between calls to RKFST

Designating flag in RKFST for the trapping option (If
the trapping option is used, IFLAG is reset to a standard
RKF45 value, and LFLAG defines the trapping mode of
operation.)

Initializing flag for the trapping option if the "late
start" option is being used

Counting parameter for updates in the PHI components
(and for didentifying the initialization stage in the
user-supplied subroutine, SUBPHI

- 53 -

Table 3. Pre-set and user-supplied constants for the RKF45T package.

Notation: S subroutine name,

SV = standard value
AV = additional value(s)
FIFTH designates the order of the scaled solution generated dn SCALED.

FIFTH=.FALSE. gives a 4th order solution; FIFTH=.TRUE. gives a
5th order solution.
(S: SCALED, SV: .FALSE., AV: .TRUE.)

FLGOUT controls referncing of OUTFLG to print out integration error
messages. FLGOUT=.TRUE., references OUTFLG.
(S: RKF45T, SV: .TRUE., AV: .FALSE.)

IOPT controls printing option in TRAPPD. IOPT=0 suppresses printing
option. IOPT=1 prints entry and exit conditions.
(S: TRAPPD, SV: 0 , AV: 1)

IPRINT controls printing in PANIC when referenced by TRAPPD. IPRINT=1,
prints T and PHI; IPRINT=2, prints T, PHI, PHIP, Y, and YP.
(S: PANIC, SV: 1, AV: 2)

JPRINT controls printing in PANIC when referenced by SETRAP. JPRINT=O0,
suppresses all printing; JPRINT=1 prints T and PHI; IPRINT=2,
prints T, PHI, PHIP, Y, and YP.

(S: PANIC, SV: 0 , AV: 1, 2)

MAXIT gives the maximum number of iterations permitted on each trap-
ping attempt.
(S: TRAPPD, SV: 10, AV: user-supplied in data statement)

NOTFAL controls the referencing of PANIC (from SETRAP and TRAPPD).
(NOTFAL may have different values in SETRAP and TRAPPD.) If NOT-
FAL=.TRUE. PANIC will be referenced; if NOTFAL=.FALSE., PANIC
will not be referenced. (If difficulties are encountered in the
trapping analysis in TRAPPD (e.g., too many iteration are being
required), then PANIC will be referenced regardless of the value
of NOTFAL.) :
(S: SETRAP, TRAPPD, SV: .FALSE., AV: .TRUE.)

NPOINT controls the number of increments for the partition of the inte-
gration step (integer value of POINTS)
(S: PANIC, SV: 10, AV: user-supplied in a data statement)
(S: VANISH, SV: 4, AV: user-supplied in a data statement)

POINTS controls the number of increments for the partition of the inte=-
gration step (souble precision value of NPOINT)
(S: PANIC, SV: 10.0D0, AV: user-supplied in a data statement)
(S: VANISH, SV: 4.0D0, AV: user-supplied in a data statement)

REMIN is the tolerance threshold for the relative error tests. Bound-
ing values are vaguely deinded, say, REMIN > MAX{U, 1.0D-12}
(S: RKFST, &SV: given above, AV: user-supplied in a data state-
ment)

= B, =

TBOUND is the limiting iteration step size in TRAPPD (being related to

125

(1]

(2]

[3]

[4]

(3]

(6]

unit round-off (see parameter U) or set to a somewhat larger val-
ue by the user.

(S: TRAPPD, 8V: 26*%U or user-supplied)

is the unit round-off for the particular computer system. (See
computer listing.)
(5: RKFST, SV: machine dependent (user-supplied))

REFERENCES

.
i

Fehlberg, E. Low-Order Classical Runge-Kutta Formulae with Step Size Con-
trol and Their Application to Some Heat Transfer Problems.
NASA TR R-315 (July 1969).

Horn, M.K. Scaled Runge-Kutta Algorithms for Handling Dense Output.
DFVLR-FB 81-13 (April, 1981).

Horn, M.K. A Fortran Program for Solving State/Control-Constraint Opti-
mal Control Problems with System Equations Having Expressions Involving
Tabular Data.

DFVLR-IB 515/1 (1983).

Horn, M.K. A Numerical Solution of State/Control-Constraint Optimal Con-
trol Problems with Piecewise Continuous Derivatives Using RKF45T
DFVLR-IB 515/2 (1983).

Horn, M.K. Subroutines for Handling Tabular Data Used in System
Equations.

DFVLR-IB 515/4 (1983).

Shampine, L.F. and H.A. Watts Practical Solutions of Ordinary Differen-
tial Equations by Runge-Kutta Methods.

SAND 76-0585 (1976) Sandia Laboratories, Albuquerque, New Mexico, (Dec.
1976).

APPENDIX A. PROGRAM LISTING FOR RKF45T AND RELATED SUBROU-

OQaoaacoaoaoaaaaoaoaaoaoaaooaoaooaaaoaoOoaoaQaaoaoaoaaaoanoaaooaoaooaaaoanoa

TINES

SUBROUTINE RKF45T(F,SUBPHI,NPHI,NEQN,Y,T,TOUT,RELERR,ABSERR,
IFLAG,WORK, IWORK)

IS A FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METHOD WITH AN
OPTION TO HALT THE INTEGRATION IF ANY COMPONENT OF A USER
SUPPLIED VECTOR FUNCTION VANISHES, PHI(J) = FUNCTION(T,Y,YP),

SUBROUTINES RKF45 AND RKTS,
WRITTEN BY H.A.WATTS AND L.F.SHAMPINE
SANDIA LABORATORIES
ALBUQUERQUE, NEW MEXICO,
HAVE BEEN MODIFIED SLIGHTLY (INTO RKF45T AND RKFST) WITH AN
ADDITIONAL SUBROUTINE, TRAPPD, WHICH STOPS THE INTEGRATION
IF ANY COMPONENT OF PHI VANISHES. THE MODIFICATIONS TO
RKF45 AND RKFS AND THE TRAPPD ROUTINE HAVE BEEN ADDED BY
M.K. HORN
DFVLR-OBERPFAFFENHOFEN

RKF45T IS PRIMARILY DESIGNED TO SOLVE NON-STIFF AND MILDLY STIFF
DIFFERENTIAL EQUATIONS WHEN DERIVATIVE EVALUATIONS ARE INEXPENSIVE
RKF45T SHOULD GENERALLY NOT BE USED WHEN THE USER IS DEMANDING
HIGH ACCURACY.

e e

i e e e e e e e e e e e e R e e R R e e e e e e e e e G e R e R e e e e e e e e e e e S e e e e e e e

SUBROUTINE RKF45T INTEGRATES A SYSTEM OF NEQN FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM

DY(I)/DT = F(T,¥(1),Y(2),...,Y(NEQN))

WHERE THE Y(I) ARE GIVEN AT T
WITH AN OPTION TO TO STOP THE INTEGRATION WHEN ANY COMPONENT OF
A CONSTRAINT VECTOR, PHIO(J), A FUNCTION OF T, Y, AND YP IS
SATISFIED.

TYPICALLY THE SUBROUTINE IS USED TO INTEGRATE FROM T TO TOUT BUT
CAN BE USED AS A ONE-STEP INTEGRATOR TO ADVANCE THE SOLUTION A
SINGLE STEP IN THE DIRECTION OF TOUT OR TO THE VALUE OF T FOR
WHICH A COMPONENT OF THE PHI VECTOR VANISHES. ON RETURN THE
PARAMETERS IN THE CALL LIST ARE SET FOR CONTINUING THE INTEGRA-
TION. THE USER HAS ONLY TO CALL RKF45T AGAIN (AND PERHAPS DEFINE
A NEW VALUE FOR TOUT). ACTUALLY, RKF45T IS AN INTERFACING ROUTINE
WHICH CALLS SUBROUTINE RKFST FOR THE SOLUTION. RKFST IN TURN
CALLS SUBROUTINE FEHL WHICH COMPUTES AN APPROXIMATE SOLUTION

OVER ONE STEP.

RKF45T USES THE RUNGE-KUTTA-FEHLBERG (4,5) METHOD DESCRIBED IN
THE REFERENCES
E. FEHLBERG, LOW-ORDER CLASSICAL RUNGE-KUTTA FORMULAS WITH STEPSIZ
CONTROL, NASA TR R-315.
ALSO IN COMPUTING, 6(1970),PP.61-71.

L F. SHAMPINE AND H.A. WATTS, PRACTICAL SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS BY RUNGE-KUTTA METHODS.
SANDIA LABORATORIES REPORT SAND76-0585.

Qoo aaaaoaooonoaoaOooaoaoooaoaaoaaoaoOaaoaaaaoaoaaoaaoaoOoaooOoOoOoaoaaooaOoOaQaaoQaaaoaoaaoaooaan

- 56 -

THE PERFORMANCE OF RKF45 IS ILLUSTRATED IN THE REFERENCE
L.F. SHAMPINE, H.A. WATTS, S. DAVENPORT, SOLVING NON-STIFF ORDINAR
DIFFERENTIAL EQUATIONS-THE STATE OF THE ART.
SANDIA LABORATORIES REPORT SAND78-0182 . ALSO IN
SIAM REVIEW,18(1976),PP.376-411.

THE PARAMETERS REPRESENT

F -- SUBROUTINE F(T,Y,YP) TO EVALUATE DERIVATIVES YP(I)=DY(I)/DT

SUBPHI =-- SUBROUTINE SUBPHI
A SUBROUTINE FOR DETERMINING A CONSTRAINT VECTOR USED FOR
TEMPORARILY STOPPING THE INTEGRATION (AT PHI(J)=0)

NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED

NPHI -- NUMBER OF COMPONENTS OF THE PHI VECTOR

Y() -- SOLUTION VECTOR AT T

T =-- INDEPENDENT VARIABLE

TOUT -- OUTPUT POINT AT WHICH SOLUTION IS DESIRED

RELERR,ABSERR -- RELATIVE AND ABSOULTE ERROR TOLERANCES FOR LOCAL
ERROR TEST. AT EACH STEP THE CODE REQUIRES THAT

ABS (LOCAL ERROR) .LE. RELERR*ABS(Y) + ABSERR

FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS

IFLAG -- INDICATOR FOR STATUS OF INTEGRATION

WORK() -- ARRAY.TO HOLD INFORMATION INTERNAL TO RL.F45 WHICH IS
NECESSARY FOR SUBSEQUENT CALLS. MUST BE DIMENSIONED
AT LEAST 3+14%*NEQN+5*NPHI

IWORK() -- INTEGER ARRAY USED TO HOLD INFORMATION INTERNAL TO
RKF45 WHICH IS NECESSARY FOR SUBSEQUENT CALLS. MUST BE
DIMENSIONED AT LEAST 10

e e R e Sm e wm G Wm e e mm e e e e e mm R e e R e e e e e R e e e Em e e e e e e e S S NN R e e e R S e e A

B L T I L T e e

THE USER MUST PROVIDE STORAGE IN HIS CALLING PROGRAM FOR THE ARRAY
IN THE CALL LIST = Y(NEQN), WORK(3-+14*NEQN+5*NPHI) , IWORK(10),
DECLARE F AND SUBPHI IN AN EXTERNAL STATEMENT, SUPPLY SUBROUTINE
F(T,Y,YP) AND SUBPHI

AND INITIALIZE THE FOLLOWING PARAMETERS

NEQN -- NUMBER OF EQUATIONS TO BE INTRGRATED. (NEQN .GE. 1)

Y() -- VECTOR OF INITIAL CONDITIONS

T -- STARTING POINT OF INTEGRATION, MUST BE A VARIABLE
T=TOUT IS ALLOWED ON THE FIRST CALL ONLY, IN WHICH CASE
RKF45T RETURNS WITH IFLAG=2 IF CONTINUATION IS POSSIBLE.

RELERR,ABSERR -- RELATIVE AND ABSOLUTE LOCAL ERROR TOLERANCES
WHICH MUST BE NON-NEGATIVE. RELERR MUST BE A VARIABLE WHILE
ABSERR MAY BE A CONSTANT. THE CODE SHOULD NORMALLY NOT BE
USED WITH RELATIVE ERROR CONTROL SMALLER THAN ABOUT 1.E-8 .
TO AVOID LIMITING PRECISION DIFFICULTIES THE CODE REQUIRES
RELERR TO BE LARGER THAN AN INTERNALLY COMPUTED RELATIVE
ERROR PARAMETER WHICH IS MACHINE DEPENDENT. IN PARTICULAR,
PURE ABSOLUTE ERRCOR IS NOT PERMITTED. IF A SMALLER THAN
ALLOWABLE VALUE OF RELERR IS ATTEMPTED, RKF45 INCREASES
RELERR APPROPRIATELY AND RETURNS CONTROL TO THE USER BEFORE
CONTINUING THE INTEGRATION.

AOogdonaaaiiaoaaoaanaaagaaaaacaoaoaoaaaooanoaooaaooaaaoacaoanannon

- 57 =

IFLAG -- INDICATES THE MODE OF OPERATION OF THE PROGRAM. IF
THE INTEGRATOR IS TO BE USED WITHOUT THE TRAPPING OPTION,
IFLAG = +1 OR -1 INITIALLY. IF THE TRAPPING OPTION IS TO BE
USED, IFLAG = -15, -10, 10, OR 15 INITIALLY (SEE BELOW).

IFLAG -- +1,-1 INDICATOR TO INITIALIZE THE CODE FOR EACH NEW
PROBLEM. NORMAL INPUT IS +1. THE USER SHOULD SET IFLAG=-1
ONLY WHEN ONE-STEP INTEGRATOR CONTROL IS ESSENTIAL. IN THIS
CASE, RKF45T ATTEMPTS TO ADVANCE THE SOLUTION A SINGLE STEP
IN THE DIRECTION OF TOUT EACH TIME IT IS CALLED. SINCE THIS
MODE OF OPERATION RESULTS IN EXTRA COMPUTING OVERHEAD, IT
SHOULD BE AVOIDED UNLESS NEEDED.

IFLAG OPTIONS--IF THE CONSTRAINT VECTOR, PHI, IS TO BE ANALYZED.
IF IFLAG = -15,.-10, +10, +15, RKF45T RESETS IFLAG EQUAL TO
-1, =1, +1, OR +1, RESPECTIVELY, AND INITIALIZES OTHER
PARAMETERS TO ACTIVATE THE TRAPPING OPTION. UPON RETURN TO
TO USER, IFLAG IS RESET TO -25, -20, 20, OR 25, RESPECTIVLEY.

IFLAG = 15--INTEGRATES FROM T TO TOUT, STOPPING INTERNALLY AT
T = T* IF PHI(J) = 0 AT T*, AND THEN CONTINUING THE
INTEGRATION FROM CONDITIONS AT THE END OF THE STEP
IN WHICH PHI(J) VANISHED. IF FURTHER COMPONENTS OF
PHI VANISH WITHIN A GIVEN STEP, THESE WILL ALSO
BE TRAPPED WITHOUT FURTHER INTEGRATION. UPDATE
CALLS ARE MADE TO SUBPHI SO THAT THE USER MAY PRINT
INFORMATION OR UPDATE PHI, BUT THE DIFFERENTIAL
EQUATIONS SHOULD NOT BE ALTERED SINCE THE SOLUTION
IS5 ADVANCED FROM T+H AND F(T+H) WOULD NOT REFLECT
THE CHANGES. UPDATES IN THE PHI FUNCTION ARE POS-
SIBLE, SINCE PHI AT T* AND T+H ARE REEVALUATED AT
OR AFTER UPDATE, MAKING FURTHER TRAPPINGS POSSIBLE,
BUT ANALYSIS OF THE PHI FUNCTION WILL OCCUR ONLY
FOR VALUES OF T > T# . UPON RETURNING, IFLAG EQUALS
25, WHICH IS THE NORMAL MODE FOR CONTINUING.

= 10--INTEGRATES FROM T TO TOUT, STOPPING INTERNALLY AT
T = T* IF PHI(J) = 0 AT T%, AND THEN CONTINUING THE
INTEGRATION FROM CONDITIONS AT T+. UPDATE CALLS TO
SUBPHI ARE MADE DURING WHICH THE USER MAY OUTPUT IN-
FORMATION OR ALTER THE PHI FUNCTION. THE SOLUTION
VECTOR AND/OR THE DIFFERENTIAL EQUATIONS MAY ALSO
BE CHANGED SINCE F(T,Y,YP) IS REEVALUATED AND THE
INITITAL VALUE PROBLEM IS ESSENTIALLY RESTARTED. -
EXTREME CARE, HOWEVER, SHOULD BE EXERCISED IF THE
DIFFERENTIAL SYSTEM IS ALTERED. IF PHI VANISHES
AT POINTS BETWEEN T* AND T+H, THESE VALUES ARE
TRAPPED BY CONTINUED INTEGRATION. UPON RETURNING,
IFLAG EQUALS 20, WHICH IS THE NORMAL MODE FOR CON-
TINUING.

=-10-~-INTEGRATES FROM T TOWARDS TOUT, STEP BY STEP, RETURN-
ING TO THE MAIN PROGRAM AT T* INSTEAD OF T+H IF
PHI(J) = 0 AT T*, WHERE T .LT. T* .LT. T+H. VECTORS
Y AND YP AT T+H ARE RETURNED IN WORK ARRAY LOCATIONS
1*NEQN+2 TO 2*NEQN+1 AND 2#NEQN+2 TO 3*NEQN+1,
RESPECTIVELY, WITH T+H RETURNED IN WORK(3*NEQN+2).

QoooaooaoaaaoaaoooaooaoaaoaoaoaoaaoaaaoaooaoaooaoaaaooaooaooOoOoaaooaooaoaoaoaaoaaoaoaoanao

- 58 =

UPDATES IN BOTH THE PHI VECTOR AND THE DIFFERENTIAL
EQUATIONS SYSTEM ARE POSSIBLE AS IN THE IFLAG=10
OPTION. UPON RETURNING, IFLAG EQUALS -20, WHICH IS
THE NORMAL MODE FOR CONTINUING.

=-15-~INTEGRATES FROM T TOWARDS TOUT RETURNING TO THE

MAIN PROGRAM AT T = T*, IF PHI(J) = 0 AT T*# . THE
VECTORS Y AND YP AT T+H ARE RETURNED IN WORK ARRAY
LOCATIONS 1*NEQN+2 TO 2%*NEQN+1 AND 2*NEQN+2 TO
3*NEQN+1, RESPECTIVELY, WITH T+H RETURNED IN
WORK(3*NEQN+2). UPDATES IN BOTH THE PHI VECTOR AND
THE DIFFERENTIAL EQUATIONS SYSTEM ARE POSSIBLE AS IN
THE IFLAG=10 OPTION. UPON RETURNING, IFLAG EQUALS
=25, WHICH IS THE NORMAL MODE FOR CONTINUING.

o m Gm s e e e e S e e G Gm G e S e ER e ke me e G R e R he e e e G R e e e e e mm R e A Gm e e B G e e Gm Gm SR e M e e e

Y() -- SOLUTION AT T
T -- LAST POINT REACHED IN INTEGRATION.

IFLAG =

2

20==

-- INTEGRATION REACHED TOUT. INDICATES SUCCESSFUL RETURN

AND IS THE NORMAL MODE FOR CONTINUING INTEGRATION.
A SINGLE SUCCESSFUL STEP IN THE DIRECTION OF TOUT
HAS.BEEN TAKEN. NORMAL MODE FOR CONTINUING
INTEGRATION ONE STEP AT A TIME.
INTEGRATION WAS NOT COMPLETED BECAUSE RELATIVE ERROR
TOLERANCE WAS TOO SMALL. RELERR HAS BEEN INCREASED
APPROPRIATELY FOR CONTINUING. ;
INTEGRATION WAS NOT COMPLETED BECAUSE MORE THAN
3000 DERIVATIVE EVALUATIONS WERE NEEDED. THIS
IS APPROXIMATELY 500 STEPS
INTEGRATION WAS NOT COMPLETED BECAUSE SOLUTION
VANISHED MAKING A PURE RELATIVE ERROR TEST
IMPOSSIBLE. MUST USE NON-ZERO ABSERR TO CONTINUE.
USING THE ONE-STEP INTEGRATION MODE FOR STEP
IS A GOOD WAY TO PROCEED.
INTEGRATION WAS NOT COMPLETED BECAUSE REQUESTED
ACCURACY COULD NOT BE ACHIEVED USING SMALLEST
ALLOWABLE STEPSIZE. USER MUST INCREASE THE ERROR
TOLERANCE BEFORE CONTINUED INTEGRATION CAN BE
ATTEMPTED,
IT IS LIKELY THAT RKF45 IS INEFFICIENT FOR SOLVING
THIS PROBLEM. TOO MUCH OUTPUT IS RESTRICTING THE
NATURAL STEPSIZE CHOICE. USE THE ONE-STEP INTEGRATOR
MODE . -
INVALID INPUT PARAMETERS
THIS INDICATOR OCCURS IF ANY OF THE FOLLOWING IS
SATISFIED - NEQN .LE. 0

T=TOUT AND IFLAG .NE. +1 OR -1

RELERR OR ABSERR .LT. 0.

IFLAG .EQ. 0 OR .LT. -2 OR .GT.8
INTEGRATION HAS RETURNED USING TRAPPD OPTION WITH
TOUT HAVING BEEN REACHED. THIS IS THE NORMAL MODE
FOR CONTINUING INTEGRATION USING THE TRAPPING OP-
TION. DURING THE INTEGRATION, THE SOLUTION WAS AD-
VANCED FROM T+ IN ANY STEP IN WHICH THE A COMPO-
NENT OF THE VECTOR PHI VANISHED.

eResRoleNeolsNoNeRsNoNoNoNeoRsRoNoNoNoNoNoNoNoNolsNolloNoNeNololoRoNoNolNsNoloNoNsNeoNoNoNeoNoNoNeoNolsRoNoNoNoNoNoRoNeNeo N o]

- 59 -

= 25-- INTEGRATION HAS RETURNED USING TRAPPD OPTION WITH
TOUT HAVING BEEN REACHED. THIS IS THE NORMAL MODE
FOR CONTINUING INTEGRATION USING THE TRAPPING OP-
TION. DURING THE INTEGRATION THE SOLUTION WAS AD-
VANCED FROM THE END OF ANY STEP IN WHICH THE TRAP-
PING OPTION WAS APPLIED TO THE VECTOR PHI.

=-20-- INTEGRATION HAS RETURNED USING TRAPPD OPTION AFTER
TAKING A SINGLE STEP IN THE DIRECTION OF TOUT. IF THE
TRAPPING OPTION WERE NOT ACTIVATED, CONDITIONS ARE
RETURNED AT T+H. IF A COMPONENT OF PHI VANISHED
WITHIN THE STEP CONDITIONS ARE RETURNED AT T=T*,
WHERE PHI(J) = 0 AT T* FOR AT LEAST ONE VALUE OF J .
IN THIS CASE, Y AND YP AT THE END OF THE STEP HAVE
BEEN STORED IN WORK ARRAY LOCATIONS 1*NEQN+2 TO
2%NEQN+1 AND 2%NEQN+2 TO 3*NEQN+1 WITH T STORED IN
WORK (3*NEQN+2). NORMAL MODE FOR CONTINUING
INTEGRATION ONE STEP AT A TIME USING THE TRAPPD
OPTION.

=-25-- INTEGRATION HAS RETURNED USING TRAPPD OPTION AFTER
REACHING TOUT OR T*, THE FIRST VALUE OF T FOR WHICH
A COMPONENT OF PHI VANISHED. IF TOUT WERE NOT
REACHED, CONDITIONS AT THE END OF THE STEP IN
WHICH THE COMPONENT OF PHI VANISHED WILL HAVE
BEEN STORED IN WORK ARRAY LOCATIONS 1*NEQN+2 TO
2%NEQN+1 AND 2*NEQN+2 TO 3*NEQN+1 WI1H T STORED IN
WORK (3*NEQN+2). NORMAL MODE FOR CONTINUING
INTEGRATION FROM ONE T* TO THE NEXT USING THE
TRAPPD OPTION.

94-- ERROR HAS ARISEN IN TRAPPD ROUTINE. TOO MANY
ITERATIONS WERE USED IN ATTEMPTING TO ISOLATE
A VANISHING COMPONENT OF PHI. CONDITIONS ARE
RETURNED AT THE LAST ESTABLISHED POINT FOR WHICH
THE PHI COMPONENT HAD NOT YET CHANGED SIGN.

97-- ERROR HAS ARISEN IN TRAPPD ROUTINE. TRAPPING
LIMITS ON PHI ARE TOO CLOSE TO PERMIT FURTHER
TRAPPING. CHECK PHI FUNCTION OR ITS DERIVATIVE
FOR POSSIBLE DISCONTINUITIES.

WORK(),IWORK() -- INFORMATION WHICH IS USUALLY OF NO INTEREST
TO THE USER BUT NECESSARY FOR SUBSEQUENT CALLS
WORK(1),...;WORK(NEQN) CONTAIN THE FIRST DERIVATIVES
OF THE SOLUTION VECTOR Y AT T. WORK(NEQN+1) CONTAINS
THE STEP SIZE H TO BE ATTEMPTED ON THE NEXT STEP.
IWORK(1) CONTAINS THE DERIVATIVE EVALUATION COUNTER.

e G W e e S e e S SR SN S N MR e e e S M R T SR TE N ME Se R e R e M m S N R G R SR e Mm e R G G SN R G S G e TE Gm e Sm e em A e e

B I I e e e e e R R)

SUBROUTINE RKF45T RETURNS WITH ALL INFORMATION NEEDED TO CONTINUE
THE INTEGRATION. IF THE INTEGRATION REACHED TOUT, THE USER NEED
ONLY DEFINE A NEW TOUT AND CALL RKF45T AGAIN. IN THE ONE-STEP
INTEGRATOR MODE (IFLAG=-2) THE USER MUST KEEP IN MIND THAT EACH
STEP TAKEN IS IN THE DIRECTION OF THE CURRENT TOUT. UPON REACHING
TOUT INDICATED BY CHANGING IFLAG TO 2), THE USER MUST THEN DEFINE
A NEW TOUT AND RESET IFLAG TO -2 TO CONTINUE IN THE ONE STEP INTE-
GRATOR MODE.

aoaoaoaaoaoaooaooaoaaoaoaaaoaaoooaoaoaaooaoooonooaooaaaoaoaaaaaoaaoaonan

- 60 =

IF THE TRAPPING OPTION HAS BEEN USED, SIMILAR FLAGS ARE SET
(IFLAG = +20, OR +25 FOR REACHING TOUT OR IFLAG = =20 OR -25
IN THE STEP-BY-STEP MODE OR TRAPPING STEP-BY-TRAPPING STEP
MODE.) TO DEACTIVATE THE TRAPPING OPTION, THE USER NEED ONLY
SET IFLAG = -2 OR +2 IF THE INTEGRATION IS BEING CONTINUED OR
SET IFLAG = -1 OR +1 IF A NEW INTEGRATION IS TO BE STARTED.

