
I nst ltut für BI.:

Dynamik der Flugsysteme
IB.Nr.: 515-83/3

r ·

L
Freigabe:

"RKF45T" A Runge Kutta 4/5 Software Package

with User-Supplied Stops

Involving the Dependent Variables and First

Derivatives

Die Bearbeiter :

Dr. M. K. Horn

Dr, K.H .. Well
Der Abteilungsleiter ·

Der stellv. Institutsdirektor :

D
Dr r In2:"J .).cke-rmann
er nsfitu'tSuHe.('for :

D1eser Benchi enthält ·

Unterschriften :

~ Blatt davon

_ 1_ 1 _ Bilder

__ 3_ ~abellen

._j

I'---------· ___ ____.I·
Ort :oberpfaffenhofen Datum : 28.1.1983 Bearbeiter : Dr. Horn Zeichen Dr .Ho/rm

ABSTRACT

numerical analysis~ Runge-Kutta algorithms~ iteration schemes

The RKF4ST software package, a fifth order Runge-Kutta integration package
with step size control, is adapted to include automatic stops whenever a zero
of any user-supplied, auxiliary function, PHI, vanishes. The program is
capable of switching between the PHI components to locate all zeros if
several components have vanishing points within a given step. The user is
allowed to redefine the PHI function or the ODE expression as each zero point
is located. The RKF45T program is described thoroughl y with numerous exam
ples illustrating the use of the program. The program listing is included in
the report .

(This paper is printed by GML from the dataset df65.trap.text(apr).)

PREFACE

This report is one of a series of four volumes which are designed to treat
state/control-constraint optimal control problems involving piecewise con
tinuous system equations including the extensive use of equation expressions
written in terms of linearly interpolated tabular data. The titles of the
volumes are listed below:

Volume 1 A FORTRAN Program for Solving State/Control-Constraint Optimal
Control Problems with System Equations Having Expressions
Involving Tabular Data

in which extensive use of linearly interpolated tabular data is made, treat
ing the system truly as a piecewise continuous problern by halting the inte
gration for equation updates as each table grid point is isolated. (See
reference [3] .)

Volume 2 A Numerical Solution of State/Control-Constraint Optimal Control
Problems with Piecewise Continuous Derivative~ Using RKF45T

in which constraint violation boundary crossings are isolated, and in which
discontinuities in the derivatives occur. (See reference [4].)

Volume 3 RKF45T- -a Runge-Kutta 4/5 Software Package with User-Supplied
Stops Involving the Dependent Variables and First Derivatives

in which the user may actually halt the integration at any point which may be
described as a function of the independent variable, the dependent variables,
and the first derivatives. (Current report)

Volume 4 Subroutines for Handling Tabular Data Used in System Equations

in which a table structure is defined consistent with the example in Volume
1, and in which practical routines are provided for adjusting and analyzing
tabular functions . (See reference (5).)

CONTENTS

1. Introduction

2. The PHI Function

2.1 The Structure of the PHI Vector
2.2 Sample PHI Components
2.3 Convergence Regions
2.4 Analysis of the PHI Function

3. The RKF45T Structure

3.1 Subroutines in the RKF45T Package
3.2 An Overview of the RKF45T analysis

4. Calling Sequences for the RKF45T Package and User-Supplied
Subroutines

4.1 User-Supplied Subroutines
4.1.1 Subroutine F
4.1.2 Subroutine SUBPHI

4 .2 Calling Sequence and Operating Options for RKF45T
4.2.1 The RKF45T Calling Sequence
4.2.2 RKF45T Modes of Operation

5. General Procedure in Subroutine TRAPPD

5.1
5.2
5 .3
5.4

PHI Vanishes at TF
The Trapping Iteration
The Update of PHI Components
Trapping Additional Values within a

6. Details of Subroutine TRAPPD

Given Step

6 . 1 The Initialization Block for TRAPPD
6.2 Determining the Trapping Status of PHI
6. 3 Choosing the Itera.tion Step Size
6.4 INDEX Shift
6 . 5 The Update of PHI Components

7. The RKF45T System Communication with the User

7.1 User Input into RKF45T
7 .2 Information Returned through the RKF45T Calling Sequence
7.3 Communication through the SUBPHI Calling Sequence

7.3.1 Initialization of the Trapping Option
7 . 3 .2 Update Calls to SUBPHI

8. RKFST and Auxiliary Subroutines for the TRAPPD System

8.1
8.2
8.3
8.4
8.5

Subroutine RKFST
Subroutines TRAPPD,
Subroutine SCALED
Subroutine VANISH
Subroutine PANIC