IF THE INTEGRATION WERE NOT COMPLETED BUT THE USER STILL WANTS

TO CONTINUE (IFLAG=3,4 CASES), HE JUST CALLS RKF45T AGAIN. WITH
IFLAG=3, THE RELERR PARAMETER HAS BEEN ADJUSTED APPROPRIATELY FOR
CONTINUING THE INTEGRATION. 1IN THE CASE OF IFLAG=4 THE FUNCTION
COUNTER WILL BE RESET TO O AND ANOTHER 3000 FUNCTION EVALUATIONS
WILL BE ALLOWED. (IF TRAPPING OPTIONS WERE USED ON THE PREVIOQUS
STEP, IFLAG WILL BE RESET IN RKFST TO ACTIVATE THESE OPTIONS.)

HOWEVER, IN THE CASE IFLAG=5, THE USER MUST FIRST ALTER THE
ABSOLUTE ERROR CRITERION TO USE A POSITIVE VALUE OF ABSERR.
IFLAG=5 MAY OCCUR IN RKF45T WHEN A PURE RELATIVE ERROR TEST
IS USED TO CHECK THE ACCURACY OF THE SOLUTION. IF ALL COMPO-
NENTS OF THE SOLUTION VANISH AND NO ABSOLUTE ERROR TEST IS
USED, IFLAG IS SET EQUAL TO 5 . THE USER MUST SPECIFY

A POSITIVE VALUE OF ABSERR BEFORE THE INTEGRATION

CAN PROCEED. IF HE DOES NOT, EXECUTION IS TERMINATED.

ALSO, IN THE CASE IFLAG=6, IT IS NECESSARY FOR THE USER TO RESET
IFLAG TO 2 (OR -2 WHEN THE ONE-STEP INTEGRATION MODE IS BEING USED
AS WELL AS INCREASING EITHER ABSERR, RELERR OR BOTH BEFORE THE
INTEGRATION CAN BE CONTINUED. IF THIS IS NOT DONE, EXECUTION WILL
BE TERMINATED. THE OCCURRENCE OF IFLAG=6 INDICATES A TROUBLE SPQOT
(SOLUTION IS CHANGING RAPIDLY, SINGULARITY MAY BE PRESENT) AND IT
IS OFTEN INADVISABLE TO CONTINUE.

IF IFLAG=7 IS ENCOUNTERED, THE USER SHOULD USE THE ONE-STEP
INTEGRATION MODE WITH THE STEPSIZE DETERMINED BY THE CODE OR
CONSIDER SWITCHING TO THE ADAMS CODES DE/STEP,INTRP. IF THE USER
INSISTS UPON CONTINUING THE INTEGRATION WITH RKF45, HE MUST RESET
IFLAG TO 2 BEFORE CALLING RKF45 AGAIN. OTHERWISE, EXECUTION WILL
BE TERMINATED.

IF IFLAG=8 IS OBTAINED, INTEGRATION CAN NOT BE CONTINUED UNLESS
THE INVALID INPUT PARAMETERS ARE CORRECTED.

IT SHOULD BE NOTED THAT THE ARRAYS WORK,IWORK CONTAIN INFORMATION
REQUIRED FOR SUBSEQUENT INTEGRATION. ACCORDINGLY, WORK AND IWORK
SHOULD NOT BE ALTERED.

- e R e S SN R BN R R N R R e e

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(NEQN),WORK(1),IWORK(10)
EXTERNAL F,SUBPHI

LOGICAIL FLGOUT
DATA FLGOUT/.TRUE./

]

aaoaon

w B =

INDIC = 0
CALL FLAGCK(IFLAG,INDIC,IWORK(S),IWORK(Q)I

IF (IWORK(8) .EQ. 0) NPHI =1

COMPUTE INDICES FOR THE SPLITTING OF THE WORK ARRAY

K1M = NEQN + 1
Kl =KIM + 1

K2 = K1 + NEQN
K3 = K2 + NEQN
K4 = K3 + NEQN
K5 = K4 + NEQN

mwanmwniu

PARTITION FOR DIMENSIONING ADDITIONAL F VECTORS

Ké
K7
K8
K9

‘K5 + NEQN
K6 + NEQN
K7 + NEQN
K8 + NEQN

LU || |

PARTITION FOR RETURNING TF (FOR TRAPPING OPTIONS (IFLAG < -2))
KTF = K9 + NEQN _

PARTITION FOR DIMENSIONING ADDITIONAL Y VECTORS

K10
K11

K12
K13

KTF + 1

K10 + NEQN
K11 + NEQN
K12 + NEQN

PARTION FOR DIMENSIONING PHIO(K)-S

K14
K15
K1lée
K17
K18
K19
K20
K21
K22
K23
K24
K25
K26

K13
K14
K15
K16
K17
K18
K19
K20
K21
K22
K23
K24
K25

NEQN
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI
NPHI

LU | | O { | O | O A Y [O | O (O

++++F S

PARTION FOR SAVRE,SAVAE, TZERO

KSAVRE = K26 + NPHI
KSAVAE = KSAVRE + 1
KTZERO = KSAVAE + 1

e e e e e e e S R S e SR e S e e e S e e e e e Gm B M e e e e e e e A e e e e R e R R S e R W N e e e e e S e

THIS INTERFACING ROUTINE MERELY RELIEVES THE USER OF A LONG
CALLING LIST VIA THE SPLITTING APART OF TWO WORKING STORAGE

aaoaoaan

o

(>ReNsNsNoNsNoNsoNoNaoNeNoNoReNe e

Q

- G2 o=

ARRAYS. IF THIS IS NOT COMPATIBLE WITH THE USERS COMPILER,
SHE MUST USE RKF45T DIRECTLY.

L R R e e R T TS ———

CALL RKFST(F,SUBPHI,NPHI,NEQN,Y,T,TOUT,RELERR,ABSERR, IFLAG,
WORK (1) ,WORK (K1M) ,WORK (K1) ,WORK(K2) ,WORK(K3),
WORK (K4) ,WORK (K5) ,WORK (K6) ,WORK (K7) ,WORK(K8),
WORK(K9) ,WORK (KTF) ,WORK (K10) ,WORK (K11) ,WORK (K12),
WORK(K13) ,WORK(K14) ,WORK (K15) ,WORK (K16) ,WORK(K17),
WORK(K18) ,WORK (K19) ,WORK (K20) ,WORK (K21) ,WORK (K22),
WORK (K23) ,WORK (K24) ,WORK (K25) ,WORK (K26) ,
WORK (KSAVRE) , WORK (KSAVAE) , WORK (KTZERO) ,
IWORK (1), IWORK(2), IWORK(3), IWORK (4) , IWORK(5),
TWORK(6) , IWORK(7) , IWORK(8) , IWORK(9) , IWORK(10))

Voo~ WM

IF (FLGOUT) CALL OUTFLG(IFLAG)
ADJUST IFLAG IF TRAPPED OPTION HAS BEEN USED

INDIC = 1
CALL FLAGCK(IFLAG,INDIC,IWORK(8),IWORK(9))

RETURN
END

SUBROUTINE RKFST(F,SUBPHI,NPHI,NEQN,Y,T,TOUT,RELERR,ABSERR,
IFLAG,YP,H,F1,F2,F3,F4,F5,F6,F7,F8,F9,TF,YF,YPF,
Y2,YP2,PHIO,PHIPO,PHI2,PHIP2,PHIF, PHIPF,
PHIR,PHIPR,PHIL,PHIPL,PHIB,PHIV,PHIPV, SAVRE, SAVAE,
TZERO, NFE ,NREJ,NEXTRA,KOP, INIT, JFLAG,KFLAG,
LFLAG, LSTART ,KOUNTR)

IMPLICIT REAI*8 (A-H,0-Z)

FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METHOD

[, I S LR NI

RKFST INTEGRATES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATIONS AS DESCRIBED IN THE COMMENTS FOR RKF45T.
THE ARRAYS YP,F1,F2,F3,F4, AND F5 (OF DIMENSION AT LEAST NEQN) AND
THE VARIABLES H,SAVRE,SAVAE,NFE,KOP,INIT,JFLAG,AND KFLAG ARE USED
INTERNALLY BY THE CODE AND APPEAR IN THE CALL LIST TO ELIMINATE
LOCAL RETENTION OF VARIABLES BETWEEN CALLS. ACCORDINGLY, THEY
SHOULD NOT BE ALTERED. ITEMS OF POSSIBLE INTEREST ARE

YP - DERIVATIVE OF SOLUTION VECTOR AT T

H - AN APPROPRIATE STEP SIZE TO BE USED FOR THE NEXT STEP

NFE- COUNTER ON THE NUMBER OF DERIVAITVE FUNCTION EVALUATION

LOGICAL HFAILD,OUTPUT,UPDATE, IVAN,FIND,EVALF, BOUNCE

DIMENSION Y(NEQN),YP(NEQN),F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN),

1 F5 (NEQN) , Y2 (NEQN) , YP2 (NEQN) , YF (NEQN) , YPF (NEQN) ,

2 F6 (NEQN) ,F7 (NEQN) , F8 (NEQN) , F9 (NEQN)

DIMENSION PHIO(NPHI),PHIPO(NPHI),PHIF(NPHI),PHIPF(NPHI)

DIMENSION PHI2(NPHI),PHIP2(NPHI),PHIB(NPHI),PHIV(NPHI),PHIPV(NPHI)
DIMENSION PHIR(NPHI),PHIPR(NPHI),PHIL(NPHI),PHIPL(NPHI)

- 63 =

C
C""-"""""""'""""""'""'""‘"'"""""".' """""""""""""
(i e e L L Eo b S L ST e T T R
COMMON/FSTEP/ITOPH
(T o e o L L e o L o e T R,
o o o i o o e e e e i
C
EXTERNAL F,SUBPHI
C .
[
c - i
Cc THE COMPUTER UNIT ROUND OFF ERROR U IS THE SMALLEST POSITIVE VALUE
c REPRESENTABLE IN THE MACHINE SUCH THAT 1.+4U GT)
C VALUES TO BE USED ARE '
c U = 9.5E-7 FOR IBM 360/370
C U = 1.5E-8 FOR UNIVAC 1108 -
C U = 7.5E-9 FOR POP-10
c U= 7.1E-15 FOR CDC 6000 SERIES
c i U = 2.2E-16 FOR IBM 360/370 DOUBLE PRECISION
DATA U/2.2D-16/
e e L L L P
C . i
C REMIN IS A TOLERANCE THRESHOLD WHICH IS ALSO DETERMINED BY THE
c INTEGRATION METHOD. IN PARTICULAR, A FIFTH ORDER METHOD WIL
C GENERALLY NOT BE CAPABLE OF DELIVERING ACCURACIES NEAR
C PRECISION ON COMPUTERS WITH LONG WORDLENGTHS.
C
DATA REMIN/1.D-12/
o e o o e e o i e e e e e e
DATA MAXNFE/3000/
C
C PROTECTION FOR IFIRST PARAMETER
IFIRST =
LFLAGS = LFLAG ' :
(o e e e e L L T e e e e e m e m e
ITOPH =
O e e e B L b g)
c ;
C ;
Cc CHECK INPUT PARAMETERS
C
IF (NEQN.LT.1) GO TO 10
IF ((RELERR.LT.0.0DO0) . OR. (ABSERR.LT. 0.0D0)) GO TO 10
MFLAG = IABS(IFLAG) =4
IF ((MFLAG . GE. 1) .AND. (MFLAG .LE. 8)) GO TO 20
C
C INVALID INPUT
C
10 IFLAG =
RETURN
C
c IF THIS THE FIRST CALL
20 IF (MFLAG .EQ. 1) GO TO 50
C
C CHECK CONTINUATION POSSIBILITIES

IF ((T .EQ. TOUT) .AND. (KFLAG .NE. 3)) GO TO 10

-IF (MFLAG .NE. 2) GO TO 25

aaoaaQ

]

caaoaaa Qo

QO

w Gl -

IFLAG = +2 OR -2

IF (KFLAG .EQ. 3) GO TO 45

IF (INIT.EQ.0) GO 10 45

IF (KFLAG .EQ.4) GO TO 40

IF ((KFLAG .EQ. 5) .AND. (ABSERR.EQ. 0.0D0)) GO TO 30
IF ((KFLAG .EQ. 6) .AND. (RELERR .LE. SAVRE) . AND.
1 (ABSERR .LE. SAVAE)) GO TO 30

GO TO 50

IFLAG = 3,4,5,6,7, OR 8
25 IF (IFLAG .EQ. 3) GO TO 45

IF (IFLAG .EQ. 4) GO TO 40 _

IF ((IFLAG .EQ. 5) .AND. (ABSERR .GT. 0.0D0)) GO TO 45

INTEGRATION CANNOT BE CONTINUED SINCE USER DID NOT RESPOND TO
THE INSTRUCTIONS PERTAINING TO IFLAG=5,6,7, OR 8

30 CONTINUE

STOP

- e o e s A e e E e G Gm G R R SR S e S e e S e Em Sm mm Bm S T S Em B A S W SN AN Gn EN A R Gm A e RN SR S S S S S S SR e G o em

RESET FUNCTION EVALUATION COUNTER
40 NFE=0 .
IF (MFLAG .EQ. 2) GO TO 50

RESET FLAG VALUE FORM PREVIOUS CALL
45 IFLAG = JFLAG
IF (KFLAG .EQ. 3) MFLAG=IABS(IFLAG)

SAVE INPUT IFLAG AND SET CONTINUATION FLAG FOR SUBSEQUENT
INPUT CHECKING |

50 JFLAG = IFLAG
KFLAG = 0

SAVE RELERR AND ABSERR FOR CHECKING INPUT ON SUBSEQUENT CALLS
SAVRE = RELERR
SAVAE = ABSERR

RESTRICT RELATIVE ERROR TOLERANCE TO BE AT LEAST AS LARGE AS
2U+REMIN TO AVOID LIMITING PRECISION DIFFICULTIES ARRISING FROM
IMPOSSIBLE ACCURACY REQUESTS

RER = 2.0D0*U + REMIN
IF (RELERR.GE.RER) GO TO 55

RELATIVE ERROR TOLERANCE TOO SMALL
RELERR = RER

IFLAG = 3

KFLAG = 3

RETURN

o

55 U26 = 26.D0*U
DT = TOUT - T
IF (MFLAG .EQ. 1) GO TO 60
‘IF (INIT .EQ. 0) GO TO 65
IF (LSTART .EQ. 1) GO TO 62

oaaoaaoaaaooaoaooaonn

- B5 =

GO TO 80
SET INITIALIZATION COMPLETION INDICATOR,INIT
SET INDICATOR FOR TOO MANY OUTPUT POINTS,KOP
EVALUATE INITIAL DERIVATIVES
" SET COUNTER FOR FUNCTION EVALUATIONS,NFE
ESTIMATE STARTING STEP SIZE
SET PARAMETERS FOR ACTIVATING CONSTRAINT
FUNCTION IF THIS OPTION IS BEING USED
60 INIT = 0
KOP = 0
A=T
CALL F(A,Y,YP)
NFE = 1

62 CONTINUE

NEXTRA = 0
NREJ = 0

IVAN = .FALSE.
JUSTR = 0

IF (LFLAG .EQ. 0) GO TO 64

T e T e b R ————

ABSER = 0.5D0 * (ABSERR + RELERR)

KOUNTR = 0
UPDATE = .FALSE.
IVAN = .FALSE.
BOUNCE = .FALSE.
INDEX = 0

CALL SUBPHI (NPHI,INDEX,NEQN,A,Y,YP,PHIO,PHIPO,KOUNTR,UPDATE,

il IVAN,BOUNCE,ABSER)

MPART = NPHI

IF (LFLAG .EQ. 2 .AND. INDEX .GT. O .AND. INDEX .LT. NPHI)
1 MPART = INDEX

INDEX = 0

IF (ABSER .LT. RER) ABSER = RER

DO 63 J = 1,NPHI
IF (DABS(PHIO(J)) .LT. U26) PHIO(J) = DSIGN(U26,PHIO(J))
63 CONTINUE
KOUNTR = 1
IFIRST = 1
IF (LSTART .EQ. 1) GO TO 80
64 CONTINUE
IF (T .NE. TOUT) GO TO 65

aa

aaoaaoaaaq

aaQ

aaa aaaa

aaa

65

70

80

85

90

- 66 -

IFLAG = 2
RETURN

INIT = 1
H = DABS(DT)

TOLN = 0.0D0

DO 70 XK = 1,NEQN

TOL = RELERR*DABS(Y(K)) + ABSERR

IF (TOL .LE. 0.DO) GO TO 70

TOLN = TOL

YPK = DABS(YP(K))

IF (YPK¥H**5 .GT. TOL) H = (TOL/YPK)*¥*0.2D0
CONTINUE

IF (TOLN .IE. 0.D0) H = 0.DO

H = DMAX1(H,U26%DMAX1(DABS(T),DABS(DT)))

- e RS N A R R R SR N e S A S R R W G MR SR SR S NS e e S S e e e S e e

INSERT NEW BLOCK FOR INITIAL STEP SIZE ESTIMATE--HSTART

PRINT 1588,H

ETOL = 0.5D0%* (ABSERR+RELERR)

BIG = DSQRT(1.0D+10)

CALL HSTART(F,NEQN,T,TOUT,Y,YP,ETOL,5,
U,BIG,F1,F2,F3,F4,DUM1,NFE ,H)

e e e e e S Ee S G e e R e R S e R e e e R S e R e A e R e A e e e R e B R EE R R R e W e G R e AR R e e

SET STEP SIZE FOR INTEGRATION IN THE DIRECTION FROM T TO TOUT
H = DSIGN(H,DT)

TEST TO SEE IF RKF45 IS BEING SEVERELY IMPACTED BY TOO MANY
OUTPUT POINTS '

IF (DABS(H) .GE. 2.DO0*DABS(DT)) KOP = KOP + 1
IF (KOP .NE. 100) GO TO 85

UNNECESSARY FREQUENCY OF OUTPUT

KOP = 0

IFLAG = 7

RETURN

IF (DABS(DT) .GT. U26%DABS(T)) GO TO 95

IF TOO CLOSE TO OUTPUT POINT, EXTRAPOLATE AND RETURN
DO 90 K = 1,NEQN

Y(K) = Y(K) + DT*YP(K)
A = TOUT

c

- BT =

CALL F(A,Y,YP)
NFE = NFE + 1

o o L e T e e e e e B L S T o S L e e e

PRINT 1600,T

1600 FORMAT(///,' it USING EXTRAPOLATED SOLUTION AT T = ',D15.7,

' ********',//)

C***ﬁ***********************#**#**ﬁ*****#**ﬁ**********#*****************
GO TO 300
C
C
c INITIALIZE OUTPUT INDICATOR
C
95 QUTPUT = .FALSE.
C
C TO AVOID PREMATURE .UNDERFLOW IN THE TOLERANCE FUNCTION,
C SCALE THE ERROR TOLERANCES
G
SCALE '= 2.DO/RELERR
AE = SCALE*ABSERR
C
C
C ___
[e L e L e ettt o L b
C .
c STEP BY STEP INTEGRATION
C
100 HFAILD = .FALSE.
C
C SET SMALLEST ALLOWABLE STEPSIZE
[
HMIN = U26%DABS(T)
C
C ADJUST STEPSIZE IF NECESSARY TO HIT THE OUTPUT POINT.
C LOOK AHEAD TWO STEPS TO AVOID DRASTIC CHANGES IN THE STEPSIZE AND
C THUS LESSEN THE IMPACT OF OUTPUT POINTS ON THE CODE.
O .
DT = TOUT - T
IF (DABS(DT) .GE. 2.DO*DABS(H)) GO TO 200
IF (DABS(DT) .GT. DABS(H)/0.9D0) GO TO 150
C
C THE NEXT SUCCESSFUL STEP WILL COMPLETE THE INTEGRATION TO THE
C OUTPUT POINT
C
OUTPUT = .TRUE.
H = DT
GO TO 200
C
150 H = 0.5D0*DT
C
C
&
C ---
6 CORE INTEGRATOR FOR TAKING A SINGLE STEP
(5 s o e e B A S e e e e e e
C THE TOLERANCES HAVE BEEN SCALED TO AVOID PREMATURE UNDERFLOW IN
C COMPUTING THE ERROR TOLERANCE FUNCTION ET.
C TO AVOID PROBLEMS WITH ZERO CROSSINGS, RELATIVE ERROR IS MEASURED

oaaaaoaoaaaaooaaaoaoaooaan

aQaQa

aaaQ

G a

a

aaaao

200

220

224

225

-68-

USING THE AVERAGE OF THE MAGNITUDES OF THE SOLUTION AT THE
BEGINNING AND END OF A STEP. .

THE ERROR ESTIMATE FORMULA HAS BEEN GROUPED TO CONTROL LOSS OF
SIGNIFICANCE _

TO DISTINGUISH THE VARIQUS ARGUMENTS, H IS NOT PERMITTED

TO BECOME SMALLER THAN 26 UNITS OF ROUND OFF IN T.

PRACTICAL LIMITS ON THE CHANGE IN THE STEP SIZE ARE ENFORCED TO
SMOOTH THE STEP SIZE SELECTION PROCESS AND TO AVOID EXCESSIVE
CHATTERING ON PROBLEMS HAVING DISCONTINUITIES.

TO PREVENT UNNECESSARY FAILURES, THE CODE USES 9/10 THE STEP SIZE
IT ESTIMATES WILL SUCCEED.

SINCE LOCAL EXTRAPOLATION IS BEING USED AND EXTRA CAUTION SEEMS
WARRANTED.

B L L N el e L T R e ———

TEST NUMBER OF DERIVATIVE FUNCTION EVALUATIONS
IF OKAY, TRY TO ADVANCE THE INTEGRATION FROM T TO T + H

IF (NFE .LE. MAXNFE) GO TO 220

TOO MUCH WORK
IFLAG = 4
KFLAG = 4
RETURN s @

I

ADVANCE AN APPROXIMATE SOLUTION OVER ONE STEP OF LENGTH H

CALL FEHL(¥,NEQN,Y,T,H,YP,F1,F2,F3,F4,F5,F1)
NFE = NFE + 5

COMPUTE AND TEST ALLOWABLE TOLERANCES VERSUS LOCAL ERROR ESTIMATES
AND REMOVE SCALING OF TOLERANCES. NOTE THAT RELATIVE ERROR IS
MEASURED WITH RESPECT TO THE AVERAGE OF THE MAGNITUDES OF THE
SOLUTION AT THE BEGINNING AND END OF THE STEP. '

EEOET = 0.0DO
DO 225 K = 1,NEQN

ET = DABS(Y(K)) + DABS(F1(K)) + AE
IF (ET.GT.0.DO) GO TO 224

INAPPROPRIATE ERROR TOLERANCE

IFLAG = 5
KFLAG = 5
RETURN

EE = DABS((-2090.DO*YP(K)+(21970.D0*F3 (K)-15048.D0*F4(K)))+
1 (22528.D0*F2(K)-27360.DO*F5 (K)))
EEOET = DMAX1(EEOET,EE/ET)

ESTTOL = DABS (H)*EEOET*SCALE/752400.D0

IF (ESTTCL .LE. 1.D0) GO TO 230

UNSUCESSFUL STEP
REDUCE THE STEP SIZE, TRY AGAIN

- 69 =

C THE DECREASE IS LIMITED TO A FACTOR OF 1/10
c
HFAILD = .TRUE.
OUTPUT = .FALSE.
S = 0.1D0
IF (ESTTOL .LT. 59049.D0) S = 0.9D0/ESTTOL#%*0.2D0
c
C *
NREJ = NREJ + 1
H = S¥H
IF (DABS(H) .GT. HMIN) GO TO 200
g
C REQUESTED ERROR UNATTAINABLE AT SMALLEST ALLOWABLE STEP SIZE
C
IFLAG = 6
KFLAG = 6
RETURN
C
C SUCCESSFUL STEP
C STORE SOLUTION AT T + H
C AND EVALUATE DERIVATIVES THERE
C "
230 CONTINUE
IF (LFLAG .EQ. 0) GO TO 269
Cmmmm e e g e e e e e e e e e emeeeeeee e —ee—meemeee——————
C CALL SETRAP TO SET UP AND CHECK CONDITIONS FOR REFERENCING TRAPPD
C ---
CALL SETRAP (F, SUBPHI ,NPHI ,NEQN, TOUT,H, ABSER, TZERO,
1 T,Y,YP,PHIO,PHIPO, TF,YF,YPF, PHIF,PHIPF,
2 T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,PHIB,PHIV, PHIPY,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,
4 REMIN,U26,
5 IFLAG, LFLAG, JUSTR, KOUNTR, IFIRST,NFE ,NEXTRA,
6 MPART,
7 OUTPUT , UPDATE , BOUNCE , IVAN, FIND , HFAILD)
e
IF (IFLAG .GT. 2) RETURN
GO TO 275
Cmmm o oo e e e e e
269 CONTINUE
T=T+H

DO 270 K = 1,NEQN
270 Y(K) = F1(K)

A=T

[e R T L o o o o L T TP
ITOPH = 1

R T e o B e o e et L L e o e B o o e D
CALL F(A,Y,YP)

O e e e o e L B R LT T T L T T
ITOPH = 0

[e e o L o o L b o U e o D D D P

NFE = NFE + 1

CHOOSE NEXT STEP SIZE
THE INCREASE IS LIMITED TO A FACTOR OF 5
IF STEP FAILURE HAS JUST OCCURRED, NEXT

oNoNoNe N

- 70 -

C STEP SIZE IS NOT ALLOWED TO INCREASE
C
275 CONTINUE
S = 5.0D0
(O L o e B e e e B B B e e B e o e T S L B e B o S e S e e e
HSAVE =H

Credssbdednidnidininbilnibbed ot bbb lebinbiddnbdnbnbinnblnbblbnbdddbiidnbbdibbdbdibids
IF (ESTTOL .GT. 1.889568D-4) S = 0.9D0/ESTTOL**0.2D0
IF (HFAILD) S = DMIN1(S,1.D0)

C
H = DSIGN(DMAX1(S*DABS (H),HMIN),H)
C
C ---
G END OF CORE INTEGRATOR
C
C
€
g SHOULD WE TAKE ANOTHER STEP
g
IF (OUTPUT) GO TO 300
IFLAG = ISIGN(2,IFLAG)
g
C IF LFLAG=2 AND JUSTR=1, TRAPPD HAS JUST ISOLATED A ZERO OF PHI
c AND THE USER SELECTED THE OPTION TO RETURN (IFLAG=-15,-25)
C :
IF (LFLAG .EQ. -1) GO TO 280
IF (LFLAG .EQ. -2 .AND. JUSTR .EQ. 0) GO TO 100
IF (IFLAG .GT. 0) GO TO 100
C ___
C ___
c
280 CONTINUE
C
C INTEGRATION SUCCESSFULLY COMPLETED
c
g ONE-STEP MODE
IFLAG = -2
RETURN
c
c INTERVAL MODE
300 T = TOUT
IFLAG = 2
RETURN
C
END
SUBROUTINE FEHL(F,NEQN,Y,T,H,YP,F1,F2,F3,F4,F5,8)
C
C FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METHOD
¢
C ---
c FEHL INTEGRATES A SYSTEM OF NEQN FIRST ORDER
C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM
c DY(I)/DT = F(T,Y(1),---,Y(NEQN))
C WHERE THE INITIAL VALUES Y(I) AND THE INITIAL DERIVATIVES
C YP(I) ARE SPECIFIED AT THE STARTING POINT T. FEHL ADVANCES
& THE SOLUTION OVER THE FIXED STEP H AND RETURNS
C THE FIFTH ORDER (SIXTH ORDER ACCURATE LOCALLY) SOLUTION
C APPROXIMATION AT T+H IN ARRAY S(I)

Ooaaaaaaan

- 71 =

F1,---F5 ARE ARRAYS OF DIMENSION NEQN WHICH ARE NEEDED

FOR INTERNAL STORAGE

THE FORMULAS HAVE BEEN GROUPED TO CONTROL LOSS OF SIGNIFICANCE.
FEHL SHOULD BE CALLED WITH AN H NOT SMALLER THAN 13 UNITS OF
ROUNDOFF IN T SO THAT THE VARIOUS INDEPENDENT ARGUMENTS CAN BE
DISTINGUISHED.

P R R e T i T T

IMPLICIT REAL*8 (A-H,0-Z)

COMMON/SAFETY/IPR
DIMENSION Y(NEQN),YP(NEQN),F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN),
1 F5(NEQN), S (NEQN)

IPR = 0
CH = H/4.DO
DO 221 K = 1,NEQN

221 F5(K) = Y(K) + CH*YP(K)
CALL F(T+CH,F5,F1)

CH = 3.D0*H/32.D0
DO 222 K = 1,NEQN

222 F5(K) = Y(K) + CH*(YP(K) + 3.DO*F1(X))
CALL F(T+3.DO*H/8.D0,F5,F2)

CH = H/2197.D0
DO 223 K = 1,NEQN

223 F5(K) = Y(K) + CH*(1932.DO*YP(K) + (7296.D0*F2(K)
1 - 7200.0DO*F1(K)))
CALL F(T+12.D0%H/13.D0,F5,F3)

CH = H/4104.DO0
DO 224 K = 1,NEQN

224 F5(K) = Y(K) + CH*((8341.DO*YP(K)-845.D0%F3(K))+ _
1 (29440 .DO*F2 (K) -32832.D0%F1(K)))
CALL F(T+H,F5,F4)

CH = H/20520.D0
DO 225 K = 1,NEQN

225 F1(K) = Y(K)+CH*((-6080.DO*YP(K) + (9295.D0%*F3(K)-5643.D0%F4(K)))
1 + (41040.DO*F1(K)-28352.D0%F2(K)))
CALL F(T+H/2.D0,F1,F5)

COMPUTE APPROXIMATE SOLUTION AT T + H
CH = H/7618050.D0

DO 230 K = 1,NEQN
230 S(K) = Y(K) +CH*((902880.D0*YP(X) + (3855735.D0*F3(K)

i ~-1371249.D0*F4(K))) + (3953664.D0*F2(K) + 277020.DO0*F5(K)))
IPR = 1

RETURN

END

‘SUBROUTINE SETRAP(F,SUBPHI,NPHI,NEQN,TOUT,H,ABSER,TZERO,
1 T,Y,YP,PHIO,PHIPO, TF,YF,YPF, PHIF,PHIPF,

_72-

2 T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,PHIB,PHIV,PHIPY,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,
4 REMIN,U26,
5 IFLAG,LFLAG,JUSTR, KOUNTR IFIRST,NFE,NEXTRA,
6 MPART,
7 OUTPUT, UPDATE , BOUNCE , IVAN,FIND,HFAILD)
C ___
IMPLICIT REAL*8 (A-H,0-Z)
C
DIMENSION Y(NEQN), YP(NEQN),YF(NEQN),YPF(NEQN),Y2(NEQN),YP2(NEQN)
DIMENSION F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN), F5(NEQN), F6(NEQN)
DIMENSION F7 (NEQN),F8(NEQN),F9 (NEQN)
DIMENSION PHIO(NPHI), PHIF(NPHI), PHIZ2(NPHI)
DIMENSION PHIL(NPHI), PHIR(NPHI), PHIB(NPHI), PHIV(NPHI) -
DIMENSION PHIPO(NPHI),PHIPF(NPHI),PHIP2(NPHI) _
DIMENSION PHIPL(NPHI),PHIPR(NPHI), PHIPV(NPHI)
LOGICAL OUTPUT ,UPDATE ,BOUNCE , IVAN, NOTFAL FIND HFAILD, EVALF
DATA MODEO/0/, MODEZ/Z/
Cmmm o e e e o i
DATA NOTFAL/.FALSE./
[e e e el
COMMON/FSTEP/ITOPH
[e il el B e R
EXTERNAL F,SUBPHI
[e e e e e e
Cc ANALYZE CONDITIONS FOR SUBROUTINE TRAPPD
Commm e e i o o o o e e e e e e e e e e e e
C ...
C
JUSTR = 0
=T+ H
IF (OUTPUT) TF = TOUT
C
DO 235 J = 1,NEQN
235 YF(J) = F1(J) Ph iy
B o e L L L fekek 'r*:" ,\--:‘: ey ':-'- TR TTORN v o i e
ITOPH = 1 ; .
O o e e e e e e ':'n'c'a'r':'nr-‘-:“-" o e o .
CALL F(TF,YF,YPF) : g
i L L L L L At i ‘--"-1‘ I R
ITOPH = 0
(M e e e e -ic-z':-.’.--.'.--.\--.“;-.fn':-;\--.'.--,‘.--.‘.--;’n'::'r*-;'r-.'r-.'r_ e
NFE = NFE + 1 !
C
UPDATE = .FALSE.
BOUNCE = .FALSE.
IVAN = .FALSE.
INDEX =
TOLER = ABSER
CALL SUBPHI(NPHI,INDEX,NEQN,TF,YF,YPF, PHIF PHIPF KOUNTR UPDATE
1 IVAN,BOUNCE, TOLER) k-
C i

DO 200 J = 1,NPHI

IF (DABS(PHIF(J)) .LT. U26) PHIF(J)

IF (DABS(PHIPF(J)) .LT. U26) PHIPF(J)
200 CONTINUE

INDEX = 0

DSIGN(U26,PHIF(J)) .
DSIGN(U26,PHIPF(J))

o

(=] aoOaooaoaoaoaaa

aaaaan

=]

N o]

aaoaa

245

- 73 -

EVALF = .FALSE.

IF (IFIRST .EQ. 2) GO TO 258

- e e e e R G T e R S N R W SN SR M e R e e S S S S S N S A M R S S S e M M W R e R S e S e S A S W R M W W

FIRST STEP (IFIRST = 1).
SEE IF A PHI COMPONENT VANISHED AT THE INITIAL T VALUE.

IF THE EMERGENCY FEATURE (NOTFAL = .TRUE.) IS USED, THE INTEGRA-
WILL BE RESTARTED FROM EACH TRAPPED POINT EVEN IF THE MULTPLE
TRAP OPTION IS DESIGNATED BY THE USER

IF (NOTFAL .AND. LFLAG .EQ. 2) LFLAG =1

ITEST = 0
DO 245 I = 1,NPHI

PHIV(I) = -1.0D0

IF (DABS(PHIO(I)) .LT. ABSER) ITEST = 1
CONTINUE

TZERO, THE MOST RECENT VANISHING POINT, NEEDS A DUMMY VALUE AT
THE BEGINNING OF THE INTEGRATION. SET TZERO EQUAL TO A POINT
IN THE OPPOSITE DIRECTION OF THE INTEGRATION.

TZERO =T -H .,

IF (ITEST .EQ. 0) GO TO 258

e e

A PHI COMPONENT VANISHED AT THE INITIAL T VALUE.
STUDY THE COMPONENT FOR POSSIBLE SIGN ERROR.

e e e e e e e e e R R e e S e e e e e e e e R N e e e e e e A e e e e e e e e

CALL PANIC TO ESTABLISH SUB-MESH STEP SIZE IF NOTFAL

" (EMERGENCY OPTION IS BEING USED)

IF (NOTFAL) CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,
PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,
T2,Y2,YP2,PHI2,PHIP2,PHIL,PHIPL,
PHIR,PHIPR,TL,TR,PHIB,
F1,F2,F3,F4,F5,F6,F7,F8,F9,

ABSER, KOUNTR ,NEXTRA ,EVALF ,FIND,
MODEO, IFIRST,U26)

o TNV, I - R UL I S

IND = 0
CALL VANISH(F,SUBPHI ,NPHI,NEQN,NFE,IND,T,Y,YP,

1 T,T2,TF,PHIO,PHIPO,PHI2,PHIF, PHIPF,PHIR,PHIPR,

2 PHIV,PHIPV,F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,KOUNTR,
3 EVALF , IVAN,NEXTRA,, U26 ,MODE2)

DO 256 I = 1,NPHI
IF (DABS(PHIO(I)) .GT. ABSER) GO TO 255

IF (DABS(PHIO(I)) .LT. U26) PHIO(I) = U26
PHIO(I) = DSIGN(PHIO(I),PHIV(I))

255

256

257

259

260

= 74 =

PHIV(I) = +1.0DO
UPDATE COMPONENT WHICH VANISHED AT INITTAL CONDITIONS
KOUNTR = KOUNTR + 1

IND = 1

UPDATE = .TRUE.
BOUNCE = .FALSE.
IVAN = .FALSE.

TOLER = ABSER

CALL SUBPHI (NPHI,IND,NEQN,T,Y,YP,PHIO,PHIPO,KOUNTR,UPDATE,

IVAN,BOUNCE ,TOLER)
GO TO 256
CONTINUE
PHIV(I) = -1.0D0
CONTINUE

DO 257 J = 1,NPHI

IF (DABS(PHIO(J)) .LT. U26) PHIO(J)
IF (DABS(PHIPO(J)) .LT. U26) PHIPO(J)
CONTINUE

TZERO = T

I=2

DSIGN(U26,PHIO(J))
DSIGN(U26,PHIPO(J))

o

CONTINUE

" IFIRST = 2

B AUV I~ UM B S I]

SET CONDITIONS AT "L" EQUAL TO THOSE AT "o"
SET CONDITIONS AT "R" EQUAL TO THOSE AT "F"

DO 259 J = 1,NEQN

Y2(J3) = Y(J)

YP2(J) = YP(J)
CONTINUE

DO 260 J = 1,NPHI
PHIL(J) = PHIO(J)
PHI2(J) = PHIO(J)
PHIR(J) = PHIF(J)
PHIPL(J) = PHIPO(J)
PHIP2(J) = PHIPO(J)
PHIPR(J) = PHIPF(J)
CONTINUE

TS = P

TT, & T

TR = TF

FIND = .FALSE.

IF (NOTFAL) CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,
PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,
T2,Y2,YP2,PHI2,PHIP2,PHIL,PHIPL,
PHIR,PHIPR,TL,TR,PHIB,
F1,F2,F3,F4,F5,F6,F7,F8,F9,
ABSER,KOUNTR,NEXTRA , EVALF ,FIND,
MODE2, IFIRST,U26)

aaaaoaoan

Gt an

(o]

- 75 =

IF (NOTFAL .AND. .NOT.FIND) GO TO 266
IF (FIND) HFAILD = .TRUE.

IF THE EMERGENCY FEATURE DETECTED A ZERO OVER A SUBSTEP,
CONDITIONS AT "L'" AND "R" ARE RESET IN PANIC. POINT "2"
IS SET EQUAL TO "L" (INCLUDING Y2,YP2)

PHIMAX

= 0.0D0
DO 262 J =1

,NPHT

IF (DABS(PHIR(J)) .LT. ABSER) GO TO 261
IF (PHIL(J)*PHIR(J) .GT. 0.0D0) GO TO 262
261 CONTINUE

THE JTH COMPONENT OF PHI EXPERIENCES A SIGN CHANGE OR PHIF(J)
VANISHES (PHIO(J) WILL NEVER BE IDENTICALLY ZERO AT THIS POINT
BECAUSE TRAPPD SETS ZERO VALUES OF PHI EQUAL TO UNIT ROUNDOFF
WITH APPROPRIATE SIGN)

IF (DABS(PHIR(J)) .LT. PHIMAX) GO TO 262

INDEX = J
PHIMAX = DABS(PHIR(J))

262 CONTINUE =

IF (INDEX .EQ. 0) GO TO 266

e e e e e e e e e e S G e A e e e e e e e R e S e M M S A e e A e e e e S e S A e e e e e S8 e e e e A S em A

CALL TRAPPD(F,SUBPHI,NPHI,NEQN,NFE, INDEX, IFLAG,T,Y,YP,
PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,
PHI2,PHIP2,PHIR,PHIPR,PHIL,PHIPL,TL,TR,PHIB,PHIV,PHIPV,
F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER, TZERO,

KOUNTR , MPART , UPDATE , OUTPUT , FIND, EVALF,
REMIN,U26 , LFLAG,NEXTRA)

(S S B SUR R

JUSTR = 1
IF (IABS(IFLAG) .GT. 2) RETURN

CONDITIONS AT THE END OF THE STEP HAVE BEEN SET IN TRAPPD

IVAN = .FALSE.
DO 267 J = 1,NEQN
Y(J) = YF(J)

267 YP(J) = YPF(J)

- 76 =

T =TF
DO 268 J = 1,NPHI
PHIV(J) = -1.0D0

PHIO(J) = PHIF(J)
268 PHIPO(J) = PHIPF(J)
¢
RETURN
END
e i 0 1
SUBROUTINE FLAGCK (IFLAG,INDIC,LFLAG,LSTART)
[e R e L L L T T r——
C
IF (INDIC .EQ. 1) GO TO 50
C
G ADJUSTMENTS TO IFLAG IF TRAPPD ROUTINE IS TO BE USED
C :
MFLAG = IABS(IFLAG)
LSTART = 0
C
¢
IF (MFLAG .LE. 25) GO TO 10
c
C ERROR IN TRAPPING PHI ON PREVIOUS STEP

PRINT 1985,IFLAG,LFLAG $*
1985 FORMAT(//,' TRAPPING ERROR ON PREVIOUS STEP. OR USER INPUT ERROR',

1 /,' IFLAG = ',I3,4X,/,' LFLAG = ',13,/)
RETURN .
C
10 CONTINUE
c
IF (MFLAG .GE. 3 .AND. MFLAG .LE. 8) RETURN
c 4
LFLAG = 0
IF (MFLAG .LE. 2) RETURN
c :
c TRAPPING OPTION TO BE USED. NO PROBLEMS WITH PREVIOUS IFLAGS.
c
ISGN = ISIGN(1,IFLAG)
IF (MFLAG .EQ. 11 .OR. MFLAG .EQ. 16) GO TO 12
c 3
GO TO 14
12 CONTINUE
c
LSTART = 1
MFLAG = MFLAG - 1
IFLAG = IFLAG - ISGN
14 CONTINUE
c
II = MFLAG - MFLAG/10%10
C
IF (II .EQ. 0) LFLAG = ISGN
IF (II .EQ. 5) LFLAG = ISGN*2

IF (LFLAG .EQ. 0) GO TO 30

MUST CHANGE IFLAG TO +1,2 OR -1,-2 TO CALL RKFST, IFLAG WILL .
BE RESET BEFORE RETURN TO USER UNLESS ERROR OCCURS

aaaaana

- 77 =

IFLAG = IFLAG / 10

C
RETURN
C
30 CONTINUE
C
C INACCEPTABLE VALUE OF IFLAG
STOP
C
50 CONTINUE
C
C ADJUST IFLAG IF TRAPPED OPTION HAS BEEN USED
c IF AN ERROR HAS OCCURRED, THE TRAPPING OPTION WILL BE
C SWITCHED OFF TEMPORARILY AND IFLAG WILL INDICATE THE PROBLEM
C
C LFLAG WILL STORE INFORMATION ON TRAPPING OPTION PREVIOUSLY
c USED.
C
IF (IFLAG .GT. 2) RETURN
C
IF (LFLAG .EQ. 0) RETURN
IF (IFLAG .EQ. 2 .AND. LFLAG .LT. 0) RETURN
C
c TRAPPING OPTION WAS USED SUCCESSFULLY--RESET IFLAG
C .
ISGN = ISIGN(1,IFLAG)
IFLAG = ISGN*15 + 5*LFLAG
C
RETURN
END
C
C OUTFLG PRINTS WARNING MESSAGES IF IFLAG INDICATES THAT
G. RKF45T HAS ENCOUNTERED DIFFICULTIES
C 4
SUBROUTINE OUTFLG(IFLAG)
C
LOGICAL ISKIRT
DATA ISKIRT/.TRUE./
C
G mm i mim im0 e e S e 8 0 e e e e
C
c IFLAG = 3 OR =4 IS A MINOR WARNING TO THE USER AND CONDITIONS
c HAVE BEEN (OR WILL BE) RESET IN RKFST FOR
C CONTINUING. IF A WARNING MESSAGE IS NOT WANTED
C FOR THESE VALUES OF IFLAG, SET ISKIRT = .TRUE.
C
(om0
c
IF (IABS(IFLAG) .EQ. 2) RETURN
C
IF (ISKIRT) GO TO 30
C

IF (IFLAG .EQ. 3) PRINT 1500 G
1500 FORMAT(/,54H THE USER SUPPLIED, RELATIVE ERROR TOLERANCE WAS TOO S
, GHMALL.
,/,54H RELERR HAS BEEN INCREASED TO A SUITABLE VALUE FOR CON
, S8HTINUING.,/,
53H SIMPLY RECALL RKF45T (NO CHANGE TO IFLAG IS NEEDED).

WM =

- 78 =

5 /)

IF (IFLAG .EQ. 4) PRINT 1501
1501 FORMAT(/,54H LIMITING NUMBER OF DERIVATIVE EVALUATIONS HAS BEEN EX

C

1 ,6HCEEDED,
2 /,54H MAXNFE = 3000 PERMITS APPROXIMATELY 500 STEPS TO BE A
3 , 9HTTEMPTED. , /)
C
30 CONTINUE
C

IF (IFLAG .EQ. 5) PRINT 1502
1502 FORMAT(/,54H A COMPONENT OF THE SOLUTION HAS VANISHED (AT BOTH END
,12HS OF A STEP),
/,46H MAKING A PURE RELATIVE ERROR TEST IMPOSSIBLE.
/,41H A NON-ZERO VALUE OF ABSERR MUST BE USED.
/,48H THE STEP-BY-STEP MODE IS A GOOD WAY TO PROCEED.,/)

LR LR

c
IF (IFLAG .EQ. 6) PRINT 1503
1503 FORMAT(/,54H THE REQUESTED INTEGRATION ACCURACY COULD NOT BE ACHIE
, 3HVED
,/ ,40H USING THE SMALLEST ALLOWABLE STEP SIZE.
,/,54H INTEGRATION TOLERANCES MUST BE INCREASED BEFORE THE S
,25HOLUTION CAN BE ATTEMPTED.,/)

W N

c
IF (IFLAG .EQ. 7) PRINT 1504
1504 FORMAT(/,54H TOO MUCH OUTPUT IS RESTRICTING THE NATURAT STEP SIZE
, 7HCHOICE.

,//,54H THE MULTIPLE TRAP OPTION MAY BE USEFUL (IFLAG=15,25),
,/,47H WITH TOUT AS THE TEMPORARY STOPPING CONDITION.

,/,54H INTERACTION WITH THE USER IS POSSIBLE DURING UPDATE
,/,40H IN THE USER SUPPLIED SUBROUTINE SUBPHI.
,//,34H OTHERWISE, USE THE ONE-STEP MODE.,/)

ot WM

C
IF (IFLAG .EQ. 8) PRINT 1505,IFLAG
1505 FORMAT(/,26H INVALID INPUT PARAMETERS:
,//,12H NEQN .LE. O
,/,33H T = TOUT AND IFLAG .NE. +1 OR -1
,/,28H RELERR OR ABSERR .LT. 0.0DO
,/s 3H OR
,/,46H IFLAG HAS BEEN SET TO AN INACCEPTABLE VALUE.
,/, 9H IFLAG = ,I3,/)

oUWk

C
IF (IFLAG .EQ. 94) PRINT 1506
1506 FORMAT(/,54H DIFFICULTIES WERE ENCOUNTERED USING THE TRAPPING OPTI

1 ,3HON.,/,31H TOO MANY ITERATIONS WERE USED.
2 »/,53H CONDITIONS HAVE BEEN RETURNED AT THE LAST VALUE OF T
3 »/,31H BEFORE THE BORDER WAS CROSSED. ,/)

C
IF (IFLAG .EQ. 97) PRINT 1507
1507 FORMAT(/,54H DIFFICULTIES WERE ENCOUNTERED USING THE TRAPPING OPTI

1 ,3HON.,/,46H THE TRAPPING ITERATION BOUNDS WERE TOO CLOSE.
2 ,/,56H CONDITIONS HAVE BEEN RETURNED AT THE LAST VALUE OF T
3 ,/,31H BEFORE THE BORDER WAS CROSSED. ,/)

123456789 123456789 123456789 123456789 123456789 1234
0 1 2 3 4 5

aaaaQ

RETURN

- TG -

S s B e S B e s e SN EE D M SE M S S SN S B N GBS NN S G e S e e e e e e R Em R SN M B B Em B Em S em e M e G e RN Gm En BN e e e e e e e e e e

e e e em e e e e em e e e e Gm e S N M B e M S Bm B BN B R e A B SN N S e e e e e e B M R R En R Sm Sm M Em e em e e e s e

SUBROUTINE TRAPPD(F,SUBPHI ,NPHI,NEQN,NFE,INDEX,IFLAG,
1 T,Y,YP,PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,
2 PHI2,PHIP2,PHIR,PHIPR,PHIL,PHIPL,TL,TR,PHIB,PHIV,PHIPY,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER, TZERO,
4 KOUNTR,MPART,UPDATE ,OUTPUT,FIND,EVALF,
5 REMIN,ZAPP,LFLAG,NEXTRA)

e e em mn ew e B o e e e B e e b e B e e e SR G Gu SN SR S e N S e RS e G Em S G Bm S A s Sn A ke e e B B S R a8 M e SR Em o em em e s e

5O om om mm BN o 0 5 ES Bm wR SN N BN G SN N B N D SN D SR N TH SR SN G G5 SN S5 S G5 6O G B G e e e e S e e A Sm M Em Em e e S M en A A Mm mm e A em e e e

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(NEQN),YP(NEQN),Y2(NEQN),YP2 (NEQN)

DIMENSION YF(NEQN).,YPF(NEQN),F1(NEQN),F2(NEQN)
DIMENSION F3(NEQN),F4(NEQN),F5(NEQN)

DIMENSION F6(NEQN),F7 (NEQN),F8(NEQN),F9 (NEQN)
DIMENSION PHIO(NPHI),PHIPO(NPHI),PHIF(NPHI),PHIPF(NPHI)
DIMENSION PHI2(NPHI),PHIP2(NPHI),PHIB(NPHI)

DIMENSION PHIR(NPHI),PHIPR(NPHI),PHIL(NPHI),PHIPL(NPHI)
DIMENSION PHIV(NPHI),PHIPV(NPHI)
COMMON/CRKF45 /I0PT, JOPT, IDUM(3)

DATA TBOUND/1.0D-10/

DATA MAXIT/25/ .

DATA MODEO/0/,MODE1/1/,MODE2/2/

LOGICAL UPDATE,IVAN,EVALF,ENDPT,OUTPUT, PUTOUT,
1 NOTFAL,FIND,BOUNCE , SEARCH
DATA NOTFAL/.FALSE./

EXTERNAL F,SUBPHI

s e e R e N SR R G R e e e S e G e e G e e e e e e W R e R D R M R MR M M G S S R Em m e Bm S S e Em em e R en M Em e e

IF (IOPT .EQ. 0) GO TO 777
PRINT 901,NFE,NEXTRA
PRINT 760,T,TF, INDEX
IF (FIND) PRINT 763,TL;TR,PHIL(INDEX),PHIR(INDEX)
DO 762 J = 1,NPHI
762 PRINT 761,J,PHIO(J),J,PHIF(J)
777 CONTINUE

IF (.NOT. FIND) EVALF = .FALSE.
CALL BOUNCD TO SEE IF ANY COMPONENT OF PHI HAS BOUNCED ON A
ZERO ON THE PREVIOUS STEP.

CALL BOUNCD(F , SUBPHI ,NPHI ,NEQN,T,Y,YP,PHIO,PHIPO,

1 TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,TL, TR, PHIB,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER, ZAPP,
4 ITEST, INDEX,NFE , NEXTRA , KOUNTR,
5 EVALF,FIND)

"IF (ITEST .EQ. 1) RETURN
IF (INDEX .EQ. 0) RETURN

oNoNoloNeNeNeNp!