SHIFTI, TSTAR, MULTOP, and BOUNCD

1

2

3
3
4
4

5

5
6

6

7
7
7
8
8
9

12

13
13
13
13

14

14
16
16
18
18

19

19
20
21
21
22

23

23
24
24
25
26

8.6 Subroutine FLAGCK
8.7 Subroutine OUTFLG

- 4 -

27
27

9. Special Features, Special Problems 28

9.1 Controlling Constants 28
9.2 Special Features in RKFST 28

9.2.1 Vanishing PHI Components at the Initial Conditions 29
9.2 .2 The PANIC Option Activated through SETRAP 29

9.3 The PANIC Option in TRAPPD 29
9.4 Order of the Scaled Solution 30
9 . 5 PHI Vanishes throughout a Step 30
9.6 Print Options 30
9.7 User Update of the PHI Components and the Differential Equation

System 31
9.7 . 1 Sign of the Vanishing Component 31
9.7.2 Changes in the PHI Vector 31
9 . 7 . 3 Updates in the Differential Equation System 32

9.8 Difficulties with the PHI Function 32
9.9 The Bouncing PHI Function 33

10. Applications

10 . 1
10 . 2
10 . 3
10 . 4
10.5
10 .6
10.7

Dense Output at Specified Values of the Independent Var iable
Update in the ODE System Using the Gorobination Mod~
Large system of Stopping Conditions
Tabular Data Express ions in ODE Systems
A Highly Oscillatory Problem
A Large Convergence Region
A Bouncing PHI Function

34

34
36
38
40
44
45
46

11. Conclusions 47

12 . References 54

Appendix A. Program Listing f o r RKF45T and Related Subroutines 55

Appendix B. SUBPHI subroutines and resulting output for examples in
§10. 112

1. INTRODUCTION

During the numerical solution of the initial value problern

dy
(1) = f(t,y) , y(to) =yo,

dt

one may frequently request information about the solution whenever a compo
nent of a constraint function vanishes, i.e., whenever PHI(J)=O . Examples of
such constraint functions may range from isolating specific values of a par
ticular dependent variable to analyzing complicated functions involving the
independent variable, the dependent variables, and their derivatives. Typi
cal examples include locating important points along the integration path,
such as perigee or apogee of an orbit, as well as isolating singularities or
stopping the solution at specified values of a dependent variable (or a func
tion of the dependent variables). Apriori knowledge of the conditions for
satisfying such constraints, however, is generally unavailable . Thus, some
iterative procedure must be used to adjust the integration step size in order
to locate the values of the independent variable at which the components of
the constraint vector vanish. The cost of such iterations, bowever, may be
prohibitive if the problern requires frequent analysis of such constraints . An
algorithm, then, is needed which can stop the numerical integration in an
efficient manner whenever a user-supplied, constraint equation is satisfied.

While Runge-Kutta (RK) algorithms are effective in solving certain classes of
ordinary differential equations (ODEs), their efficiency depends upon their
ability to use large step sizes while generating tbe solution. Such iterative
schemes, requiring repeated reductions in the step s ize, however, could
demand too much additional computing time. Scaled Runge-Kutta algorithms
exist which enable one to determine the solution anywhere within a given
integration step at only a slight increase in computing time [2] . These sca
led methods, which are used in conjunction with existing RK algorithms, are
ideally suited for iterative schemes and are used to evaluate the solution at
intermediate points throughout any integration step.

The RKF45 software package, developed by H.A. Watts and L.F . Shampine [6] is
modified to provide an ef!icient integration stop whenever a component of a
user-supplied, constraint vector, PHI (J), vanishes. The majority of the
analysis of this constraint function, PHI is treated in additional subrou
tines (TRAPPD and associated routines), thus requiring only minor modifica
tions to the original RKF45 system. To distinguish between the original and
modified versions, the package which handles the constraint functions is
referred to as RKF45T and is, in fact, the RKF45 package when the trapping
option is not activated.