= B0 =

. T T e T b Tl e S SRS SR ——

PANIC OPTION FOR STUDYING PHI THROUGHOUT THE INTEGRATION STEP
(EMERGENCY FEATURE=--PANIC NOT REFERENCED IF EMERGENCY FEATURE
IS USED IN RKFST)
IF (.NOT. FIND .AND. NOTFAL)
1 CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE, INDEX,T,Y,YP,
2 PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
3 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
A F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,KOUNTR,
5 NEXTRA ,EVALF, FIND,MODE1,MODEO , ZAPP)

T a0 e U S e B e D

620 CONTINUE

STEP =TF ~ T

TLSTAR = TL

TMAG = 0.5D0 * (DABS(TR) + DABS(TL))
ITERAT = 0

TOLER = ABSER

ENDPT = .FALSE.
PUTOUT = .FALSE. .

PHILL = PHIL(INDEX)
PHIPLL = PHIPL(INDEX)
PHIRR = PHIR(INDEX)
PHIPRR = PHIPR(INDEX)

IF |PHIR(INDEX)| .LT. TOLERANCE--GO TO 300 FOR UPDATE PREPARATION

IF PHI(INDEX) CHANGED SIGNS FROM TL TO TR--GO TO 55 TO ITERATE
UNTIL A ZERO IS TRAPPD.

(OTHERWISE, AN ERROR IN THE ANALYSIS WAS MADE IN RKFST--STOP)

IF (DABS(PHIR(INDEX)) .LT. TOLER) GO TO 300
IF (PHIL(INDEX)*PHIR(INDEX) .LT. 0.0D0) GO TO 55
PRINT 902, INDEX,PHIL(INDEX),PHIR(INDEX)

STOP

el R I R e e e e T

AT LEAST ONE COMPONENT OF PHI HAS BEEN BRACKETED.
BEGIN ANALYSIS FOR ISOLATING THE ZERO OF PHI (INDEX).

- e e e e e e e e e e e e e e R e e e e e R R e e e e e e R e A e e e e

e T T T T e e L R
- e e e e e e e e e e R e e e e e e e e e e e e e e e e e e e S e e e e e e e e e e

IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,
) F5,F6,F7,F8,F9,F1,MODE1,NFE ,NEXTRA, Y2)
EVALF = .TRUE.

D L T e e e T e T

LSTART DETERMINES THE SIDE FROM WHICH THE NEWTON APPROXIMATION
IS MADE.

aaaoaaoaaoan

- 81 -

IF PHI(INDEX) VANISHED ON THE PREVIOUS STEP, THE .
THE FIRST NEWTON ESTIMATE IS MADE FROM THE RIGHT SIDE.
OTHERWISE, THE ITERATION STARTS FROM THE SIDE FOR
| PHI (INDEX) | IS SMALLER.
FOR SUBSEQUENT ITERATIONS, START FROM THE PREVIOUS T#
LSTART = 0 START FROM LEFT HAND SIDE (TL SIDE)
LSTART = 1 START FROM RIGHT HAND SIDE (TR SIDE)
LSTART =
IF (DABS(PHIL(INDEX)) .GT. DABS(PHIR(INDEX))) LSTART =
IF (PHIV(INDEX) .GT. 0.0DO) \ LSTART = 1
STORE Y AND YP AT TO IN F2 AND F3 (WHICH ARE. NO LONGER NEEDED FOR
GENERATING THE SCALED SOLUTION
DO 116 J = 1,NEQN
F2(J) = Y2(J)
F3(J) = YP2(J)
116 CONTINUE

B e e e T T R e el e

B I R e e e e e e e e e e T e T e e L L L

MAJOR ITERATION LOOP
EXIT WHEN |PHI(INDEX)| < TOLERANCE

. T SR S P e e W S e e D R

- e e R Em e e R R N M e e e e M e e R e e e e e e e e e e e e e e e RN R e R S e e e e s e e e

120 CONTINUE

ITERAT = ITERAT + 1
IF (ITERAT .GT. MAXIT) GO TO 650

CHOOSE NEW INTEGRATION STEP SIZE TO LOCATE THE ZERO OF
PHI (INDEX) USING A FALSE-POSITION OR NEWTON-RHAPSON METHOD

B L e e e e e e e T T

CALL TSTAR(Z,T,TL,TR,TF,TLSTAR,TZERO,TMAG, PHLAST,
1 INDEX,NPHI,PHI2,PHIV,PHILL,PHIPLL,PHIRR,PHIPRR,
2 ABSER,TBOUND, ZAPP,LSTART , ITERAT, ISHIFT)

- = e e e R R R e e S S S e R e R S R s R e R M T A R A N R A e e R M e e S R B e e G G A Gm e e e
__

e U e S e S R B S e G B U e R S A s e W S M R A RS NS BN BN M R e S B S MR S e G BN S SR s e S R S R SN e

SIGMA = H/STEP

CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4, FS F6 F7,F8,F9,F1,
1 MODE2 ,NFE, NEXTRA Y2)

T2 = 2

CALL F(T2,Y2,YP2)

NFE = NFE + 1

NEXTRA = NEXTRA + 1

e e R T R R

EVALUATE PHI AND PHIP AT T2

aaa

- 82 =

UPDATE = .

BOUNCE = .FALSE.

IVAN = .FALSE.

INDX = INDEX

PHLAST = PHI2(INDEX)

CALL SUBPHI(NPHI, INDX,NEQN,T2,Y2,YP2,PHI2,PHIP2,KOUNTR,UPDATE,

1 IVAN, BOUNCE, TOLER)

IF (JOPT .EQ. 1) PRINT 1523,T,INDEX,PHILL,INDEX,PHI2(INDEX),PHIRR
1523 FORMAT(' T=',D15.7,2X,'INDEX=',13,/,' PHILL=',D15.7,2X, 'PHI2(',I3,

1 'y = ',D15.7,2X, 'PHIRR=",D15.7)

TOLER = ABSER

ADJUSTMENTS TO PHI2, PHIP2:

IF |PHI2|, |PHIP2| < UNIT ROUND-OFF, SET EQUAL TO UNIT ROUND-OFF

IF PHI(J) BOUNCED,.GIVE PHI2(J) THE SIGN OF PHIR(J)

L L L L L I T L L L T

DO 154 L = 1,NPHI

IF (DABS(PHI2(L)) .LT. ZAPP) PHI2(L) = DSIGN(ZAPP,PHI2(L))
IF (DABS(PHIP2(L)) .LT. ZAPP) PHIP2(L) = DSIGN(ZAPP,PHIP2(L))
154 CONTINUE

DO 155 J = 1,NPHI
IF (PHIB(J) .GT. 0.0D0) PHI2(J) = DSIGN(PHI2(J),PHIR(J))
155 CONTINUE

D R I e e e e T R

CALL SHIFTI (NPHI,T2,PHI2,PHIP2,PHIL,PHIPL, PHIR,PHIPR, PHIF,
1 PHIB,ABSER,LSTART,
2 PHLAST, PHILL, PHIPLL, PHIRR, PHIPRR, INDEX, ISHIFT)

W e O G e e e WD S B A e s S A S S e R A S S A e SR A e e e T U SSRGS N R SR e SE am e e e

s e e e e e e e R e e e e S e e e R e e e e e e e e R e

R e R)

I e e L e

CONTINUE ITERATING--CONVERGENCE WAS NOT ACHIEVED
ADJUST TL AND TR

180 CONTINUE
IF (PHI2(INDEX)*PHIR(INDEX) .GT. 0.0D0) GO TO 185

TL = T2

PHILL = PHI2(INDEX)
PHIPLL = PHIP2(INDEX)
LSTART = 0

STORE Y,YP AT TL IN F2,F3 WHICH ARE NO LONGER NEEDED IN SCALED

DO 182 J = 1,NEQN
F2(J) = Y2(J)
F3(J) = YP2(J)

182 CONTINUE

- 83 =

GO TO 120

185 CONTINUE

- e e e e e mm e e e e S e e e e e e R R R N A e e W SR T R R R e e e e e e e e e e e e e e e

TR = T2

PHIRR = PHI2(INDEX)
PHIPRR = PHIP2(INDEX)
LSTART = 1

GO TO 120

188 CONTINUE

B T e i e e e T T R

CONVERGENCE HAS BEEN ACHIEVED.
SAFETY CHECK--IS SOME COMPONENT ACROSS THE BOUNDARY AND OUTSIDE
THE CONVERGENCE RANGE ?

D L e e e T S S ——

ISTOP = 0
DO 178 J = 1,NPHI
IF (PHIB(J) .GT. 0.0DO0) GO TO 178

IF (PHIL(J)*PHI2(J) .GT. 0.0D0) GO TO 178
IF (DABS(PHI2(J)) .LT. TOLER) GO TO 178

COMPONENT J CHANGED SIGNS FROM TL TO T2 BUT HAS NOT YET VANISHED

PRINT 927,J, INDEX
PHIDIF = DABS(DABS(PHIL(J)) - TOLER)
PRINT 925,J,PHIL(J),PHI2(J),PHIR(J),PHIDIF,TOLER
ISTOP = 1
178 CONTINUE
IF (ISTOP .EQ. 0) GO TO 400
PRINT 1411
STOP

300 CONTINUE

e R e e e e e e e e e i T T L L L L T

PREPARE FOR EXIT--SOLUTION VANISHED AT T = TR SO NO ITERATIONS
WERE REQUIRED

- e S AN R e e e e S R AR N N AR S Em e R R e SR R e e e e e e A e R R e e A e e e e
e e B e e e A AN A e B MM Rm s e Em R e R e R e e R e S M e e e e e e e e e e A e e e e e e e e

e e e e e e e R e e e e RS e R e e e e S e e e e e e S e e e e e e e e e e e

ENDPT = .TRUE.
IF (OUTPUT) PUTOUT = .TRUE.
DO 303 J = 1,NEQN
Y2(J) = YF(J)
YP2(J) = YPF(J)
303 CONTINUE
T2 = TF
DO 306 J = 1,NPHI
PHI2(J) = PHIF(J)
PHIP2(J) = PHIPF(J)

Q

eRelosNoNoNoRoNoNoRoRoNolsloNoNoNoNoNoNoNeoNoloNeNoNeNe!

- 84 =~

306 CONTINUE
GO TO 400

D e T T e el e e e T

TR AND TF ARE NOT THE SAME POINT (TR SET BY EMERGENCY FEATURE
IN RKFST--A SUBSTEP OF THE INTEGRATION STEP WAS ANALYZED)
(THE SOLUTION HAS BEEN DELETED AT TR AND MUST BE RE-EVALUATED.)

T T e T e e e e

308 CONTINUE

SIGMA = (TR-T)/STEP
T2 = TR
CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,
1 MODE2 ,NFE , NEXTRA, ¥2)
CALL F(T2,Y2,YP2)
NFE = NFE + 1 :
NEXTRA = NEXTRA + 1
DO 310 I = 1,NPHI
PHI2(I) = PHIR(I)
PHIP2(I) = PHIPR(I)
310 CONTINUE

400 CONTINUE

e S M RS S e S D e e e e B s e e B W S M M e NS SN MBS e BB S A D BN B G R G e A B R A R e R M

e e N S N T S

T L L e e e T T I

EACH COMPONENT OF PHI WILL BE CHECKED TO SEE IF IT HAS
"VANISHED." IF PHI(J) HAS "VANISHED," SUBPHI WILL BE
REFERENCED TO UPDATE THIS PARTICULAR COMPONENT, I.E.,
INDEX WILL INDICATE THAT COMPONTENT WHICH IS BEING UPDATED.

SUBROUTINE TRAPPD ASSUMES THAT PHI WILL CHANGE SIGN

AS IT CROSSES A BOUNDARY UNLESS THE COMPONENT HAS

REMAINED IN THE "VANISHED" REGION FROM T TO T2. THEREFORE,
IF PHI(J) HAS BEEN TRAPPED (AND IS ESSENTIALLY ZERO), THE
SIGN IS CHANGED TO REFLECT CONDITIONS ACROSS THE BORDER.
THIS SIGN ADJUSTMENT IS MADE BEFORE ENTRY INTO SUBPHI FOR
UPDATING. IF PHI(J) VANISHED THROUGHOUT (T,T2), THE SIGN
REMAINS THE SAME. (THE SIGN OF A BOUNCING COMPONENT HAS
BEEN GIVEN THE SIGN OF PHIR DURING THE TRAPPING ANALYSIS.)

IF THE USER CHANGES THE SIGN OR MAGNITUDE OF PHI DURING UPDATE,
NEITHER WILL BE ALTERED UPON RE-ENTRY INTO TRAPPD AS LONG AS THE
MAGNITUDE IS GREATER THAN UNIT ROUND-OFF. IF THE USER-SUPPLIED
VALUE IS LESS THAN UNIT ROUND-OFF, THE VALUE WILL BE SET EQUAL
TO UNIT-ROUNDOFF WITH THE USER-SUPPLIED SIGN.

CALL VANISH(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,TLSTAR,T2,TF,
PHIO,PHIPO,PHI2,PHIL,PHIPL,PHIR,PHIPR,PHIV,PHIPV,
F1,F2,F3,F4,F5,F6,F7,F8,F9,

ABSER ,KOUNTR,EVALF, IVAN,NEXTRA , ZAPP ,MODE1)

N

NOTE: PHIPL IS CHANGED IN VANISH

S T e e T T]

UPDATE = .TRUE.

- 85 =

DO 410 J = 1,NPHI
C __ A S sp S S .

PHIV(J) = -1.0D0

IF (DABS(PHI2(J)) .GT. TOLER) GO TO 410

PHIV(J) = +1.0D0

= === m = = e e e m e
c THE JTH COMPONENT OF PHI HAS VANISHED--PHIPL(J) > O INDICATES
C THAT PHI(J) VANISHED THROUGHOUT (T,T2)
c ___
IND = J
IVAN = .FALSE.
IF (PHIPL(J) .GT. 0.0D0) IVAN = .TRUE.
C ---
¢ CHECK SIGN OF PHI(J) FOR POSSIBLE ADJUSTMENT
C ___
SGN = -1.D0
IF (IVAN) SGN = +1.0DO
C ---
c PHI2(J) AND PHIL(J) WILL HAVE OPPOSITE SIGNS IF PHI(J) DID NOT
g VANISH THROUGHOUT (TLSTAR, T2). IF PHI(J) DID VANISH THROUGHOUT
C THIS INTERVAL, PHI2(J) WILL BE GIVEN THE SIGN OF PHIL(J).
C ___
PHI2(J) = SGN*DSIGN(PHI2(J),PHIL(J))
C ___
c SAVE PHI2(J) VALUE BEFORE ENTERING PHI. IF THE USER CHANGES PHI2
c AND THE PRINTING OPTION IS AGTIVE, OUTPUT WILL ALSO BE GIVEN
C AFTER THE SUBPHI CALL.
C ___
SAVEPH = PHI2(J)
C ___
C STANDARD PRINTING OPTION--IOPT = 1
C ___
IF (IOPT .EQ. 0) GO TO 783
PRINT 780,T2,INDEX
DO 778 JJ = 1,NPHI
778 PRINT 779,JJ,PHI2(JJ)
783 CONTINUE
C ___
c CALL SUBPHI TO UPDATE PHI2
C ___
UPDATE = .TRUE.
BOUNCE = .FALSE.
INDD = IND
CALL SUBPHI(NPHI, INDD,NEQN,T2,Y2,YP2,PHI2,PHIP2,KOUNTR,UPDATE,
1 IVAN, BOUNCE , TOLER)
TOLER = ABSER
KOUNTR = KOUNTR + 1
DIFF = DABS(PHI2(J) - SAVEPH)
C ___
c STANDARD PRINTING OPTION:

C IF CONDITIONS ARE UPDATED, THEY WILL BE REPRINTED (FOR IOPT=1)

IF (IOPT .EQ. 0 .OR. DIFF .LT. ZAPP) GO TO 785
PRINT 780,T2,INDEX
DO 784 JJ = 1,NPHI

784 PRINT 779,JJ,PHI2(JJ)

R a o

- 86 -

785 CONTINUE

410 CONTINUE
TZERO = T2
MAKE MAGNITUDE ADJUSTMENT IN CASE A USER SUPPLIED, UPDATE VALUE
OF PHI IS LESS THAN UNIT-ROUNDOFF. (USER SUPPLIED SIGN REMAINS.)
DO 411 L = 1,NPHI
IF (DABS(PHI2(L)) .LT. ZAPP) PHI2(L) = DSIGN(ZAPP,PHI2(L))
411 IF (DABS(PHIP2(L)) .LT. ZAPP). PHIP2(L) = DSIGN(ZAPP,PHIP2(L))
UPDATE = .FALSE.
INDEX = 0
IF (LFLAG .LT. 2) . GO TO 450
IF MULTIPLE TRAPPING OPTION IS ACTIVE (LFLAG=2), CALL MULTOP
TO IDENTIFY FURTHER ZEROS.
JLIM = MPART + 1
IF (JLIM .GT. NPHI) GO TO 448
DO 447 J = JLIM,NPHI
IF (PHIV(J) .GT. 0) GO TO 450
447 CONTINUE
448 CONTINUE
ANY UPDATES OCCURRED WITH COMPONENTS IN THE MULTITRAPPING
OPTION
CALL MULTOP (F , SUBPHI ,NPHI ,NEQN,T,Y,YP,PHIO, PHIPO,
1 T2,Y2,YP2,PHI2,PHIP2,TF,YF,YPF, PHIF,PHIPF,PHIB,
2 TL,TR,PHIL, PHIPL,PHIR,PHIPR,
3 PHILL,PHIPLL,PHIRR,PHIPRR,TLSTAR, TZERO,
4 ABSER,ZAPP,F1,F2,F3,F4,F5,F6,F7,F8,F9,
5 INDEX ,MPART , KOUNTR,NFE ,NEXTRA , ITERAT,
6 OUTPUT, PUTOUT ,ENDPT, SEARCH, FIND)
IF (SEARCH) GO TO 620
RETURN
450 CONTINUE
PREPARE FOR EXIT--SOLUTION IS RETURNED AT THE TRAPPED POINT
(LFLAG = -2,-1, OR 1)
T TR
DO 415 J = 1,NEQN
Y(J) = Y2(J)
415 YP(J) = YP2(J)

DO 416 J = 1,NPHI
PHIO(J) = PHI2(J)
416 PHIPO(J) = PHIP2(J)

455 CONTINUE

[oNoNeoNe N

pHoNoNsNeloRoNoleWeoNe

= B7 -

IF AN OUTPUT POINT OCCURRED IN RKFST AND THE TRAPPED POINT
OCCURRS AT TF, OUTPUT WILL STILL BE .TRUE., OTHERWISE
OUTPUT = .FALSE.

OUTPUT = .FALSE.
IF (PUTOUT) OUTPUT = .TRUE.

RETURN

B e T e L

L T T e e T e

e e e e R R e R e R N S s R e e BN N B RN G e e S b e e e e e R R e e e e s S N e e e e e B e e e e em mm e A

THE DIFFERENCE BETWEEN THE TRAPPING BOUNDS IS BELOW

AN ACCEPTABLE TOLERANCE--TERMINAL ERROR--IFLAG = 97.

OR

ITERATION REQUIRES TOO MANY STEPS--TERMINAL ERROR--IFLAG = 94
648 CONTINUE

IFLAG = 97

GO TO 652
650 CONTINUE

IFLAG = 94
652 CONTINUE

e e e e e e e e e e e M N W e G b S M b e A SN e e e e e e e S e e e S B e e e e e e e e e G e e e e A Em e e

CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE, INDEX,T,Y,YP,
PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
PHIL,PHIPL,PHIR,PHIPR,TL, TR, PHIB,
F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,KOUNTR,

NEXTRA,EVALF ,FIND,MODE1,MODEO, ZAPP)

E= N OL I G

DO 356 J = 1,NEQN
YN = F2(d)
YP(J) = F3(J)
356 CONTINUE
T = TIL
DO 367 J = 1,NPHI
PHIO(J) = PHIL(J)
PHIPO(J) = PHIPL(J)
367 CONTINUE

760 FORMAT(' ENTERED TRAPPD WITH T = ',D15.7,' AND TF = ',D15.7,
1 2%.' INDEX = ',I3)

761 FORMAT(' PHIO(',I2,') = ',D15.7,2X,' PHIF(',12,') = ',D15.7)
763 FORMAT(' FROM PANIC ROUTINE--TL = ',D15.7,3X,' TR = ',D15.7,/,
1 ' PHIL(INDEX = ',D15.7,3X, 'PHIR(INDEX) = ',D15.7)

779 FORMAT(' PHIO(',I2,') = ',D15.7)
780 FORMAT(' CONDITIONS=----- AFTER SUCESSFUL TRAP--T = ',D15.7,2X,
1] ' INDEX = ',I3)

901 FORMAT(' NFE = ',15,2X,' NEXTRA = ',bI5)
902 FORMAT(//,' TRAPPED WAS REFERENCED WHEN PHI NEITHER VANISHED NOR',
¥ ' CHANGED SIGN',/,' INDEX = ',I3,2X,'PHIL(INDEX) ="',

- 88 =

2 D15.7,2X, "PHIR(INDEX) = ',D15.7,//,"' TERMINAL ERROR',//)
925 FORMAT(' J,PHIL,PHI2,PHIR, |PHI2-TOLER|,TOLER',/,2X,I3,
1 3(2X,D15.7),/,2(2X,D15.7))
927 FORMAT(' TERMINAL ERROR WITH COMPONENT J = ',I3,/,
| ' INDEX = ',I3)
1411 FORMAT(//,' TERMINAL ERROR IN TRAPP--ATTEMPT TO EXIT WITHOUT '
i ,' COMPLETE TRAPPING',/)
C
RETURN
END

SUBROUTINE BOUNCD (F,SUBPHI,NPHI,NEQN,T,Y,YP,PHIO,PHIPO,
1 TF,YF,YPF,PHIF, PHIPF,T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR, TL,TR,PHIB,

3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER, ZAPP,
4 ITEST, INDEX,NFE , NEXTRA , KOUNTR,
5 EVALF , FIND)

IMPLICIT REAL#*8 (A-H,0-Z)
DIMENSION Y(NEQN),YP(NEQN),YF(NEQN),YPF(NEQN),Y2(NEQN),YP2(NEQN)
DIMENSION F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN)

DIMENSION F5(NEQN),F6(NEQN),F7(NEQN),F8 (NEQN),F9 (NEQN)
DIMENSION PHIO(NPHI), PHIF(NPHI), PHI2(NPHI), PHIB(NPHI)
DIMENSION PHIL(NPHI), PHIR(NPHI)

DIMENSION PHIPO(NPHI),PHIPF(NPHI),PHIP2(NPHI)

DIMENSION PHIPL(NPHI),PHIPR(NPHI)

DATA MODE0/0O/,MODE3/3/
LOGICAL EVALF,FIND,UPDATE,IVAN,BOUNCE

EXTERNAL F,SUBPHI

- B W e e e AR e G S G R e R S e e e T S e e e e e s BN S e S e R W e

T T R I e e e e e T T B e L L

CALL PANIC (IN SPECIAL MODE) TO SEE IF ANY COMPONENT OF PHI
MAY HAVE "BOUNCED" ON A ZERO.

[1 = > B oo B o IR e B

CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T ,Y ,YP ,PHIO,PHIPO,
TF,YF,YPF,PHIF ,PHIPF, T2,Y2,YP2,PHI2,PHIP2,
PHIL,PHIPL,PHIR,PHIPR,TL, TR, PHIB,
F1,F2,F3,F4,F5,F6,F7,F8,F9, ABSER, KOUNTR,
NEXTRA,EVALF , FIND,MODE3,MODEO , ZAPP)

W N

ITEST = 0
DO 602 J = 1,NPHI
IF (PHIB(J) .LT. 0.0D0) GO TO 602

COMPONENT J "BOUNCED" ON A ZERO--CALL SUBPHI IN AN UPDATE MODE
WITH CONDITIONS AT T IN CASE ANY CHANGES NEED TO BE MADE.

LOGICAL INDICATOR--BOUNCE=.TRUE.

DUMMY COUNTER, KNT, IS SENT OVER INSTEAD OF KOUNTR

KNT = -1. 1IF KNT IS RETURNED AS -2 FROM ANY UPDATE CALL,
THE ANALYSIS WILL RETURN TO RKFST AND THE INTEGRATION
STEP WILL BE REPEATED. (THIS ALLOWS THE USER TO CHANGE
THE ODE SYSTEM AT TO IF THE BOUNCING FUNCTION HAS CAUSED

aaaaoacaoaoaan

Q

Qaaa

- 89 -

DIFFICULTIES)
KNTR = -1
UPDATE .TRUE.
BOUNCE .TRUE.
IVAN = .FALSE.
TOLER = ABSER

mnn

INDX = J
CALL SUBPHI(NPHI, INDX,NEQN,T2,Y2,YP2,PHIO,PHIPO,KNTR ,UPDATE,

1 IVAN, BOUNCE , TOLER)

DO 601 L = 1,NPHI

IF (DABS(PHIO(L)) .LT. ZAPP) PHIO(L) = DSIGN(ZAPP,PHIO(L))
IF (DABS(PHIPO(L)) .LT. ZAPP) PHIPO(L) = DSIGN(ZAPP,PHIPO(L))
IF (PHIB(L) .GT. 0) PHIO(L) = DSIGN(PHIO(L),PHIR(L))

601 CONTINUE
IF (KNTR .EQ. -2) ITEST =1
602 CONTINUE A

IF (ITEST .EQ. 0) RETURN

INTEGRATION IS TO BE CONTINUED FROM T--RETURN TO RKFST AND REPEAT
THE INTEGRATION STEP

T = T2

DO 603 J = 1,NEQN

Y(J) = Y2(J)

¥P(J) = YP2(.J)
603 CONTINUE

DO 604 J = 1,NPHI

PHIO(J) = PHI2(J)

PHIPO(J) = PHIP2(J)
604 CONTINUE

RETURN
END

SUBROUTINE SHIFTI(NPHI,T2,PHI2,PHIP2,PHIL,PHIPL,PHIR,PHIPR,PHIF,
1 PHIB,ABSER,LSTART,
2 PHLAST, PHILL,PHIPLL, PHIRR, PHIPRR, INDEX, ISHIFT)

- e e e e e e e e e e S e e e e e e e e e e e R e e e e A e e e e e e e e e

IMPLICIT REAL#8 (A-H,0-Z)
COMMON/CRKF45 /IDUM1(2) , IOPT, IDUM2 (2)

DIMENSION PHIZ2(NPHI), PHIL(NPHI), PHIR(NPHI), PHIF(NPHI)
DIMENSION PHIP2(NPHI),PHIPL(NPHI),PHIPR(NPHI), PHIB(NPHI)
LOGICAL RSHIFT

. e o B e e R e e R e e R e S e e N R e e e e e S M N e RN A e e e e R e e S e e A e e e e

O e T I e e e e R

ISHIFT = 0

INDEX DESIGNATES THE COMPONENT OF PHI(J) CURRENTLY BEING
TRAPPED.

oo

- 90 =~

SAFETY CHECK: _
HAS A NON-DETECTED ZERO BEEN FOUND ON THIS STEP?

(BOUNCING COMPONENTS WILL NOT BE ANALYZED)

RSHIFT = .FALSE.

DO 156 J = 1,NPHI

IF (PHIB(J) .GT. 0.0D0) GO TO 156

IF (DABS(PHI2(J)) .LT. ABSER) GO TO 156

IF (PHIL(J)*PHI2(J) .LT. 0.0DO .AND. PHIL(J)*PHIR(J) .GT. 0.0D0)

g RSHIFT = .TRUE.
156 CONTINUE
IF (.NOT. RSHIFT) GO TO 159
A NON-DETECTED ZERO HAS BEEN FOUND. THE SIGN OF PHIR WILL BE
CHANGED TO MATCH THAT OF PHI2 FOR THESE COMPONENTS.
DO 158 J = 1,NPHI :
IF (PHIL(J)*PHIR(J) .GT. 0.0DO .AND. PHI2(J)*PHIL(J) .LT. 0.0DO)
160 TO 157
GO TO 158
157 CONTINUE

IF (IOPT .EQ. 1). PRINT 1531,J,PHIL(J),PHI2(J),PHIR(J),PHIF(J)
PHIR(J) =-PHIR(J) ; :

158 CONTINUE

159 CONTINUE

IF (NPHI .EQ. 1) RETURN

e e e e e B e S e e e e e R S S S S AN S A S A A AN R NS S G e S S W S

e e e e e e e e R e S em e M RN M e e e S M R SR SN T SN W R mm s A S M M M e AW N R W M m e N S S e Rm M G e e e m e e e

e e e e e A e e e e e e e e e e G e e S e e e e e e e e e A e e e e e e e e A e s

DO 160 J = 1,NPHI
IF (PHIB(J) .GT. 0.0D0) GO TO 160
IF (PHI2(J)*PHIL(J) .GT. 0.0D0) GO TO 160
GO TO 162

160 CONTINUE

RETURN

162 CONTINUE

L e e e e e Y

IND = INDEX

INDEX =

IF (J .EQ. NPHI) GO TO 168
JP1l=J + 1

DO 165 J = JP1,NPHI

- 91 =

IF (PHIB(J) .GT. 0.0DO0) GO TO 165
IF (PHIL(J)*PHIR(J) .GT. 0.0D0) GO TO 165
IF (PHI2(J)*PHIR(J) .LT. 0.0D0) GO TO 165

c
[e T
C COMPONENT J WAS TRAPPD AND T2 IS ACROSS THE BOUNDARY.
C ---
c
IF (DABS(PHI2(J)) .LT. DABS(PHI2(INDEX))) GO TO 165
IF (J .NE. IND .AND. IOPT .EQ. 1)
1 PRINT 972,IND,J,IND,PHI2(IND),J,PHI2(J)
INDEX = J
165 CONTINUE
168 CONTINUE
C
IF (IND .EQ. INDEX) RETURN
i
C ___
C INDEX HAS BEEN SHIFTED
C ___
C
ISHIFT = 1
PHILL = PHIL(INDEX)
PHIPLL = PHIPL(INDEX)
PHIRR = PHIR(INDEX)
PHIPRR = PHTPR(INDEX)
IF (LSTART .EQ. 0) PHLAST = PHILL
IF (LSTART .EQ. 1) PHLAST = PHIRR
c
972 FORMAT(/,' INDEX IS BEING CHANGED IN TRAPPD: INDEX = ',6I3,2X,
1 'J = ',13,/,
2 ' PHILY,18.Y) = ',D18.2, 2K, PHIC',I8.YY = ' . D18.7)

1531 FORMAT(' UNDETECTED ZERO--I,PHI(I)--L,2,R,F',/,I3,4(1X,D13.6))
C

RETURN
END
C ___
SUBROUTINE TSTAR(Z,T,TL,TR,TF,TLSTAR,TZERO, TMAG, PHLAST,
1 INDEX,NPHI ,PHI2,PHIV,PHILL, PHIPLL, PHIRR, PHIPRR,
2 ABSER, TBOUND , ZAPP, LSTART, ITERAT, ISHIFT)
C ___
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION PHI2(NPHI),PHIV(NPHI)
COMMON/CRKF45 /IDUM1(3) , IOPT, IDUM2
v
DATA FRACT/0.50D0/
LOGICAL RATDIF
C
C ___
+ z1 GIVES NEWTON-ESTIMATE.
g ZCHORD GIVES FALSE-POSITION ESTIMATE.
C LSTART DESIGNATES THE SIDE FROM WHICH THE NEWTON ESTIMATE IS
G EVALUATED.
C ---
IF (LSTART .EQ. 0) Z1 = TL - PHILL/PHIPLL
IF (LSTART .EQ. 1) Z1 = TR - PHIRR/PHIPRR

ZCHORD = TL - PHILL * (TR-TL)/(PHIRR-PHILL)
Z =121

- 92 -

IF ((TR-Z)*(Z-TL) .LT. ZAPP) Z = ZCHORD
IF (IOPT .EQ. 1) PRINT 1504 ,LSTART,Z1,ZCHORD,Z
C
C ...
C SAFETY CHECKS: IS T* NEAR THE LAST LOCATED ZERO POINT (TZERO),
C OR IS CONVERGENCE SLOW ?
C ...
G
c IF THE DISTANCE BETWEEN Z AND THE LAST ZERO POINT IS 5% OF THE
B ORIGINAL INTERATION INTERVAL, GIVE THE PROCDEURE A FRACTIONAL-
C INTERVAL KICK TO GET IT OUT OF THIS REGION.
c
RATDIF = .FALSE.
IF (PHIV(INDEX) .GT. 0.0D0 .AND.
1 DABS(Z-TZERO) .LT. 0.05*DABS(TF-TLSTAR)) GO TO 140
¢ :
120 CONTINUE
IF (ITERAT .ILE. 3) GO TO 150
IF (ISHIFT .EQ. 1) GO TO 150
IF (LSTART .EQ. 0) RATIO = DABS (PHILL/PHLAST)
IF (LSTART .EQ. 1) RATIO = DABS(PHIRR/PHLAST)
IF (RATIO .LE. 0.20D0) GO TO 150
RATDIF = .TRUE.
6
140 CONTINUE .
IF (IOPT .EQ. 1) PRINT 1500,Z,TLSTAR,TL,TR,PHILL,PHIRR,
1 PHLAST,RATIO
C
C ...
G TROUBLE SHOOTING BLOCK:
(¢ IF PHIO(INDEX) IS NEAR ZERO (I.E., IF IT VANISHED ON THE PRE-
C VIOUS STEP) CONVERGENCE DIFFICULTIES ARISE IF THE LEFT END
C END POINT IS USED. GIVE THE ITERATION PROCESS A "FRACTIONAL-
C INTERVAL" KICK TO GET PHI OUT OF THE "VANISHED" REGION.
C
C IF CONVERGENCE IS SLOW AFTER 2 ITERATIONS (IF LESS THAN A
G DIGIT OF ACCURACY HAS BEEN ACHIEVED DURING THE LATEST ITERA-
& TION) GIVE THE ITERATION PROCESS A "FRACTIONAL-INTERVAL"
o KICK.
C _____________________________ s e e e e
C
¢ ZCHORD GIVES A SPECIFIED FRACTION OF |TR-TL| AS ESTIMATE
g Z1 GIVES NEWTON-RHAPSON ESTIMATE STARTING FROM TR
¢
IF (LSTART .EQ. 0) ZCHORD = TL + FRACT * (TR - TL)
IF (LSTART .EQ. 1) ZCHORD = TR - FRACT * (TR - TL)
Z1 = TR - PHIRR/PHIPRR
IF (RATDIF) Z1 = ZCHORD
IF (DABS(Z1-TZERO) .LT. 0.05%DABS(TF-TLSTAR)) Z1 = ZCHORD
IF ((TR-Z1)*(Z1-TL) .LT. 0.0DO) Z1 = ZCHORD
Z = %1
IF (IOPT .EQ. 1) PRINT 1501,TL,Z,TR,TLSTAR
RETURN
150 CONTINUE
IF (IOPT .EQ. 1) PRINT 1502,TL,Z,TR
5

1500 FORMAT(/,' DIFFICULTIES IN ESTIMATING TSTAR:',/,
1 ' CURRENT EST. = ',D23.16,2X, 'PREVIOUS EST. = ',

= §3 =

2 D23.16,/,' TL = ',D23.16,2X,'TR = ',D23.16,/,' PHILL=',
3 D15.7,2X, 'PHIRR=',D15.7,2X, ' PHLAST=',D15.7,2X,
4 /," RATIO= ',D15.7)

1501 FORMAT(/,' DIFFICULTIES WITH THE LEFT BOUND SEEM TO OCCUR:',/,
i ' (START FROM R.H.S. AND DO NOT USE FALSE-POSITION)',/,

2 ' TI=',D15.7,2X,'Z2=',D23.16,/,' TR=',D15.7,2X, 'TLSTAR=',D23.17)
1502 FORMAT(/,' T* ESTIMATE:',/,' TL=',D15.7,2X,'Z=',D15.7,2X,'TR=',

1 P1547)
1504 FORMAT(/,' TSTAR ESTIMATES:',/,' LSTART=',613,2X,' 2Z1=',D23.16,2X,
1 ' ZCHORD=',D23.16,/,' SELECTED Z=',D23.16)
RETURN
END

e L I L L e e e L

SUBROUTINE MULTOP(F,SUBPHI,NPHI,NEQN,T,Y,YP,PHIO,PHIPO,

1 T2,Y2,YP2,PHI2,PHIP2,TF,YF,YPF,PHIF,PHIPF,PHIB,
2 TL,TR,PHIL,PHIPL,PHIR,PHIPR,

3 _ PHILL,PHIPLL, PHIRR,PHIPRR, TLSTAR, TZERO,

4 ABSER, ZAPP ,F1,F2,F3,F4,F5,F6,F7,F8,F9,

5 INDEX , MPART , KOUNTR ,NFE ,NEXTRA , ITERAT,

6 OUTPUT , PUTOUT , ENDPT, SEARCH, FIND)

- e e N G B e B S e e I S W S e G G e B WD A B GR AE R SE SN A BN WA S S

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(NEQN), Y2(NEQN),YF(NEQN),YP(NEQN),YP2(NEQN),YPF(NEQN)
DIMENSTON PHIO(NPHI), PHI2(NPHI), PHIF(NPHI), PHIB(NPHI),

1 PHIL(NPHI), PHIR(NPHI)

DIMENSION PHIPO(NPHI),PHIP2(NPHI),PHIPF(NPHI),

1 PHIPL(NPHI) , PHIPR (NPHI) _

DIMENSION F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN),F5(NEQN),

f F6 (NEQN) ,F7 (NEQN) ,F8 (NEQN) ,F9 (NEQN)

COMMON/CRKF45 /IDUM1 (4) , IOPT

LOGICAL OUTPUT,PUTOUT,ENDPT, SEARCH, BOUNCE ,UPDATE , IVAN,FIND,EVALF
DATA EVALF/.TRUE./ |

EXTERNAL F,SUBPHI

D e e e e e e e e e
D I I L

CHECK TO SEE IF ANY COMPONENTS STILL NEED TO BE TRAPPD
(OPTION IFLAG = 15, 25, (LFLAG=2), IS BEING USED)
REEVAULATE PHIF AND PHIPF SINCE THE USER MAY HAVE

CHANGED THEM. CONDITIONS AT T2 WILL BECOME LEFT CONDITIONS
(USER SHOULD HAVE ALREADY MADE ANY DESIRED CHANGES TO PHI2
DURING TRAPPING UPDATES)

UPDATE = .FALSE
BOUNCE = .FALSE

IVAN = .FALSE -
SEARCH = .FALSE

INDX = 0

TOLER = ABSER

= B =

CALL SUBPHI(NPHI, INDX,NEQN,TF,YF,YPF,PHIF,PHIPF,KOUNTR,UPDATE,
1 IVAN,BOUNCE, TOLER)
TOLER = ABSER

i e e T e T R DS S S e
C IF ANY COMPONENT OF PHIF IS ZERO--CHANGE TO UNIT ROUND-OFF
(om0 o
DO 410 J = 1,NPHI
IF (DABS(PHIF(J)) .LT. ZAPP) PHIF(J) = DSIGN(ZAPP,PHIF(J))
IF (DABS(PHIPF(J)) .LT. ZAPP) PHIPF(J) = DSIGN(ZAPP,PHIPF(J))

410 CONTINUE
IF (.NOT. ENDPT) GO TO 420

G === e e e e e e e e e e e e e e
c IF T IS AT THE END POINT, RETURN.
Cmmm e e o o o e e e o e e e e e
T = TF
DO 412 J = 1,NEQN
Y(J) = YF(J)

412 YP(J) = YPF(J)
DO 414 J=1,NPHI
PHIO(J) = PHIF(J)
414 PHIPF(J) = PHIPF(J)

RETURN
Cm=-m-mmmmmeeeessecaseeceemseeeememceeeceme——————- EREEETEEE PR PP
c SET NEW INITIAL CONDITIONS: TZERO BECOMES TLSTAR
C ______________________ e
420 CONTINUE
i T = T2
TL = T2
= IR
TLSTAR = T2
TZERO = T2
DO 424 J = 1,NPHI
PHIL(J) = PHI2(J)
PHIPL(J) = PHIP2(J)
C PHIO(J) = PHIO(J)
C PHIPO(J) = PHIPO(J)
PHIR(J) = PHIF(J)
PHIPR(J) = PHIPF(J)
424 CONTINUE
DO 425 J = 1,NEQN
Y(J) = Y2(3)
YP(J) = YP2(J)
CONTINUE

e e e e e e e e

aaaonagaa
I~
]
(%))

- e e e B e SRR e e SR e e e e e e e B S S R e s e e N R R MW SN S Sm e s e NN S R R SN SR W T G Em S S SR SR SR S M W m wm

INDEX = 0
PHIMAX = 0.0DO
DO 428 J = 1,MPART
IF (DABS(PHIF(J)) .LT. TOLER) GO TO 427
IF (PHIL(J)*PHIF(J) .GT. 0.0D0) GO TO 428
427 CONTINUE
IF (DABS(PHIF(J)) .LT. PHIMAX) GO TO 428
INDEX = J
PHIMAX = PHIF(J)
428 CONTINUE

IF (INDEX .EQ. 0) GO TO 435

- 95 -

1515 FORMAT(//,' TRAPPING CONTINUES WITH NEW COMPONENT--INDEX = ', I4,
1 /,' PHIL(INDEX) = ',D15.7,2X,' PHIR(INDEX) = ',D15.7)

CALL BOUNCD TO SEE IF ANY COMPONENT OF PHI HAS BOUNCED ON A
ZERO ON THE PREVIOUS STEP.

CALL BOUNCD (F, SUBPHI ,NPHI,NEQN,T,Y,YP,PHIO, PHIPO,

1 " TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,

2 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,

3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER, ZAPP,

4 ITEST, INDEX,NFE ,NEXTRA , KOUNTR,

5 EVALF,FIND)

IF (ITEST .EQ. 1) GO TO 455
IF (INDEX .EQ. 0) . GO TO 435

B L T L L L T R SR —

ITERAT = 0

PHILL = PHI2(INDEX)
PHIPLL = PHIP2(INDEX)
PHIRR = PHIF (INDEX)
PHIPRR = PHIPF (INDEX)
DO 434 J = 1,NEQN

F2(J) = Y2(J)
434 F3(J) = YP2(J)
LSTART = 1

IF (IOPT .EQ. 1) PRINT 1515,INDEX,PHILL,PHIRR

SEARCH = .TRUE.
RETURN

435 CONTINUE

e A e e S R RN M e M S EE R e e S D R N e e e e R M e e R e R e e R e s e S e e e R e e em e e R A e e e e S S e e e e

T i TR
DO 438 J = 1,NEQN
Y(J) = YF(J)

438 YP(J) = YPF(J)

DO 439 J = 1,NPHI
PHIO(J) = PHIF(J)
439 PHIPO(J) = PHIPF(J)

Q

455 CONTINUE

IF AN OUTPUT POINT OCCURRED IN RKFST AND THE TRAPPED POINT
OCCURRS AT TF, OUTPUT WILL STILL BE .TRUE., OTHERWISE
OUTPUT = .FALSE.

aaoaann

OUTPUT = ,FALSE.
IF (PUTOUT) OUTPUT = .TRUE.

RETURN
END

aoaoaoaoaoaaa (]

Q

- 0§ =

e e e e R e e R e e e e e e e e e e S e e e e e e e e R e e e e e A e e G e

I T R A L L L L T T T e a——

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/CRKF45/ITRAP,JTRAP ,ISHFTI , ITSTAR, IMULTI

ITRAP ==> PRINTING IN TRAPPD, INPUT AND OUTPUT

JTRAP ==> PRINTING IN TRAPPD, CONDITIONS AFTER EACH PHI
EVALUATION

ISHFTI ==> PRINTING IN SHIFTI

ITSTAR ==> PRINTING IN TSTAR

IMULIT ==> PRINTING IN MULTIPLE TRAP FEATURE (AFTER EACH UDPATE)

DATA ITRAP/O/,JTRAP/O/,ISHFTI/0/,ITSTAR/O0/,IMULTI/0/

e L L L L e e e e e T T T T Lk LT penpp—

SUBROUTINE VANISH(F,SUBPHI ,NPHI ,NEQN,NFE,INDEX,T,Y,YP,
1 TLSTAR,T2,TF,PHIO,PHIPO,PHI2,PHIL,PHIPL,PHIR,PHIPR,PHIV,PHIPV,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,

4 ABSER,KOUNTR,EVALF,IVAN,NEXTRA,ZAPP, IROUTE)

L L L L T b e S ———

- e e e e e e e e e e e e e W e e B Sm e R e R e R R s s e R e W e e R e S e e e e e e e

SUBROUTINE FOR CHECKING TO SEE IF A COMPONENT OF PHI HAS
VANISHED THROUGHOUT THE INTERVAL

USED IN CONJUNCTION WITH TRAPPD--IROUTE = 1
OR IN CONJUNCTION WITH RKFST --IROUTE = 2 IF PHI VANISHES AT
INITIAL CONDITIONS

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(NEQN),YP(NEQN)

DIMENSION F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN),F5(NEQN)
DIMENSION F6(NEQN),F7(NEQN),F8(NEQN),F9 (NEQN)

DIMENSION PHIO(NPHI),PHIPO(NPHI),PHI2(NPHI)

DIMENSION PHIL(NPHI),PHIPL(NPHI),PHIR(NPHI),PHIPR(NPHI)
DIMENSION PHIV(NPHI),PHIPV(NPHI)

DATA POINTS,NPOINT/4.0DO,4/

IF THE USER WISHES TO INCREASE THE NUMBER OF TEST POINTS
THROUGHOUT THE INTERVAL, POINTS AND NPOINT NEED TO BE CHANGED.
SUGGESTED VALUES ARE POINTS = 4.0DO, NPOINT = &4

(NPOINT IS THE INTEGER VALUE OF POINTS.)

DATA IPRINT/0/

DATA ISCAL1,ISCAL2/1,2/

EXTERNAL F,SUBPHI

LOGICAL UPDATE,IVAN,EVALF, BOUNCE

TOLER = ABSER
STEP = TF - T

Gtraotnaoaaaaaocaaaaa s

- 97 -

IF (IROUTE .EQ. 2) GO TO 23

- e e S N S S M e T S e T S M e Em e A M R TR e e SR A e e S S e e e e e e R e e e e e e

CHECK TO SEE IF ANY COMPONENT OF PHI HAS VANISHED INITIALLY
AND FINALLY

- S S e e S e e N S R e Am S S S SE S RN SR N e A RN R W S AN A EE B SR R AR SR R S A R G e e WS R e e e e S e e e e

CHECK EACH COMPONENT OF PHI TO SEE IF ANY HAVE VANISHED
INITIALLY AND FINALLY

ITEST = 0 IF NO PHI(J) VANISHED INITIALLY AND FINALLY
= 1 IF AT LEAST ONE PHI(J) VANISHED INITIALLY AND FINALLY
ITEST = 0

DO 22 J = 1,NPHI
IF (DABS(PHI2(J)) .GT. TOLER) GO TO 21
PHI(J) VANISHED AT T2. DID PHIO(J) ALSO VANISH ?
IF (DABS(PHIO(J)) .GT. TOLER) GO TO 21
PHI(J) VANISHED INITIALLY AND "FINALLY" FOR COMPONENT J
PHIPL(J) = 1.0D0
ITEST = 1
GO TO 22
21 CONTINUE
PHIPL(J) = =-1.0D0
22 CONTINUE
IF (ITEST .EQ. 0) RETURN

23 CONTINUE

- e R e e e R e e e e R R R e e e e e e e R e e e e e e e e S e e e e e e e B e e e e R e e R e e e e e e e e e

PHI NEEDS TO BE STUDIED THROUGHOUT THE INTERVAL
A COMPONENT OF PHI HAS VANISHED INITIALLY AND FINALLY

OR A COMPPONENT OF PHI HAS VANISHED AT THE INITIAL CONDITIONS

B I

e e e e e e e e e e e e e e e RS R e e e e e e e S e e e e e e e e e e e e e e e e e e e S e e e e e e e

DIST = T2 - TLSTAR

IPART = 1

IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,1.0D0O,STEP,

1 F2,¥3,F4,F5,F6,F7,F8,F9,F1,ISCAL1,NFE,NEXTRA,F2)

EVALF = .TRUE.

- 08 -

SIGINC = 1.0D0/POINTS
FRACT = SIGINC

C
24 CONTINUE
C
TSTAR = TLSTAR + FRACT * DIST
SIGMA = (TSTAR - T) / STEP
. .
CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,
1 ISCAL2 ,NFE ,NEXTRA,F2)
C
CALL F(TSTAR,F2,F3)
C
NFE = NFE + 1
NEXTRA = NEXTRA + 1
g
UPDATE = .FALSE.
BOUNCE = .FALSE.
IVAN = .FALSE.
INDX = INDEX
CALL SUBPHI (NPHI, INDX,NEQN,TSTAR,F2,F3,PHIV,PHIPV,KOUNTR,
1 UPDATE , IVAN,, BOUNCE , TOLER)
TOLER = ABSER
DO 25 J = 1,NPHI
IF (DABS(PHIV(J)) .LT. ZAPP) PHIV(J) = DSIGN(ZAPP,PHIV(J))
25 CONTINUE -
c
IF (IROUTE .EQ. 2) RETURN
c
c A PHI FUNCTION HAS VANISHED AT TLSTAR AND T2
g SEE IF THE SUBINTERVAL HAS ALTERED
c THE END POINT "VANISHING" STATUS
c
ITEST = 0
DO 30 J = 1,NPHI
IF (PHIPL(J) .LT. 0.0D0) GO TO 30
C
c PHI(J) HAS VANISHED THROUGHOUT THE INTERVAL UP TO T*
c

IF (DABS(PHIV(J)) .GT. TOLER) GO TO 28
IF (IPRINT .EQ. 1) PRINT 1503,J,PHIV(J)
1503 FORMAT(' COMPONENT J VANISHED--J,PHI = ', I3,2X,D15.7)

ITEST = 1
GO TO 30
C
28 CONTINUE
PHIPL(J) = -1.0D0
C
30 CONTINUE
C
IF (ITEST .EQ. 0) RETURN
C
C A COMPONENT OF PHI STILL APPEARS TO VANISH WITHIN THE INTERVAL
C CONTINUING ITERATING
C
48 CONTINUE

Qoo a

- 99 -

INCREMENT SIGMA AND CONTINUE INTERVAL STUDY ‘IF SIGMA < 1

IPART
FRACT

IPART + 1
FRACT + SIGINC

o

IF (IPART .LT. NPOINT) GO TO 24
50 CONTINUE

RETURN
END

SUBROUTINE FOR DETERMINING RK45 SOLUTION AT INTERMEDIATE
POINTS WITHIN-A GIVEN INTEGRATION STEP

SUBROUTINE SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,
1 F9,F10,ISCALE,NFE ,NEXTRA,Y2)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(NEQN),YP(NEQN),Y2(NEQN)
DIMENSION F2(NEQN),F3(NEQN),F4(NEQN),F5(NEQN), F6(NEQN) F?(NEQN)
DIMENSION F8(NEQN),F9(NEQN),F10(NEQN)

DIMENSION CC6(4),CC7(4),CC8(4),CC9(4),CC10(4)"

LOGICAL FIFTH
DATA FIFTH/.FALSE./

DATA A6,A7,A8,A9,A10/0.24D0,0.75D0,0.58D0,0.975D0,0.58D0/

DATA B60,B63,B64,B65,B70,B73,B74,B75,B76/
. 1447948800000000D+00, =-.2768699345454545D+00,
.1966694400000000D+00, .1754056145454545D+00,
.2223303125000000D-01, .4967529346590909D+00,
-.3255963750000000D+00, .5661040909090909D-01,
.5000000000000000D+00/ ;

U B WM

DATA B8O,B83,B84,B85,B86,B87/

1 .3882639666666667D-01, -.4846961481818182D+00,
2 .2153539066666667D+00, =-.1894841551515152D+00,
3 .5000000000000000D+00, .5000000000000000D+00/

DATA B90,B93,B94,B95,B96,B97,B98/
.4462967382812500D-01, ~-.3201639884588068D+00,
.2211626640625000D+00, =-.4706283494318182D+00,
.5000000000000000D+00, .5000000000000000D+00,
.5000000000000000D+00/

WM

DATA B100,B103,B104,B105,B106,B107,B108,B109/ °
.5064642791666667D-01, ~-.1001758849886363D+01,
.1096885316666667D+00, ~-.5785761096969697D+00,
.5000000000000000D+00, .5000000000000000D+00,
.5000000000000000D+00, .5000000000000000D+00/

~W N

caan Q

Q

o N 2 B2 W B (|

[

- 100

DATA CC6/ .6932920226914295D+01, -.1887192785610976D+02,

i} .1883923504042140D+02, -.6538563137673370D+01/

DATA CC7/ .4638216070742022D+01, -.2138664616173266D 02,

1 .3067196377461660D+02, ~-.1366995599982912D 02/

DATA CC8/-.2293180126824485D+01, .6848856763028249D+01,

1 -.4867906461976630D+01, .4523758829678437D+00/

DATA CC9/~-.8195943096485590D+00, .3947241560261452D+01,

1 -.6162658362778917D+01, .3140208082944671D+01/

DATA CC10/-.4333472382845521D+01, .2197991355681816D+02,
1 -.3223001998104773D+02, .1465110562055352D+02/
EXTERNAL F

IF (ISCALE .EQ. 2) GO TO 50
IF (FIFTH) GO TO 22

FOR THE FOURTH ORDER, SCALED SOLUTION COMPUTE Fé6 AND THEN
STORE F2 AND F3 IN F7 AND F8 LOCATIONS

TIME = T + STEP

DO 16 J = 1,NEQN

F10(J) = Y(J) + STEP * (YP(J) + F4(J) + &.0DO*F5(J))/6.0D0
16 CONTINUE

CALL F(TIME,F10,F6)

NFE = NFE + 1

NEXTRA = NEXTRA + 1

DO 20 J = 1,NEQN

F7(J) = F2(J)

F8(J) = F3(J)
20 CONTINUE

RETURN
22 CONTINUE

FIFTH ORDER, SCALED SOLUTION

COMPUTE F6,F7,F8,F9,F10 AND STORE F10 IN F1 LOCATION

TIME = T + A6 * STEP

DO 26 J = 1,NEQN

F10(J) = Y(J) + STEP * (B60 * YP(J) + B63 * F3(J) + B64 * F4(J)

1 + B65 * F5(J))
26 CONTINUE

CALL F(TIME,F10,F6)

TIME = T + A7 * STEP

DO 27 J = 1,NEQN

(@]

o il o Bl o [

- 101 -

F10(J) = Y(J) + STEP * (B70 * YP(J) + B73 * F3(J) + B74 * F&4(J)
1 + B75 * F5(J) + B76 * F6(J))
27 CONTINUE

CALL F(TIME,F10,F7)
TIME = T + A8 * STEP

DO 28 J = 1,NEQN
F10(J) = Y(J) + STEP * (B8O * YP(J) + B83 * F3(J) + B84 * F4(J)
1 + B85 * F5(J) + B86 * F6(J) + B87 * F7(J))

28 CONTINUE

CALL F(TIME,F10,F8)
TIME = T + A9 * STEP

DO 29 J = 1,NEQN

F10(J) = Y(J) + STEP * (B90 * YP(J) + B93 * F3(J) + B94 * F4(J)

1 + B95 * F5(J) + B96 * F6(J) + B97 * F7(J) + B98 * F8(J))
29 CONTINUE

CALL F(TIME,F10,F9)
TIME = T + A10 *. STEP

DO 30 J = 1,NEQN
F3(J) = Y(J) + STEP * (B100 * YP(J) + B103 * F3(J) + B10& * F4(J)
1 B105 * F5(J) + B106 * F6(J) + B107 * F7(J) + B108 * F8(J)
2 B109 * F9(J))

30 CONTINUE

+ + 1

CALL F(TIME,F3,F10)

NFE = NFE + 5
NEXTRA = NEXTRA + 5
RETURN
50 CONTINUE
SST = SIGMA*STEP
IF (FIFTH) GO TO 55

FORM C-COEFFICIENTS FOR GIVEN SIGMA, FOURTH ORDER SOLUTION

C2 = SIGMA*((7168.0D0/1425.0D0) + SIGMA*((-4096.0D0/513.0D0)

1 + SIGMA*(14848.0D0/4275.0D0)))
C3 = SIGMA*((-28561.0D0/8360.0D0)+ SIGMA*((199927.0D0/22572.0D0)

1 + SIGMA*(-371293.0D0/75240.0D0)))
C4 = SIGMA*((57.0D0/50.0D0) + SIGMA*(-3.0D0

1 + SIGMA*(42.0D0/25.0D0)))

C5 = SIGMA*((-96.0D0/55.0D0) + SIGMA*((40.0D0/11.0D0)

o aaaaooa aa

Q

oNoNeNe]

aaoaao

- 102 -

i | + SIGMA*(-102.0D0/55.0D0)))

Cé6 = SIGMA*(1.5D0 + SIGMA*(-4.0D0 + SIGMA*2 . 5D0))
CO = 1.0D0 - (SIGMA*((301.0D0/120.0D0) + SIGMA*((-269.0D0/108.0D0)
il + SIGMA*(311.0D0/360.0D0))))

EVALUATE THE FOURTH ORDER, SCALED SOLUTION

DO 51 J = 1,NEQN
Y2(J) = Y(J) + SST * (CO*YP(J) + C2%F7(J) + C3*F8(J) + C4*F4(J)
1 + C5%F5(J) + C6%F6(J))

51 CONTINUE
RETURN

55 CONTINUE

FORM C-COEFFICIENTS FOR GIVEN SIGMA, FIFTH ORDER SOLUTION

SIGMA*(CC6(1) + SIGMA*(CC6(2) + SIGMA*(CCA(3)

cé =
1 + SIGMA*CC6(4))))

C7 = SIGMA*(CC7(1) + SIGMA®(CC7(2) + SIGMA*(CC7(3)
1 + SIGMA*CC7(4))))

C8 = SIGMA*(CC8(1) + SIGMA*(CC8(2) + SIGMA*(CC8(3)
1 + SIGMA*CC8(4))))

C9 = SIGMA*(CCY(1) + SIGMA*(CC9(2) + SIGMA*(CCI(3)
1 + SIGMA*CC9(4))))

C10 = SIGMA*(CC10(1) + SIGMA*(CC1l0(2) + SIGMA*(CC10(3)
1 + SIGMA*CC10(4))))

CO = 1.0D0 - (C6 + C7 + C8 + C9 + C10)
EVALUATE THE SOLUTION

DO 73 J = 1,NEQN _

Y2(J) = Y(J) + SST * (CO*YP(J) + C6%F6(J) + C7*F7(J) + C8*F8(J)

1 + C9*F9(J) + C10*F10(J))
73 CONTINUE

RETURN
END

CHANGES TO BOUNCING FUNCTION ANALYSIS--5.5.82

I I I e e e L L L i

SUBROUTINE PANIC(F,SUBPHI,NPHI,NEQN,NFE, INDEX,
1 T,Y,Yp,PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,

oaoaaoaaooaaooaooaaoaaoaonoaooooacaoacon

oNoRoNoNesNoNoNoNoRNoNsNeRsNoNoNoNoNoNeoNoNoNoNeo Mo

= 103 =

2 PHI2,PHIP2,PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,)
4 ABSER,KOUNTR,NEXTRA,EVALF,FIND, IROUTE, IWARN,U26)

T L e e T L L e S ——

PANIC SHOULD BE USED ONLY IN CRISIS (OR NEAR CRISIS) SITUATIONS

PANIC IS REFERENCED BY RKF45T (TRAPPD) WHEN THE TRAPPING PROCEDURE
FAILS TO CONVERGE.

THE USER MAY ACTIVATE THE USE OF PANIC IN TWO MODES BY CHANGING
THE PARAMETER NOTFAL IN EITHER SETRAP OR TRAPPD. IN BOTH ROUTINES
NOTFAL IS .FALSE. FOR NORMAL (NON-CRISIS) SITUATIONS.

AN ADDITIONAL MODE. OF PANIC IS AVAILABLE TO CHECK FOR ERRORS
CAUSED BY BOUNCING FUNCTIONS. THE USER IS NOT CONCERNED WITH
THIS MODE OF PANIC.

PANIC PRINTS INFORMATION ABOUT PHI THROUGHOUT ANY STEP ON WHICH
TRAPPD HAS BEEN ACTIVATED. INFORMATION ABOUT THE FIRST
VALUE OF .T FOR WHICH PHI HAS CHANGED SIGNS IS RETURNED TO
TRAPPD FOR USE IN THE ITERATION PROCESS.

1 T AND PHI ARE PRINTED AT EACH
SUBSTEP '

PRINT OPTIONS: IPRINT

IPRINT =2 T, Y, YP; PHI, PHIP ARE
PRINTED AT EACH SUBSTEP
IPRINT = -- ANY OTHER VALUE WILL BE RESET

TO IPRINT=1

e e e e e e A SN R A R M e R N SN e e e e A S R R G e e e e R e S e e e R e e s e

PANIC CHECKS THE PHI FUNCTION THROUGHOUT THE INTERVAL FOR
POSSIBLE MULTIPLE VANISHING POINTS WITHIN A GIVEN STEP.
THE CHECK IS MADE AFTER EACH INTEGRATION STEP WHETHER
OR NOT THE ANALYSIS INDICATED THAT TRAPPD SHOULD BE
REFERENCED. PRINTING IS OPTIONAL, ALTHOUGH A WARNING
MESSAGE IS PRINTED ON THE FIRST CALL TO PANIC.

PRINT OPTIONS: JPRINT = 0 PRINTING IS SUPPRESSED

mn
=

JPRINT T AND PHI ARE PRINTED AT
EACH SUBSTEP
JPRINT = 2 T, Y, YP, PHI, PHIP ARE

PRINTED AT EACH SUBSTEP

R e R e e e e e e

A ZERO HAS BEEN DETECTED, AND TRAPPED WILL BE REFERENCED.

IF THE PREVIOUS ZERO WAS A "BOUNCING" ZERO, THE INCORRECT

SIGN IMPOSED INDICATES A ZERO WHICH DOES NOT EXIST. PANIC
WILL DETECT ANY BOUNCING COMPONENT SO THAT THE SIGN CAN

BE CORRECTED.

Qaaaoaoaoaacaocaoaoaoaa

- 104 -

NO PRINTING OPTIONS ARE ASSOCIATED WITH THE BOUNCING
ANALYSIS.

W W S G S S N A S RS B SR SR G SN S em A R S SR S RN S R R B R B e e S B e e G W B e B S S e e em mm mm e e e

THE STANDARD NUMBER OF OUTPUT POINTS IS 10. THE USER MAY
INCREASE OR DECREASE THIS NUMBER BY CHANGING THE PARAM-
ETERS POINTS AND NPOINT IN THE GIVEN DATA STATEMENT.

. L L e L e L L L I .

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(NEQN),YP(NEQN),Y2(NEQN),YP2(NEQN)

DIMENSION YF(NEQN),YPF(NEQN),F1(NEQN),F2(NEQN)
DIMENSION F3(NEQN),F4(NEQN),F5(NEQN)

DIMENSION F6(NEQN),F7(NEQN),F8(NEQN),F9(NEQN)
DIMENSION PHIO(NPHI),PHIPO(NPHI),PHIF(NPHI),PHIPF (NPHI)
DIMENSION PHI2(NPHI),PHIP2(NPHI),PHIL(NPHI),PHIPL(NPHI)
DIMENSTON PHIR(NPHI),PHIPR(NPHI),PHIB(NPHI)

LOGICAL UPDATE,IVAN,EVALF,FIND,BOUNCE
DATA POINTS,NPOINT/10.0D0,10/

DATA IPRINT,JPRINT/0,0/

DATA JOPT/1/

P L T I e e T e L L Lk .

DATA ISCALE,JSCALE/1,2/

EXTERNAL F,SUBPHI

- B S e e e b e e e e G N NS S S A S S G S e S AN S S BB S S NS S S5 e A e en A R R W S TS S NS SR G M S e e R e S e

SET SUB-STEP LENGTH AND T2, THE FIRST POINT TO BE ANALYZED.
(IF IROUTE=1, RETURN TO SETRAP--ONLY THE SUB-STEP LENGTH IS
SOUGHT .)

DSIG = 1.0DO/POINTS

STEP =TF - T

T2 = T + DSIG*STEP

IF (IROUTE .EQ. 0) RETURN

PRINTING PARAMETER SAFETY CHECKS:

IPR = IPRINT

IF (IPR .LT. 1 .OR. IPR .GT. 2) IPR =1
JPR = JPRINT

Il
[

IF (JPR .LT. O .OR. JPR .GT. 2) JPR

IF (IROUTE .EQ. 3) GO TO 600

I e e e e e e T R

A STANDARD PANIC OPTION IS BEING USED
(FROM EITHER SETRAP OR TRAPPD)

B L e L L L L L

- e e e e e e e e e A e e e e e R e e e e e e e e e e e e N e e e e R e e e e s e e

aaoaoan

>NoloNoNeNeNe N

= 105 =

IF (IWARN .EQ. 1) PRINT 900
900 FORMAT(/,' THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T'
1 ,/,' TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN'
2 ,' A GIVEN STEP',//,' THIS IS VERY INEFFICIENT.',//)

e R e e R R W T S NS e e R s e e e G S e e S e S e R S R W e e e R e e e e e A R Em o em e

B e e e T T T e L T e

IF (IROUTE .EQ. 2 .AND. JPR .EQ. 0) GO TO 10
PRINT 901

PRINT 902, INDEX

PRINT 903,T

PRINT 906,PHIO

IF (IROUTE .EQ. 2 .AND. JPR .EQ. 1) GO TO 10
IF (IROUTE .EQ. 1 .AND. IPR .EQ. 1) GO TO 10
PRINT 904,Y

PRINT 905,YP

I e T T T I e e e T T e

IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,
1 . F3,F4,F5,F6,F7,F8,F9,F1, ISCALE,NrE,NEXT,Y2)
EVALF = .TRUE. .

e S A e e e e e e e e e e e e e R e e e e e e e e e e e e e e RN e e e e e e e e e e

SUB-STEP POINTS WILL BE LABELED "L" UNTIL A ZERO IS TRAPPED
I.E., POINT "L" WILL BE MOVED TOWARDS "F'" AS A ZERO IS SOUGHT.

PHIPL IS USED AS A TEMPORARY INDICATOR AND WILL BE RESET BEFORE
RETURNING TO SETRAP OR TRAPPD

STORE VANISHING INFORMATION IN PHIPL:
PHIPL > 0 , COMPONENT DID NOT VANISH OR CHANGE SIGN
PHIPL < 0 , COMPONENT EITHER VANISHED OR CHANGED SIGN

DO 12 J = 1,NPHI

PHIL(J) = PHIO(J)

PHIPL(J) = +1.0D0

12 CONTINUE
TL = T

DO 36 JJ= 1,NPOINT

SIGMA = DSIG*DFLOAT(JJ)
CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,
i JSCALE ,NFE ,NEXT,F2)

T2 = T + SIGMA*STEP

IF (JJ .EQ. NPOINT) T2 = TF

CALL F(T2,F2,F3)

NFE = NFE + 1

UPDATE = .FALSE.

aaoaQ

- 106 -

BOUNCE = .FALSE.

IVAN = ,FALSE.)

TOLER = ABSER -

INDX = INDEX

CALL SUBPHI(NPHI,INDX,NEQN,T2,F2,F3 ,PHI2,PHIP2,KOUNTR,UPDATE,
1 IVAN,BOUNCE,TOLER)

TOLER = ABSER

DO 15 KK = 1,NPHI

IF (DABS(PHI2(KK)) .LT. U26) PHI2(KK) =DSIGN(U26,PHI2(KK))

IF (DABS(PHIP2(KK)) .LT. U26) PHIP2(KK)=DSIGN(U26,PHIP2(KK))
15 CONTINUE

UPDATE = .FALSE.

IF (FIND) GO TO 29

- e e n S S S B e e e s e Em R M s e S e R G N S s B e R G mm e S S R e Tw em S Em R GE G M G MmN ke R e e em b e e

- o S S S e M SN R RS A G R N SR AR W RN A RN R RN A S G S R M S BN AR R S e e e e e S e e e e S e G S vm Ee o Em W

DO 18 I = 1,NPHI
IF (.NOT. (DABS(PHIZ2(I)) .LT. TOLER .OR.
1 PHI2(I)*PHIL(I) .LT. 0.0D0)) GO TO 18

PHI2(I) HAS VANISHED OR CHANGED SIGN OVER THE SUBSTEP,
SET FIND=.TRUE. AND SET PHIPL(I) INDICATOR

FIND = .TRUE. 4
PHIPL(I) = -1.0D0
18 CONTINUE

IF (FIND) GO TO 25
NO ZERO HAS BEEN ISOLATED ON THIS STEP EITHER.
CONTINUE ITERATING--THIS STEP WILL NOT SET TRAPPING BOUNDS.
TL = T2
DO 23 J = 1,NEQN
Y2(J) = F2(J)
23 YP2(J) = F3(J)
DO 24 J 1,NPHI
PHIL(J) PHI2(J)
24 CONTINUE
GO TO 29

I

25 CONTINUE

A ZERO WAS TRAPPED ON THIS SUBSTEP. SET TRAPPING BOUNDS (CONDI-
TIONS AT "R". (IF IROUTE=2, THE ANALYSIS WILL BE RETURNED TO
SETRAP WITH THE ZERO BRACKETED.)
TR = T2
IF (JJ .EQ. NPOINT) TR = TF
DO 26 J = 1,NPHI
PHIR(J) = PHI2(J)
PHIPR(J) = PHIP2(J)
26 CONTINUE

29 CONTINUE

= 10F =

STANDARD PRINTING BLOCK:
IF (IROUTE .EQ. 2 .AND. JPR .EQ. 0) GO TO 33
PRINT 903,T2
PRINT 906,PHI2
PRINT 907,PHIP2
PRINT 1588,FIND

1588 FORMAT(' FIND = ',L2)
IF (IROUTE .EQ. 2 .AND. JPR .EQ. 1) GO TO 33
IF (IROUTE .EQ. 1 .AND. IPR .EQ. 1) GO TO 33
PRINT 904,Y
PRINT 905,YP

33 CONTINUE

IF (IROUTE .EQ. 2 .AND. FIND) GO TO 42

36 CONTINUE
END OF DO LOOP FOR CHECKING SUBSCRIPTS. (EARLY EXIT OCCURS
IF IROUTE=2 AND A ZERO IS BRACKETED DURING A SUB-STEP.)

IF (IROUTE .EQ. 2 .AND. JPR .EQ. 0) GO TO 40
PRINT 908
PRINT 903,TF
PRINT 906,PHIF
PRINT 907,PHIPF
IF (IROUTE .EQ. 2 .AND. JPR .EQ. 1) GO TO 40
IF (IROUTE .EQ. 1 .AND. IPR .EQ. 1) GO TO 40
PRINT 904,YF
PRINT 905,YPF

40 CONTINUE

P L e e e e e e e e e T e
e e A e e e e e e e R e e e e e e e e e e e e e e e e S e e e e e S e e e e e e e e e

P e e I e e T

NO ZERO WAS DETECTED. RESET CONDITIONS AT "O" WHICH HAVE BEEN
ALTERED DURING THE PANIC ANALYSIS.
DO 41 J = 1,NPHI
PHIL(J) = PHIO(J)
PHIPL(J) = PHIPO(J)
PHI2(J) = PHIO(J)
PHIP2(J) = PHIPO(J)
PHIR(J) = PHIF(J)
PHIPR(J) = PHIPF(J)
41 CONTINUE
TL = T
T2 =T
TR = TF
RETURN

o

42 CONTINUE

aaoaoa

- 108 -

- e S e R S R e R MR mm R e e e e e e R N R A N R R R N R M e e e R e R R G S M A R e e M e e e e e e e e e

A ZERO WAS DETECTED. SET BRACKETING CONDITIONS "L", "2", AND
"R" BEFORE RETURNING.

DETERMINE INDEX--CONSIDER ONLY COMPONENTS WHO HAVE VANISHED
AT CURRENT JJ VALUE OR HAVE CHANGED OVER THE LAST SUBSTEP
(DESIGNATED BY PHIPL < 0)

INDEX = 0

PHIMAX = 0.0DO

DO 45 I = 1,NPHI

IF (PHIPL(I) .GT. 0.0D0) GO TO 45

IF (DABS(PHIR(I)) .LT. TOLER) GO TO 43

IF (PHIR(I)*PHIL(I) .GT. 0.0D0) GO TO 45

43 CONTINUE

COMPONENT "I'" HAS VANISHED OR CHANGED SIGNS AT T2--CHECK TO SEE
IF INDEX SHOULD BE SHIFTED TO "I"

IF (DABS(PHIR(I)) .LT. PHIMAX) GO TO 45
INDEX = I
PHIMAX = DABS(PHIR(I))

45 CONTINUE

IF (TL .EQ. T) GO TO 66
BRACKETING DID NOT OCCUR ON THE FIRST SUBFSTEP. THE SOLUTION
VECTOR AT TL HAS BEEN "LOST". GENERATE CONDITIONS AT "TL".

T2 = YL

SIGMA = (TL - T)/(TF - T)

CALL SCALED(F,NEQN,Y,YP,TL,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,
1 JSCALE ,NFE,NEXT,Y2)

CALL F(TL,Y2,YP2)

NFE = NFE + 1

UPDATE = .FALSE.

BOUNCE = .FALSE.

IVAN = .FALSE.

CALL SUBPHI (NPHI, INDX,NEQN,TL,Y2,YP2,PHI2,PHIP2,KOUNTR,UPDATE,
1 IVAN, BOUNCE , TOLER)

TOLER = ABSER

DO 65 I = 1,NPHI

PHIL(I) = PHI2(I)

IF (DABS(PHIL(I)) .LT. U26) PHIL(I) = DSIGN(U26,PHIL(I))
65 PHIPL(I) = PHIP2(I)

RETURN

L T T L L L

BRACKETING OCCURRED ON THE FIRST SUB-STEP. THE SOLUTION AT TL

IS STILL KNOWN. ONLY PHIL, PHIPL, PHI2,PHIP2 NEED TO BE SET.
66 CONTINUE

DO 67 I = 1,NPHI

PHIL(I) = PHIO(I)

PHIPL(I) = PHIPO(I)
PHI2(I) = PHIO(I)

oo oaaoaaa

X)

Q

]

e e T < |

67

602

603

= JO8 =

PHIP2(I) = PHIPO(I)
Tg & T

RETURN

CONTINUE

P T e e e e e e e T ———

o e S B e ma e Gm R SN R G T s e Gm S Em MA M R R e Dm M M A A R R T e R e e A A S Ee R e e MR BR e B e R M A B e e R e e e e e

USE PHIPO(I) TO STORE "BOUNCING'" INFORMATION--THEN
RECOMPUTE IT BEFORE RETURNING TO TRAPPD
PHIPO(I) < O, NO BOUNCING CANDIDATES EXIST
PHIPO(I) > 0, . AT LEAST ONE BAOUNCING CANDIDATE EXISTS

(CRITERION FOR "BOUNCING", |PHIL(I)|<TOL, |PHIPR(I)| > TOL
AND PHIL(I)*PHIR(I) < O (SIGN CHANGE)

PHIB(I) CONTAINS INFORMATION ABOUT THE "BOUNCING" STATUS OF
COMPONENT "'1"
PHIB(I) < 0, NO BOUNCING INDICATED YET
PHIB(I) > O, BOUNCING INDICATED

DO 602 I = 1,NPHI
PHIB(I) = -1.0D0
PHIPO(I) = -1.0D0

IF (PHIL(I)*PHIR(I) .GT. 0.0DO) GO TO 602

IF (DABS(PHIL(I)) .LT. TOLER .AND.

1. DABS(PHIR(I)) .GT. TOLER) PHIPO(I) = 1.0DO
CONTINUE

ITEST = 0

DO 603 I = 1,NPHI

IF (PHIPO(I) .GT. 0.0D0) ITEST =1
CONTINUE

IF (ITEST .EQ. 0) RETURN

T e e e e G e e e e e R b e PW e e G e e e Em S R e S e M N S N e M SR MW Am e MM S M M e Em e e

AT LEAST ONE COMPONENT MUST BE STUDIED FOR "BOUNCING" DIFFICULTIES
GENERATE ADDITIONAL F EVALUATIONS IF NOT YET DETERMINED

e e e e e e e e e e e e e e S e e e e G A e e e e e A A e B B e e e e

IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,

1 F3,F4,F5,F6,F7,F8,F9,F1, ISCALE ,NFE ,NEXTRA,Y2)

SIGMA IS A FRACTION OF THE INTEGRATION STEP. IF THE BRACKETING
‘INDICES WERE DETERMINED BY "PANIC" ANALYSIS, SIGMA IS A FRACTION
OF THE INTEGRATION "SUB-STEP'" FROM STANDARD PANIC ANALYSIS.

a

o

= 110 =

T I I T e e e e R ——

SIGMA = DSIG * DFLOAT(JJ) i
IF (FIND) SIGMA = (TL + SIGMA*(TR-TL) =~ T) / STEP
IF (FIND .OR. JJ .LT. NPOINT) GO TO 606

B T T L L L L R ——

e e em e A e e e R e e e e e e e e R R R R M e e RN R R RS R R R N R e e e e e e W e N R e e e e e e e e e e

DO 604 I = 1,NEQN
F2(I) = YF(I)
604 F3(I) = YPF(I)
DO 605 I = 1,NPHI
PHI2(I) = PHIR(I)
PHIP2(I) = PHIPR(I)
605 CONTINUE
T2 = TR
GO TO 607

e e e e e S e e e e e e e e e e S N e e S e R e e e e S e S N e e G e e R S e e G e e e e mm T A e Ee e e

5

B L L T L [SN S S ———

"R" WAS DETERMINED BY THE PANIC ANALYSIS AND THE SOLUTION HAS
BEEN LOST:

CALL SCALED TO COMPUTE THE SOLUTION AT SUBSTEP JJ

CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,
1 JSCALE ,NFE ,NEXTRA,F2)

T2 = T + SIGMA*STEP

CALL F(T2.72.F78)

NFE = NFE + 1

UPDATE = .FALSE.

BOUNCE = .FALSE.

IVAN = .FALSE.

INDX = INDEX

CALL SUBPHI (NPHI, INDX,NEQN,T2,F2,F3,PHI2,PHIP2,KOUNTR,UPDATE,
1 IVAN, BOUNCE , TOLER)

TOLER = ABSER

- e e e e R e R M G M A e R M e R s e R e R R R AN M R e e e e e e e S AR AW R e S R e e e e e e e e R

ettt e e L

DO 608 I = 1,NPHI
IF (PHIPO(I) .LT. 0.0D0) GO TO 608

IF (DABS(PHI2(I)) .LT. TOLER) GO TO 608

PHI(I) IS OUT OF THE VANISHED REGION--DOES IT HAVE THE SAME
SIGN AS PHIR(I) --I.E., DOES IT "BOUNCE" ?
IF PHI(I) BOUNCES, SET PHIB(I) = +1.0DO

PHIPO(I) = -1.0D0

PHIL(I) = DSIGN(PHIL(I),PHI2(I))

IF (PHI2(I)*PHIR(I) .GT. 0.0D0) PHIB(I) = +1.0DO
IF (FIND .AND. T .NE. TL) GO TO 608

aoaaaa

a

aoaoaa (o M oo o'

aOooaoaaoaoaanan

oo

- 111, =

NO EMERGENCY FEATURE WAS USED IN SETRAP OR
THE EMERGENCY FEATURE WAS USED IN SETRAP AND A ZERO WAS DETECTED
ON THE FIRST SUB-STEP '

ADJUST THE SIGN OF PHIO(J)
PHIO(I) = DSIGN(PHIO(I),PHI2(I))

608 CONTINUE

e s e B S e e Gm e e G e R R Em e B e e A e A e e e Bm SE Re N Bm RS Sm B e AN e e RS AS R B e ke e B e e e

ITEST = 0

DO 610 I = 1,NPHI

IF (PHIPO(I) .GT. 0.0D0) ITEST =1
610 CONTINUE

IF NO MORE "BOUNCING" CANDIDATES EXIST, EXIT DO LOOP--GO TO 622

IF (ITEST .EQ. 0) GO TO 622
620 CONTINUE

NORMAL EXIT OF DO LOOP--BOUNCING CANDIDATE STILL EXITED ON THE
FINAL SUBSTEP

622 CONTINUE

INDOLD = INDEX
INDEX = 0O
PHIMAX = 0.0D0
DO 704 I = 1,NPHI
IF (PHIB(I) .GT. 0.0D0) GO TO 704
IF (PHIR(I)*PHIL(I) .GT. 0.0D0) GO TO 704
IF (DABS(PHIR(I)) .LT. PHIMAX) GO TO 704
PHIMAX = DABS(PHIR(I))
INDEX = I

704 CONTINUE

IF (INDEX .NE. INDOLD .AND. JOPT .EQ. 1) PRINT 705, INDOLD, INDEX
705 FORMAT(' INDEX = ',13,' WAS INCORRECTLY IMPOSED--NEW INDEX = ', I4)

RESET CONDITIONS AT "2" EQUAL TO THOSE AT "L" (Y2 AND YP2
HAVE NOT BEEN CHANGED)

DO 710 I = 1,NPHI

PHI2(I) = PHIL(I)

PHIP2(I) = PHIPL(I)
710 CONTINUE

19 = TL

e e S e e R RS R G N S N R e S e G S e WD N AR W SN e WS N G e e e e e

901
902
903
904
905
906
907
908

= 112 =

FORMAT (' ENTERING PANIC')
FORMAT(//,' IN PANIC--COMPONENT OF PHI BEING ANALYZED = ',613,/)
FORMAT(' T = ',D15.7)

FORMAT(' Y = ' (2%, D15.7), [, (8%, 46(2%X.D15.1)))
FORMAT(' YP = ',4(2X,D15.7),/,(8X,4(2X,D15.7)))
FORMAT(' PHI = ',4(2X,D15.7),/,(8X,4(2X,D15.7)))

FORMAT(' PHIP = ',4(2X,D15.7),/,(8%X,4(2X,D15.7)))
FORMAT (' LEAVING PANIC')

RETURN
END

APPENDIX B. SUBPHI SUBROUTINES AND RESULTING OUTPUT FOR

Examp

EXAMPLES IN §10.

le 1, dense output equal spacing in T

SUBROUTINE DENSE1(NPHI, INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
i IVAN,RELER, ABSER)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(4),YP(4),PHI(1),PHIP(1)

LOGICAL UPDATE,IVAN

COMMON/TIME1/TINCR

IF (UPDATE) GO TO 100
IF (KOUNTR .GT. 0) GO TO 12

INITTALIZATION BLOCK:
TPR = TINCR

12 CONTINUE
PHI(1) = T - TPR
PHIP(1) = 1.0D0
RETURN

100 CONTINUE

aaoaaaoa

5

UPDATE
PRINT 516,T,Y(1),Y(3),¥(2),Y(4)
TPR = TPR + TINCR

IN MULITPLE TRAP MODE, PHI WILL BE UPDATED BY TRAPPD.
IN OTHER MODES, THE USER SHOULD REEVALUATE PHI SINCE ITS VALUE
CHANGES WITH THE CHANGE IN TPR.

16 FORMAT(/,' INTERMEDIATE OUTPUT--T = ',D15.7,/,22X,
1 ‘vi='.D15.7,2%, "¥2='.D15.7,/,22%,
2 ‘Y3=' ,015.7,2%, 'Y4=" ,p15.7)
RETURN

END

2 113 =

TWO BODY PROBLEM=--ELLIPTIC ORBIT, ECC=0.1

DENSE OUTPUT, TIME INCREMENT =

(some output

OPERATION PARAMETERS AND BOUNDARY

RELERR
i

Y(1)
Y(3)

LI [| I |
000 o

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

deleted)

.1000000D-05
.0000000D 00
.9000000D 00
.0000000D 00

OUTPUT--T =
Y1=
¥3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Y1=
Y3=

OUTPUT - -

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Y1=
Y3=

OUTPUT--T =
Y1=
Y3=

OUTPUT--T =
Y1i=
¥3=

0.3141593D 00

CONDITIONS
ABSERR = 0.1000000D-05 IFLAG =
TF = 0.6283185D 01
Y(2) = 0.0000000D 0O
Y(4) = 0.1105542D 01

0.3141593D 00

0.8399578D 00 Y2= -0.3767007D 00

0.3395789D 00 Y4= 0.1032275D 01
0.6283185D 00

0.6698828D 00 Y2= -0.6914165) 00
0.6349843D 00 Y4= 0.8299182D 00
0.9424778D 00

0.4164354D 00 Y2= -0.9029608D 00
0.8520312D 00 Y4= 0.5418264D 00
0.1256637D 01

0.1148030D 00 Y2= -0.9980995D 00
0.9717582D 00 Y4= 0.2184158D 00
0.1570796D 01

-0.1993454D 00 Y2= -0.9852670D 00
0.9900608D 00 Y4= -0.9787924D-01
0.1884956D 01

-0.4949687D 00 Y2= -0.8837882D 00
0.9140837D 00 Y4= -0.3780634D 00
0.2199115D 01

-0.7476645D 00 Y2= -0.7155781D 00
0.7580980D 00 Y4= -0.6052274D 00
0.2513274D 01

-0.9397271D 00 Y2= -0.5009346D 00
0.5402737D 00 Y4= -0.7708017D 00
0.2827433D 01

-0.1059391D 01 Y2= -0.2573625D 00
0.2806395D 00 Y4= -0.8710278D 00
0.3141593D 01

-0.1099992D 01 Y2= 0.2075454D-04

-0.1968451D-04 Y4= -0.9045380D 00

15

- 114 -

(Output for 3.14159 < T < 6.2831 has been deleted.)

INTERMEDIATE OUTPUT--T = 0.6283185D 01
Y1= 0.8999798D 00 Y2= -0.1021791D-03
¥3= 0.8616911D-04 Y4= 0.1105556D 01

Example 1, dense output unequal spacing in T

c
SUBROUTINE DENSE2(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER, ABSER)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(4),YP(4),PHI(1),PHIP(1)
LOGICAL UPDATE, IVAN
COMMON/TIME2/TPRINT(50)
5
IF (UPDATE) GO.TO 100
C
IF (KOUNTR .GT. 0) GO TO 12
TPR = TPRINT(1)
12 CONTINUE
C
C ...
PHI(1) = T - TPR
PHIP(1) = 1.0DO
C ___
RETURN .
100 CONTINUE
C
G UPDATE
PRINT 516,T,Y(1),Y(3),Y(2),Y(4)
TPR = TPRINT(KOUNTR+1)
C
a IN MULITPLE TRAP MODE, PHI WILL BE UPDATED BY TRAPPD.
c IN OTHER MODES, THE USER SHOULD REEVALUATE PHI SINCE ITS VALUE
c CHANGES WITH THE CHANGE IN TPR.
C '
516 FORMAT(/,' INTERMEDIATE OUTPUT--T = ',D15.7,/,22X,
1 "ri='.D15.7.2%; "Ta=' . D15.7,/.22X,
2 ‘¥3="',D15.7,2X, ‘¥4="' ,D15,7)
RETURN
END

TWO BODY PROBLEM=-~ELLIPTIC ORBIT, ECC=0.1
DENSE OUTPUT UNEVEN SPACING

(some output deleted)

OPERATION PARAMETERS AND

RELERR
T

¥(1)
Y(3)

mmwunun
oo oo

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

.1000000D-05
.0000000D 00
.9000000D 00
.0000000D 00

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Y1=
Y3=

QUTPUT--T =
Yi=
¥Y3=

OUTPUT--T =
Yi=
¥Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Y1=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

OUTPUT--T =
Yi=
Y3=

BOUNDARY

ABSERR
TF
Y(2)
Y(4)

Lk &

0.1000000D 00

0.8938362D 00
0.1103019D 00

0.2200000D 00

0.8703366D 00
0.2405447D 00

0.4900000D 00

0.7569118D 00
0.5128778D 00

0.6000000D 00

0.6891170D 00
0.6111621D 00

0.6600000D 00

0.6475560D 00
0.6608675D 00

0.7500000D 00

0.5797717n 00
0.7297455D 00

0.8000000D 00

0.5395550D 00
0.7648897D 00

0.9000000D 00

0.4543357D 00
0.8281186D 00

0.9800000D 00

0.3822211D 00
0.8716557D 00

0.1000000D 01

0.3637254D 00
0.8815353D 00

0.3100000D 01

-0.1099278D 01
0.3759444D-01

0.3220000D 01

-0.1097450D 01
-0.7088700D-01

CONDITIONS

= 0.1000000D-05 IFLAG =

= 0.6283185D 01

= 0.0000000D 00

= 0.1105542D 01
Y2= -0.1230922D 00
Y4= 0.1097975D 01
Y2= -0.2677368D 00
Y4= 0.1069224D 01
Y2= -0.5637749D 00
Y4= 0.9325251D 00
Y2= -0.6668679D 00
Y4= 0.8524277D 00
Y2= -0.7178635D 00
Y4= 0.8039059D 00
Y2= -0.7869198D 00
Y4= 0.7256920D 00
9= -0.8212732D 00
Yi= 0.6798258D 00
Y2= -0.8811394D 00
Y4= 0.5839259D 00
Y2= -0.9204380D 00
Y4= 0.5041103D 00
Y2z -0.9290651D 00
Y4= 0.4838348D 00
Y2+ -0.3434921D-01
Y4: -0.9039508D 00
Y2= 0.6478456D-01
Y= -0.9024476D 00

13

- 116 -

INTERMEDIATE OUTPUT--T = 0.3490000D 01
¥1= -0.1050092D 01 Y2= 0.28487936D 00
Y3= -0.3103776D 00 Y4= -0.8633178D 00

(Output for 3.4900 < T < 3.9800 has been deleted.)

INTERMEDIATE OUTPUT--T = 0.3980000D 01
Y1= -0.8186657D 00 Y2= 0.6487301D 00
Y3= -0.6918563D 00 Y4= -0.6671274D 00

Example 2, two body problem, transfer orbit

SUBROUTINE TRANSF (NPHI, INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER,ABSER)

IMPLICIT REAL#*8 (A-H,0-2)

DIMENSION Y(6),YP(6),PHI(NPHI),PHIP(NPHI),HEAD(5)

COMMON/TIME /TINCR
DATA HEAD/8HT-TPR = ,8HR" = ,8HV . R = ,B8HAPOGEE ,8HPERIGEE /
LOGICAL UPDATE, IVAN
C
IF (UPDATE) GO TO 100
C
IF (KOUNTR .GT. 0) GO TO 12
[R TS a1 4 (el 1 o i
C INITIALIZATION BLOCK
(i i e e A

C
C COMBINATION TRAPPING MODE IS BEING USED

C INDEX=1 AND 2 ARE TRAPPED IN MULTIPLE TRAPPING MODE
c INDEX=3 IS TRAPPED IN SINGLE TRAPPING MODE

C L .

c

S>>>>5>5>5>>>> SET INDEX=2 IN INITIAL. BLOCK <<<<<<<<<<<<<

IPER = 0

IPRINT = 0

INDEX = 2

TPR = TINCR
c PARAMETERS FOR SECANT APPROXIMATION FOR R'''

TSAVE = T

RPP =0.0D0

RPPP =0.0D0

12 CONTINUE

s e A A e e e S S R e e e
o m e e e e e o o e e i o o e e e
C DETERMINE R, R**2, AND R' TO FORM R" (THEN FORM R''")
i e e b o o A

R2 = (Y(1)%%2+Y(2)%*2+Y(3)**2)
R = DSQRT(R2)
RP = (Y(1)*YP(1)+Y(2)*YP(2)+Y(3)*YP(3))/R

= LYl

RPPSV = RPP
RPP = (YP(1)*¥#2+YP(2)**2+YP(3)**2 + Y(1)*YP(4)+Y(2)*YP(5)
1 + YP(3)*YP(6))/R - RP*RP/R

SECANT APPROXIMATION FOR R'''

DELTT = T - TSAVE

RPPP = 0.0DO

IF (KOUNTR .GT. 0 .AND. DELTT .GT. 1.D-12)

1 RPPP = (RPP - RPPSV)/DELTT

S o, o e D B SRS bl O S i e R i e

PHI(1) = T - TPR
PHI(2) = RPP
PHI(3) = Y(1)*Y(&4) + Y(2)%Y(5) + Y(3)*Y(6)
PHIP(1) = 1.0D0
PHIP(2) = RPPP .
PHIP(3) = Y(L)*YP(4) + Y(&4)*Y(4) + Y(2)*YP(5) + Y(5)*Y(5)
1 + Y(3)*YP(6) + Y(6)*Y(6)
TSAVE = T
RETURN
100 CONTINUE :

e T e el e T T T T L L g,

IF THE PHI COMPONENT HAS VANISHED THROUGHOUT THE STEP--RETURN

(NO PRINTS OR UPDATES--INTEGRATION STEP SIZE IS SMALL AFTER
TRAPPING ON PREVIQUS STEP

IF (IVAN) PRINT 506

IF (IVAN) RETURN

e o R T Bl il 0, ot o o B i A . e,

IF (INDEX .EQ. 3) GO TO 120
PRINT 515,HEAD(INDEX),PHI(INDEX),T
PRINT 516,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)
IF (INDEX .EQ. 2) RETURN

TPR = TPR + TINCR
RETURN
120 CONTINUE

IF (RPP .GT. 0.0D0) GO TO 50
‘CONDITIONS AT APOGEE

- 118 -

PRINT 515,HEAD(INDEX),PHI (INDEX),T
PRINT 516,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)
PRINT 525,HEAD(4),R

RETURN
50 CONTINUE

PERIGEE STOP--SINGLE TRAP MODE (PHI UPDATE NECESSARY IF SYSTEM
IS ALTERED)

PRINT 515,HEAD(INDEX),PHI(INDEX),T

PRINT 516,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)

PRINT 525,HEAD(5),R

IPER = IPER + 1

IF (IPER .NE. 2) RETURN

TRANSFER ORBIT--"STRETCH" VELOCITY VECTOR, EVALUATE F, EVALUATE
PHI(3) AND PHIP(3)

e e e et e S S e N SR R e AR S M NN RN S BE M AR M N RN M M S NN AR BN M e e e e e e e e e e e e e

PRINT 1523

CONST = 1.0500D0

Y(4) = Y(4)*CONST
Y(5) = Y(5)*CONST
Y(6) = Y(6)*CONST

PRINT 516,Y(1),Y(2),Y(3),Y(4&),Y(5),Y(6)
CALL F(T,Y,YP)

PHI(3) = Y(1)%Y(4) + Y(2)*Y(5) + Y(3)*Y(6)

PHIP(3) = Y(1)*YP(4) + Y(&)*Y(4) + Y(2)*YP(5) + Y(5)*Y(5)
1 + Y(3)*YP(6) + Y(6)*Y(6)

IPRINT = 1

506 FORMAT(' PHI(INDEX) HAS VANISHED OVER THE ENTIRE STEP',/)
515 FORMAT(/,' UPDATE ',3X,1A8,2X,D15.7,3X,' AT T = ',D15.7)
516 FORMAT(' POSITION=',3(1X,D15.7),/,' VELOCITY=',63(1X,D15.7))

518 FORMAT(//,' TWO REVOLUTIONS HAVE OCCURRED--INCREMENT VELOCITY')
519 FORMAT(' NEW ECCENTRICITY = ',D15.7,/,' Y-COMP = ',4(2X,D15.7),//)

525 FORMAT(' MAGNITUDE OF RADIUS AT ',1A8,' = ',D15.7)

1523 FORMAT(/,' TIME TO UPDATE THE VELOCITY FOR TRANSFER ORBIT')
RETURN
END

TWO BODY PROBLEM: EARTH-SATELLITE--TRANSFER ORBIT
(TRANSFER AFTER 2 REVOLUTIONS)

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR 0.1000000D~-05 ABSERR 0.1000000D-05 IFLAG = 15
T 0.0000000D 00 TF 0.8000000D 06

POSITION -0.7195613D 04 0.1546026D 04 -0.9839836D 03

VELOCITY =-0.4201003D 01 -0.8358974D 01 -0.2073556D 01

]
mn

& 118 =

UPDATE : R" = -0.3612253D-07 AT T = 0.1284196D 04
POSITION= -0.8501289D 04 -0.8587487D 04 ~-0.2848147D 04
VELOCITY= 0.9868303D 00 -0.6842308D 01 -0.9382287D 00

UPDATE: V.R= -0.1162170D-04 AT T = 0.1997027D 05
POSITION= 0.2931916D 05 =-0.3349531D 05 =-0.3925918D 03
VELOCITY= 0.1128553D 01 0.9837115D 00 0.3527977D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.4424773D 05

UPDATE : R" = 0.2128608D-07 AT T = 0.3865792D 05
POSITION= 0.9659848D 04 0.7254891D 04 0.2831174D 04
VELOCITY= -0.6664918D 01 0.1893360D 01 -0.8367371D 00

UPDATE: V.R= 0.1786375D-06 AT T = 0.4040718D 05
POSITION= -0.4462832D 04 0.5098527D 04 0.5976175D 02
VELOCITY= -0.7414175D 01 -0.6462593D 01 =-0.2317745D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6776396D 04

UPDATE : R" = -0.7203513D-06 AT T = 0.4215722D 05
POSITION= =-0.8502086D 04 =-0.8581981D 04 =-0.2847392D 04
VELOCITY= 0.9854028D 00 -0.6843751D 01 -0.9387070D 00

UPDATE : V.R= -0.4580103D-04 AT T = 0.6084421D 05
POSITION= 0.2931931D 05 -0.3349543D 05 =-0.3925838D 03
VELOCITY= 0.1128548D 01 0.9837090D 00 0.3527964D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.4430634D 05

UPDATE: R" = 0.1246685D-07 AT T = 0.7953198D 05
POSITION= 0.9659784D 04 0.7254930D 04 0.2831169D 04
VELOCITY= -0.6664940D 01 0.1893334D 01 -0.8367451D 00

UPDATE: V.R= 0.3124829D-06 AT T = 0.8128124D 05
POSITION= -0.4462840D 04 0.5098527D 04 0.5976027D 02
VELOCITY= =0.7414167D 01 =-0.6462599D 01 -0.2317745D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6776503D 04

TIME TO UPDATE: THE VELOCITY FOR TRANSFER ORBIT
POSITION= -0.4462840D 04 - 0.5098527D 04 0.5976027D 02
VELOCITY= =-0.7784876D 01 =-0.6785729D 01 -0.2433632D 01

UPDATE : R" = -0.1880129D-06 AT T = 0.8306752D 05
POSITION= -0.9507222D 04 -0.9331483D 04 -0.3141112D 04
VELOCITY= 0.1625789D 00 -0.7200626D 01 =-0.1137605D 01

UPDATE: T-TPR = 0.0000000D 00 AT T = 0.1000000D 06
POSITION= 0.1745937D 05 ~0.6672033D 05 ~-0.7804626D 04
VELOCITY= 0.1568620D 01 -0.1986538D 01 -0.5248399D-01

UPDATE : V.R-= -0.1769465D-06 AT T = 0.1907712D 06
POSITION= 0.9897001D 05 =-0.1130668D 06 -0.1325196D 04
VELOCITY= 0.3510427D 00 0.3059896D 00 0.1097398D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.1502666D 06

= 120 =

UPDATE : T-TPR = 0.0000000D 00 AT T = 0.2000000D
POSITION= 0.1017085D 06 -0.1096812D 06 =-0.3074815D 03
VELOCITY= 0.2416685D 00 0.4273841D 00 0.1106283D 00

UPDATE : R" = 0.4227668D-07 AT T = 0.2984758D
POSITION= 0.1053792D 05 0.8147668D 04 0.3126289D 04
VELOCITY= -0.7129841D 01 0.1127692D 01 ~0.1040414D 01
UPDATE : T-TPR = 0.0000000D 00 AT T = 0.3000000D
POSITION= -0.2268374D 04 0.6628906D 04 0.6838715D 03
VELOCITY= -0.8883153D 01 -0.4888772D 01 -0.2314973D 01
UPDATE : V.R= 0.1618111D-05 AT T = 0.3002612D

POSITION= ~-0.4462861D 04 0.5098542D 04 0.5975927D 02
VELOCITY= -0.7784855D 01 =-0.6785722D 01 -0.2433628D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6777237D 04

UPDATE : R" = -0.2216406D-06 AT T = 0.3020474D
POSITION= -0.9507256D 04 -0.9331200D 04 =-0.3141072D 04
VELOCITY= 0.1625186D 00 =-0.7200677D 01 -0.1137624D 0l

UPDATE : T-TPR = 0.0000000D 00 AT T = 0.4000000D
POSITION= 0.9499987D 05 -0.1154126D 06 =-0.2385862D 04
VELOCITY= 0.4628059D 00 0.1743329D 00 0.1076000D 00

UPDATE: V.R= -0.3895867D-06 AT T = 0.4097513D
POSITION= 0.9897021D 05 -0.1130669D 06 -0.1325171D 04

VELOCITY= 0.3510427D 00 0.3059901D 00 0.1097399D 00

MAGNITUDE OF RADIUS AT APOGEE = 0.1502652D 06

UPDATE: T-TPR = 0.0000000D 00 AT T = 0.5000000D
POSITION= 0.6481676D 05 -0.2718058D 05 0.6718212D 04
VELOCITY= =-0.1722661D 01 0.1801974D 01 -0.3811446D-02

UPDATE : R" = 0.4248428D-07 AT T = 0.5174561D
POSITION= 0.1053795D 05 0.8147705D 04 0.3126300D 04
VELOCITY= -0.7129828D 01 0.1127685D 01 -0.1040412D 01

UPDATE: V.R= 0.1625319D-05 AT T = 0.5192415D
POSITION= =-0.4462881D 04 * 0.5098558D 04 0.5975828D 02

VELOCITY= =-0.7784835D 01 =-0.6785716D 01 -0.2433623D 01

MAGNITUDE OF RADIUS AT PERIGEE = 0.6777265D 04

UPDATE: R = -0.2216161D-06 AT T'= 0.5210277D
POSITION= -0.9507282D 04 =-0.9331242D 04 -0.3141083D 04
VELOCITY= 0.1625249D 00 =-0.7200664D 01 =-0.1137620D 01

UPDATE : T-TPR = 0.0000000D 00 AT T = 0.5500000D
POSITION= 0.3492053D 05 =-0.8605259D 05 -0.7938726D 04
VELOCITY= 0.1339494D 01 -0.1296990D 01 0.1982543D-01

UPDATE: T-TPR = 0.0000000D 00 AT T = 0.6000000D
POSITION= 0.8418488D 05 ~-0.1161495D 06 -0.4360165D 04
VELOCITY= 0.6768570D 00 =~0.1026458D 00 0.9948326D-01

UPDATE : V.R= -0.3888030D-06 AT T = 0.6287318D
POSITION= 0.9897041D 05 -0.1130669D 06 -0.1325146D 04

= 121, =

VELOCITY= 0.3510427D 00 0.3059906D 00 0.1097399D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.1502654D 06

UPDATE : T-TPR = 0.0000000D 00 AT T = 0.7000000D 06
POSITION= 0.8801541D 05 -0.5668672D 05 0.5921491D 04
VELOCITY= -0.8490028D 00 0.1341839D 01 0.7156505D-01

UPDATE : RY = 0.4247250D=-07 AT T = 0.7364368D 06
POSITION= 0.1053798D 05 0.8147742D 04 0.3126312D 04
VELOCITY= =-0.7129815D 01 0.1127678D 01 =-0.1040411D 01

UPDATE: V.R= 0.1625384D~05 AT T = 0.7382222D 06
POSITION= -0.4462901D 04 0.5098573D 04 0.5975729D 02
VELOCITY= =-0.7784815D 01 -0.6785709D 01 -0.2433618D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6777290D 04

Example 3, restricted problem of three bodies

c
SUBROUTINE RP3B1(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER, ABSER)
IMPLICIT REAL#8 (A-H,0-%Z)
DIMENSION Y(4),YP(4),PHI(NPHI),PHIP(NPHI),YYP(4)
DOUBLE PRECISION MU,MUSTAR,JAKOBO,JAKOB
DIMENSION HEAD1(8)
COMMON/CONST /MU, MUSTAR , JAKOBO
DATA ZAPP1/0.60D-04/
LOGICAL UPDATE,IVAN,ACROSS
DATA HEAD1/8H V . R =,8H X = L8H Y = ,8H VX =,
1 8H VY = ,8H X-0.5 =,8H Y+0.6 =,8H VX-1.0=/
" |
IF (UPDATE) GO TO 100
C ___
C PHI COMPONENTS AND DERIVATIVES
C ___
PHI(1) = Y(1)*Y(3) + Y(2)*Y(4) - 0.0DO
PHI(2) = Y(1) - 0.0DO
PHI(3) = Y(2) - 0.0DO
PHI(4) = Y(3) - 0.0DO
PHI(5) = Y(4) - 0.0DO
PHI(6) = Y(1) - 0.5D0
PHI(7) = Y(2) + 0.6D0
PHI(8) = Y(3) - 1.0D0
PHIP(1) = Y(1)*YP(3) + YP(L)*Y(3) + Y(2)*YP(&4) + YP(2)*Y (&)
PHIP(2) = Y(3)
PHIP(3) = Y(4)
'PHIP(4) = YP(3)
PHIP(5) = YP(4)
PHIP(6) = YP(1)

= 123 =

PHIP(7) = YP(2)
PHIP(8) = YP(3)

- e e e e e e e e e R e A R N N M N S R SR S R e M SR S e Se R RN S e e S e e e e S e e m e e
B e el e e e e el e e e Rt e e e e e e L L T .

((Y(L)+MU)**2 + Y(2)%%2)#%0,5
R2 = ((Y(1)-MUSTAR)*¥2 + Y(2)#*¥%2)¥*%0.5
JAKOB = 0.50D0*(Y(3)*Y(3) + Y(&4)*Y(4) - Y(1)*Y(1) -Y(2)*Y(2))
ik - MUSTAR/R1 - MU/R2
ERR = DABS(JAKOB - JAKOBO)
IF (ERR .GT. ZAPP1) PRINT 1500,T,ERR
1500 FORMAT(' AT T=',D15.7,/,' DEVIATION FROM INITIAL JACOB. INTEGRAL='
1 ,D15.7)
RETURN

e e e e e e e e e e R e e e e e e e R S S e M e R e W Rm e M e e e Bm e R M s e R e R e
e e e S e e e e e e e e e e e S e s e e e e e e e e e e e e e s A R e e R W e e A A e

PRINT 515,HEAD1(INDEX),PHI(INDEX),T
IF (IVAN) PRINT 506,INDEX

e e e e e e S e e S e e B e e e e e e e e e e e e e R e e e e e e e e e M e R e e R M e S e e e

506 FORMAT(' PHI(',I2,') HAS VANISHED OVER THE ENTIRE STEP',/)

515 FORMAT(/,' UPDATE:',3X,1A8,2X,D15.7,3X,' AT T = ',D23.16)
516 TORMAT(/,' UPDATE:',3X,
1 ' JACOBIAN INTEGRAL DEVIATES FROM INITIAL VALUE',/,
2 ' ERROR = ',D23.16,3X,'AT T = ',D23.16)
RETURN
END

RESTRICTED PROBLEM OF THREE BODIES

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = 0.1000000D-05 IFLAG = 15

‘T = 0.0000000D 00 TF = 0.6192169D 01

Y (1) = 0.1200000D 01 Y(2) = 0.0000000D 0O

¥(32) = 0.0000000D 00 Y(4) = =0.1049358D 01

JACOBIAN INTEGRAL (AT T=0) = -0.1041589D 01

UPDATE : V.R= -0.5720000D-14 AT T = 0.0000000000000000D 00
UPDATE : Y = -0.5720000D-14 AT T = 0.0000000000000000D 00
UPDATE : VX = -0.5720000D-14 AT T = 0.0000000000000000D 00
UPDATE : VY = 0.2863387D~-10 AT T = 0.8613208344927214D 00
UPDATE : X-0.5 = -0.2070436D-09 AT T = 0.1046283795762994D 01
UPDATE : Y = 0.2214422D-06 AT T = 0.1448084325660553D 01

UPDATE : V. R= 0.2089552D-06 AT T = 0.1458571434491113D 01

- 123 =

UPDATE : X = -0.3681892D-05 AT T = 0.1459781007315835D
UPDATE : VY = -0.4598140D-07 AT T = 0.1461133846568575D
UPDATE : Y = -0.2195288D-05 AT T = 0.1472952988035424D
UPDATE : Y+0.6 = -0.1556487D~06 AT T = 0.1878139441039302D
UPDATE: VY = 0.2477135D-10 AT T = 0.2126492806452552D
UPDATE : Y+0.6 = 0.1346683D-07 AT T = 0;2396228631771846D
UPDATE : Y = 0.7046048D-09 AT T = 0.3096069058097068D
UPDATE : VX = 0.4738180D-06 AT T = 0.3096106917047610D
UPDATE : V.R= -0.8186590D-07 AT T = 0.3096161443936035D
UPDATE : VY = -0.8476735D-10 AT T = 0.4065756069599825D
UPDATE : VX-1.0= 0.1300828D-06 AT T = 0.4670806136154190D
UPDATE : Y = -0.9581854D-07 AT T = 0.4719374046932356D
UPDATE : VY = \0.28h2921D-03 AT T = 0.4731191718141558D
UPDATE : X = 0.1546022D-09 AT T = 0.4732544685928599D
UPDATE : V.R-= 0.2026057D-06 AT T = 0.4733753099474543D
AT T= 0.4743581D 01

DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6069291D-04

AT T= 0.4746211D 01

DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6172761D-04

UPDATE : Y = 0.6909008D-06 AT T = 0.4744244036815875D

AT T= 0.4744244D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.7270484D-04

AT T= 0.4746211D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6172761D-04

AT T= 0.4749214D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6186404D-04

AT T= 0.4752682D 01
DEVIATION FROM INITTIAL JACOB. INTEGRAL= 0.6150855D-04

AT T= 0.4756721D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6088231D-04

AT T= 0.4761458D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6011234D-04

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

UPDATE : VX-1.0= -0.2864002D-09 AT T = 0.4847312724886170D 01

- 124 -

UPDATE: X-0.5 = 0.2669629D-08 AT T = 0.5145936167581279D 01
UPDATE : VY = -0.6669679D-11 AT T = 0.5330930517574152D 01
UPDATE : Y = -0.4183865D-11 AT T = 0.6192102468600831D 01

T = 0.6192169331319640D 01
SOLUTION:
0.1200064D 01 -0.7016685D~04 0.1322904D-03 -0.1049417D 01

ERRORS:
0.6353576D-04 0.7016685D-04 0.1322904D-03 0.5919274D-04

JACOBIAN INTEGRAL:
-0.1041589D 01

-0.1041543D 01
0.4571855D-04

INITIAL VALUE
CURRENT VALUE
DIFFERENCE

nmnun

NFE = 1206 NEXTRA = 67

SUBROUTINE RP3B2(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER, ABSER)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(&),YP(4),PHI(NPHI),PHIP(NPHI),YYP(4)

DOUBLE PRECISION MU,MUSTAR,JAKOBO,JAKOB

DIMENSION HEAD1(8) .
COMMON/CONST /MU, MUSTAR , JAKOBO
DATA ZAPP1/0.60D-04/

LOGICAL UPDATE,IVAN,ACROSS

DATA HEAD1/8H V . R =,8H X =

1 8H VY = ,8H X-0.5 =

IF (UPDATE) GO TO 100

C ___
INITIALIZATION OF JACOBI INTEGRAL ANALYSIS
C ___
IF (XKOUNTR .GT. 0) GO TO 22
ERRO = 0.0D0
ACROSS = .FALSE.
22 CONTINUE
PHI COMPONENTS AND DERIVATIVES
PHI(1) = Y(1)*Y(3) + Y(2)*Y(4) - 0.0DO
PHI(2) = Y¥(1) - 0.0DO
PHI(3) = Y(2) - 0.0D0
PHI(4) = Y(3) - 0.0DO
PHI(5) = Y¥(&4) - 0.0DO
PHI(6) = Y(1) - 0.5D0

= 123 =

PHI(7) = Y(2) + 0.6D0

PHI(8) = Y(3) - 1.0D0 .

PHIP(1) = Y(1)*YP(3) + YP(1)*Y(3) + Y(2)*YP(4) + YP(2)*Y(4)

PHIP(2) = Y(3)

PHIP(3) = Y(4)

PHIP(4) = YP(3)

PHIP(5) = YP(4)

PHIP(6) = YP(1)

PHIP(7) = YP(2)

PHIP(8) = YP(3)
C ___

IF (INDEX .GT. 0) RETURN
C ___
c EVALUATE JACOBIAN INTEGRAL--IF NOT IN TRAPPING ITERATION
C ___

R1 = ((Y(1)4MU)#*%2 + Y(2)**2)**0.5

R2 = ((Y(1)-MUSTAR)**2 + Y(2)**2)**%0.5

JAKOB = 0.50D0*(Y(3)*Y(3) + Y(&4)*Y(4) - Y(1)*Y(1) -Y(2)*Y(2))

1 - MUSTAR/R1 - MU/R2

ERR = DABS(JAKOB - JAKOBO)

IF (ERR .GT. ZAPP1) GO TO 35

IF (ACROSS) . PRINT 1501,T,ERR,ZAPP1,CRJD,TCR

ACROSS = .FALSE.

ERRO = ERR

RETURN .

35 CONTINUE

+
C JACOBI INTEGRAL PROBLEMS--FURTHER ANALYSIS
5

IF (.NOT. ACROSS) PRINT 1503,T,ERR,ZAPP1

ACROSS = .TRUE.

IF (ERR .LT. ERRO) GO TO 38

TCR = T

CRJD = ERR

38 CONTINUE
ERRO = ERR
1501 FORMAT(/,' AT T=',D15.7,' THE J.I. DEVIATION = ',D15.7,
1 /,' WHICH IS AGAIN LESS THAN ',D15.7,/,

2 ' MAX DEVIATION=',D15.7,' OCCURRED AT T=',D15.7,/)
1503 FORMAT(/,' AT T=',D15.7,' THE J.I. DEVIATION = ',D15.7,

i /,' WHICH IS GREATER THAN ',D15.7,/)
#
RETURN
100 CONTINUE
C -
C ___
C UPDATE PORTION
C ___
PRINT 515,HEAD1(INDEX),PHI(INDEX),T
IF (IVAN) PRINT 506,INDEX
C ___
C ...
C

506 FORMAT(' PHI(',I2,') HAS VANISHED OVER THE ENTIRE STEP',/)
515 FORMAT(/," UPDATE:"',3X,1A8,2X,D15.7,3X,' AT T = ',D23.16)
516 FORMAT(/,' UPDATE:',3X,
1 ' JACOBIAN INTEGRAL DEVIATES FROM INITIAL VALUE',/,
2 " ERROR = ',D23.16,3%X,'AT T = ',D23.16)

- 126 -

RETURN

END

RESTRICTED PROBLEM OF THREE BODIES

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = 0.1000000D-05 IFLAG = 15
T = 0.0000000D 00 TF = 0.6192169D 01

Y(1) = 0.1200000D 01 Y(2) = 0.0000000D 0O

Y(3) = 0.0000000D 00 Y(4) = -0.1049358D 01

JACOBIAN INTEGRAL (AT T=0) = ~-0.1041589D 01

UPDATE : V.R= -0.5720000D-14 AT T = 0.0000000000000000D
UPDATE : Y = -0.5720000D-14 AT T = 0.0000000000000000D
UPDATE : VX = -0.5720000D-14 AT T = 0.0000000000000000D

(Output deleted.

UPDATE :

UPDATE:

AT T= 0.4743581D 01 THE J.TI.
WHICH IS GREATER THAN

UPDATE:

X = . 0.1546022D-09

V.R= 0.2026057D-06

Y = 0.6909008D-06

See output from RP3B1)

AT T

AT T

DEVIATION =
0.6000000D-04

AT T

AT T= 0.4767043D 01 THE J.I. DEVIATION =

WHICH IS AGAIN LESS THAN

0.6000000D-04

MAX DEVIATION= 0.6186404D-04 OCCURRED AT

UPDATE :

UPDATE :

UPDATE :

UPDATE :

VX-1.0= -0.2864002D-09
X-0.5 = 0.2669629D-08
VY = -0.6669679D-11
Y = -0.4183865D-11

AT T

AT T

AT T

AT T

0

0.4732544685928599D

0.4733753099474543D

.6069291D-04

0.4744244036815875D

0.5927332D-04

T= 0.4749214D 01

Il

0.4847312724886170D

0.5145936167581279D

0.5330930517574152D

0.6192102468600831D

Final conditions, accuracy, and Jaccbian integral information

given in

SUBPHI=RP3BZ results.

Example 4, derivative evaluation dependent upon tabular data

00

00

00

01

01

01

01

01

01

01

= 127 =

SUBROUTINE TABLE (NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER, ABSER) '

IMPLICIT REAI#8 (A-H,0-%)

DIMENSION Y(2),YP(2),PHI(NPHI),PHIP(NPHI)
COMMON/GRID/AA(10,10),XX(10),YY(10),IX,IY

COMMON/FVAL/AAL

LOGICAL UPDATE,IVAN

IF (UPDATE) GO TO 100
IF (KOUNTR .GT. 0) GO TO 20

e I e e e e e e e]

AA1 = AA(IX,IY)

X1 = XX(IX+1)

Y1 = YY(IV+1)

X0 = XX(IX)

YO = YY(IX)
20 CONTINUE

. e e e S M e e M N S B BN s AR R R S B R N S S G S e SN R EE N R R R R R e e e e e e e e e e S e e S G N e e e

B e R el e e et

PHI(1) = (X1-Y(1))*(Y(1)-X0)
PHI(2) = (Y1-Y(2))*(¥(2)-YO0)

PHTP(1) = ((X0+X1) -2.0D0%Y(1))*YP(1)
PHIP(2) = ((Y0+Y1l) -2.0D0*Y(2))*YP(2)
RETURN

100 CONTINUE

IF (IVAN) RETURN
PRINT 1500,T,Y(1),Y(2)

1500 FORMAT(' T = ',D15.7,2X,'¥Y(1) = ',D15.7,2X,'Y(2) = ',D15.7)
GO TO (110,120),INDEX

110 CONTINUE
IF (PHIP(1) .GT. 0.0D0)- GO TO 115
X1 CROSSING

IX=1IX + 1
X0 = Y(1)

X1 = XX(IX+1)
GO TO 130

115 CONTINUE
X0 CROSSING

IX = IX -1
X0 = XX(IX)
X1 =Y(1)
GO TO 130

120 CONTINUE
IF (PHIP(2) .GT. 0.0DO) GO TO 125
Y1l CROSSING
I¥Y = I¥ + 1
YO = Y(2)

- 128 -
Y1 = YY(IY+1)
GO TO 130

125 CONTINUE
YO0 CROSSING

IY = [Y = 1
YO = YY(IY)
Y1 = Y(2)

130 CONTINUE

AA1 = AA(IX,IY)
CALL F(T,Y,YP)

IF (INDEX .EQ. 2) . GO TO 150

PHI(1) = +0.0DO
PHIP(1) = ((X0+X1) -2.0DO*Y(1))*YP(1)
RETURN
150 CONTINUE
PHI(2) = +0.0D0
PHIP(2) = ((YO+Y1) =-2.0DO*Y(2))*YP(2)
RETURN
END

SUBROUTINE F(T,Y,YP)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(2),YP(2)
COMMON/FVAL/AA1

YP(1) = AAL*T
YP(2) = AAl

RETURN
END

F EVALUATIONS DEPEND UPON TABULAR DATA

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = 0.1000000D-05 IFLAG = 10
T = (0.0000000D 00 TF = 0.1000000D 01

Y(1) = 0.5000000D 00 Y(2) = 0.5000000D 00

T = 0.1250002D 00 Y(1) = 0.5312501D 00 Y(2) = 0.1000001D 01
T = 0.3250000D 00 Y(1) = 0.7562501D 00 ¥(2) = 0.2000000D 01
T = 0.4322904D 00 Y(1) = 0.1000000D 01 Y(2) = 0.2643742D 01
T = 0.4768227D 00 Y(1) = 0.1161940D 01 Y(2) = 0.3000001D 01
T = 0.5879338D 00 Y(1) = 0.1694318D 01 Y(2) = 0.4000000D 01
T = 0.6378108D 00 Y(1) = 0.2000000D 01 Y(2) = 0.4498771D 01
T = 0.6795800D 00 Y(1) = 0.2330158D 01 Y(2) = 0.5000001D 01
T = 0.7515860D 00 Y(1) = 0.3000000D 01 ¥Y(2) = 0.5936079D 01
T = 0.7558474D 00 Y(1) = 0.3048178D 01 Y(2) = 0.6000000D 01
T = 0.8183474D 00 Y(1) = 0.3835276D 01 Y(2) = 0.7000000D 01
T= 0.8301035D 00 Y(1) = 0.4000000D 01 Y(2) = 0.7199854D 01
T = 0.8912547D 00 Y(1) = 0.5000000D 01 Y(2) = 0.8361727D 01

= 129 &

T = 0.9431718D 00 Y(1) = 0.6000000D 01 Y(2) = 0.9451986D 01
T = 0.9881951D 00 Y(1) = 0.7000000D 01 Y(2) = 0.1048752D 02
T = 0.1000000000000000D 01

Y1 = 0.7293379684390654D 01 Y2 = 0.1078264334598878D 02

NFE = 452 NEXTRA = 95

Exact stopping conditions:

T = 0.1000000000000000D 01
Y1 = 0.7293380335138080D 01 Y2 = 0.1078264444194078D 02

NFE = 103 NEXTRA = 0

"Natural" stopping iteration with RKF45:

T = 0.1000000000000000D 01
Y1 = 0.7295142710565982D 01 Y2 = 0.1078492347330573D 02
NFE = 1206 NEXTRA = 0

-

Example 5, highly oscillatory problem

c
SUBROUTINE OSCIL8(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER,ABSER)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(1),YP(1),PHI(1),PHIP(1)
DATA PI/3.141592653589793D0/
COMMON/NOSC/0SC
LOGICAL UPDATE, IVAN
¥
IF (UPDATE) GO TO 100
C ___
OSCPIT = OSC*PI#T
PHI(1) = DSIN(OSCPIT)
PHIP(1) = OSC*PI*DCOS(CSCPIT)
C ___
RETURN
100 CONTINUE
C __
c UPDATE PORTION:
C ___

"PRINT 528,T,PHI(1),Y(1)
IF (IVAN) PRINT 506

= 130 =

506 FORMAT(' PHI HAS VANISHED OVER THE ENTIRE STEP',/)

528 FORMAT(' T = ',D15.7,3X,' PHI = ',D15.7,3X,' Y = ',D15.7)
C
RETURN
END
HIGHLY OSCILLATORY PHI FUNCTION
OPERATION PARAMETERS AND BOUNDARY CONDITIONS
RELERR = 0.1000000D-05 ABSERR = 0.1000000D-05 IFLAG = 10
T = 0.0000000D 00 TF = 0.1000000D 01
Y(1) = 0.1000000D 01
T = 0.0000000D 00 .PHI = 0.5720000D-14 Y = 0.1000000D 01

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T
TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN A
THIS IS VERY INEFFICIENT.

GIVEN STEP

T = 0.2000000D 00 PHI = -0.8719671D-15 Y = 0.1049600D 01
T = 0.4000000D 00 PHI = 0.1062963D-10 Y = 0.1249600D 01
T = 0.6000000D 00. PHI = =-0.4153248D-06 Y = 0.1705600D 01
T = 0.8000000D 00 PHI = 0.2076624D-06 Y= 0.2561600D 01
T = 0.1000000D 01 PHI = =-0.2790295D-14 Y= 0.4000000D 01
NFE = 104 NEXTRA = 14

Example 6, a large convergence region (a flat PHI component)

C
C

SUBROUTINE FLAT(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP, KNTR,UPDATE,

1 IVAN,RELER, ABSER)

IMPLICIT REAL#8 (A-H,0-Z)

DIMENSION Y(NEQN),YP(NEQN),PHI(NPHI),PHIP (NPHI)

LOGICAL UPDATE,IVAN

COMMON/EXPO/POWER , IPOW, TPOWM1
C

IF (UPDATE) GO TO 100
c ---

PHI(1) = (T-2.0D0)**IPOW

PHIP(1) = POWER*(T-2.0D0)**IPOWM1
C ...

RETURN

= 131 =

100 CONTINUE
C ___
G UPDATE
C ---
PRINT 1500,T,PHI(INDEX),PHIP(INDEX)
1500 FORMAT(' T = ",D15.7,2X," PHI = ',D15.7,2X,"* PHIP = ',D15.7)
c
RETURN
END

LARGE CONVERGENCE REGION (IPOW=3):

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = (0.1000000D-05 IFLAG = 10
T = 0.0000000D OO TF = 0.6283185D 01
Y(1) = 0.1000000D 01 Y(2) = 0.0000000D 00
Y3 = 0.0000000D 00 Y(&4) = 0.1000000D 01

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T

TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN A GIVEN STEP
THIS TS VERY INEFFICIENT.

T = 0.1999863D 01 PHI = 0.2548717D-11 PHIP = 0.5597606D-07

RESULTS WITHOUT PANIC: ‘
OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

T = 0.1991936D 01 PHI = 0.5242923D-06 PHIP = 0.1950609D-03

LARGE CONVERGENCE REGION (IPOW=5):
OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T
TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN A GIVEN STEP
THIS IS VERY INEFFICIENT.

0.1976935D 01 PHI
0.1999863D 01 PHI
0.2022791D 01 PHI

0.6527201D-08 PHIP
0.4755571D~-19 PHIP
0.6149686D-08 PHIP

0.1414984D-05
0.1740733D-14
0.1349126D-05

nmnu
nnnu
nnn

T
T
T
RESULTS WITHOUT PANIC:

OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

T = 0.1941217D 01 PHI = 0.7018756D-06 PHIP = 0.5970052D-04

LARGE CONVERGENCE REGION (IPOW=9):

- 132 -

OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T
TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN A GIVEN STEP
THIS IS VERY INEFFICIENT.

.6192059D-07 PHIP
.1597486D-07 PHIP
.3239611D-08 PHIP
.4652094D-09 PHIP
.3905037D-10 PHIP
.1264419D-11 PHIP
.4621086D-14 PHIP
.6658683D-22 PHIP
.2753896D-15 PHIP
.3113351D-12 PHIP
.1535695D-10 PHIP
.2310881D-09 PHIP
.1851144D-08 PHIP
.1002105D~-07 PHIP
.4151962D-07 PHIP

.3523585D-05
.1056731D~05
.2558668D-06
.4558469D-07
.5039110D-08
.2388612D-09
.1628519D~11
.1744612D-18
.1327654D-12
.6872455D-10
.2198210D-08
.2447437D-07
.1555848D-06
.6981408D-06
.2469960D-05

.1841841D 01 PHI
.1863945D 01 PHI
.1886048D 01 PHI
.1908152D 01 PHI
.1930255D 01 PHI
.1952358D 01 PHI
.1974462D 01 PHI
.1996565D 01 PHI
.2018668D 01 PHI
.2040772D 01 PHI
.2062875D 01 PHI
.2084978D 01 PHI
.2107082D 01 PHI
.2129185D 01 PHI
.2151289D 01 PHI

HHEEEAAAEEESEaaEEAE S
T O T O T T T T T T
[elolielolelleiolNellolollaolloele el
T T T I T T T T T T
COOCOC OO0 O0O0O0OOO
T T O T T T 1 R TR T
OO OO0 OO OooOoOOooOoo

RESULTS WITHOUT PANIC:
OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

0.4558469D-07
0.1145319D-05

0.4652094D-09 PHIP
0.1748919D-07 PHIP

0.1908152D 01 PHI
0.2137431D 01 PHI

T
T

[l
nn
o

Example 7, a bouncing PHI function

SUBROUTINE BOUNCE (NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,

1 IVAN,RELER, ABSER)
C
IMPLICIT REAL#8 (A-H,0-Z)
DIMENSION Y(NEQN),YP(NEQN),PHI(NPHI),PHIP(NPHI)
DATA A0,A1/3.0D0,6.0D0/
LOGICAL UPDATE,IVAN
c
IF (UPDATE) GO TO 100
C ___

TMAl = T - Al

PHI(1)= (TMAQ)#*¥*4 * (TMA1)#¥*2

PHI(2)= 4.0DO*TMAQ**3 * TMA1#**%2 + 2,L0DO*TMAO**4 * TMA1
PHI(3) (T-10.0D0)**6

PHI(4) 6.0D0*(T-10.D0)%¥*5

PHI(5) (T-12.0D0)*%*8

= 133 =

PHI(6) = 8.0D0%*(T-12.D0)%**7

PHIP(1) = PHI(2)

PHIP(2) = 12.0DO*TMAO®#*2 * TMA1*%2 + 8.0DOSTMAO*%3 * TMAIL
il + 8.0DO*TMAO®*3 * TMAL + 2.0DO*TMAQO*¥4

PHIP(3) = PHI(4)

PHIP(4) = 30.0D0%* (T-10.0D0)%*%4

PHIP(5) = PHI(6)

PHIP(6) = 56.0D0%(T-12.0D0)*%6

RETURN

100 CONTINUE

L L T e e e e T T R

L T e e R R

IF (INDEX/2*2 .EQ. INDEX) RETURN
PRINT 527

527 FORMAT(/,' UPDATE:')
IF (IVAN) PRINT 529,INDEX,T

PRINT 528, T,INDEX,PHI(INDEX)
528 FORMAT(' T = ',D15.7,3X,'PHI(',12,"') = ',D15.7)
529 FORMAT(' PHI(',I3,') VANISHED THROUGHOUT THE STEP AT T = ',D15.7)
530 FORMAT(' T=',D23.16)
RETURN
END
BOUNCING PHI COMPONENTS:

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D=-05 ABSERR = 0.1000000D-05 IFLAG = 10
T = 0.0000000D 00 TF = 0.1884956D 02

Y(1) = 0.1000000D 01

UPDATE:

T = 0.3002370D 01 PHI(1) = =-0.2836618D=-09

UPDATE :

T = 0.6000000D 01 PHI(1) = =0.4969498D-15

UPDATE :

T = 0.9924322D 01 PHI(3) = =-0.1878504D-06

UPDATE :

PHI(3) VANISHED THROUGHOUT THE STEP AT T = 0.9961253D 01
T = 0.9961253D 01 PHI(3) = 0.3384011D-08

UPDATE :

T =" 0.1184198D 02 PHI(5) = -0.3888253D-06

- 134 -

UPDATE:
PHI(5) VANISHED THROUGHOUT THE STEP AT T = 0.1209020D 02
T = 0.1209020D 02 PHI(5) = -0.4380999D-08