Zeros of the PHI components are identified by detecting sign changes as the
PHI vector is monitared after each integration step . Once a sign change is
observed (or once a zero has been "stepped on"), the integration is temporar
ily halted, and the analysis is shifted into separate subroutines for isolat
ing the vanishing point (or points). If derivatives (or derivative estimates)
of PHI are provided , a Newton-Rhapson (or secant) method will be used to iso
late 1""', the value of the independent variable at which a PHI component
vanishes. If the derivative values provided produce unacceptable !-'<' esti
mates ; a false-position (or perhaps half interval) estimate is used to
determine T*. If several components vanish within a given step (not necessar-

- 2 -

ily at the same point) each zero will be isolated in order in the direction of
the integration . (The trapping iteration is capable of switching between the
PHI components.) The user is informed of the v·anishing of a PHI component
through an update call to SUBPHI (the user-supplied subroutine for evaluating
the PHI and PHIP components.) If more than one component vanishes at a spe
cific point, a separate update call is made to SUBPHI for each vanishing
component . During the update call, the user may print information, change the
PHI expressions , or even change the differential equation system itself.
Several modes of the trapping option are available so that the analysis may
remain within the integration routine or may return to the user after an
update, depending upon the r equested mode.

Certain types of PHI functions may pose particular difficulties, for example,
multiple zeros within a given integration step, relatively flat PHI compo
nents (having a large convergence region), or "bouncing" PHI functions (ones
which do not change sign as they pass through zero). Several precautionary
measures and several emergency features have been included to handle these
situations, but the nature of the problern lies with the PHI component itself
(or with its relation to the numerical solution of the differential
equations) rather than with the iteration procedure. The user must understand
the vectors being analyzed in order to interpret the trapping results (or
difficulties) .

This report presents a description of the basic (RKF45) program, as well as
the documentation of t.he modifications to the original sc.ftware package. The
program listing is given in Appendix A. (Further documentation of the ori
ginal RKF45 package is contained in comment cards in the program listing).
This report is structured so that the user may refer to specific sections
without reading the entire report (with related sections being referenced.)
Examples illustrating the use of the RKF45T package are presented.

This report is actually one of a series of four reports designed to be used in
the solution of the optimal control problern when discontinuities occur in the
ODE or in higher derivatives of the ODE. Valurne 1 of this set [3] illustrates
the use of the RKF45T package for problems in which extensive u~e is made of
linearly interpolated tabular data, with RKF45T halting the integration at
each grid point in the tables . Valurne 2 [4] demonstrates the use of RKF45T
when a small nurober of discontinuities occur in the ODE, with an inequality
constraint, depending upon t, y, and y', analyzed using the RKF45T package .
Volume 4 of the set [5] describes the t"abular structure to be used in Valurne
1. The current volume illustrates further uses of the RKF45T package.

2. THE PHI FUNCTION

The inclusion of the PHI vector in the RKF45T package gives the user a great
deal of programming flex i bility during the solution of a system of ODEs. Rea
sons for temporarily halting the integration may be as simple as requesting
dense output at specified increments of the independent variable or as com
plicated as isolating particular values of expressions in the dependent vari
able and its derivatives . Even the simplest of stopping conditions, however,
can often be analyzed more efficiently as a component of the PHI vector than
as a separate stopping condition in the driving program .

- 3 -

The problern of locating a specified value of a given expression,
t(t,y,y') = to, may be formulated as one of locating the vanishing points of
the function

PHI= t(t,y,y') - to

By treating a vector PHI, the RKF45T program is able to locate the vanishing
points for any nurober of stopping conditions during the integration, switch
ing between the components of PHI to isolate the zeros in the direction of
the integration. Added flexibility is provided in an updating feature which
gives the user the opportunity to print information and even to change the
PHI function or the differential equations whenever a zero component of PHI
is isolated. These updates may be made without returning to the driving pro
gram.

2.1 The Structure of the PHI Vector

The user-supplied PHI vector may be expressed as a function oft, y, and y'.
While the analysis of this vector is fairly straightforward, the user should
keep in mind that certain difficulties can arise while isolating the zeros of
a PHI component even though the integration is proceeding smoothly. Difficul
ties in the PHI analysis might occur, for example, due to effects from errors
in the integration. These difficulties occur regardless of the iteration
scheme used. Thus, the user must have some understanding of the PHI vector
being provided . (Emergency analysis can be activated , but this, in general,
is inefficient . See §§9 .2.2, 9.3, and 10 .5.)

2.2 Sampie PHI Components

Examples of simple but useful PHI components might included:

• Independent variable increments, PHI(l)=T-TPRINT, where TPRINT is
increased each time PHI(l)=O is isolated,

• Dependent variable stops, PHI(2)=Y(3)-YPRINT,

• A function ofT, Y, and Y', say perigee or apogee of an elliptic orbit,
i.e., V•R=O , PHI(3) = YP(l)•'~'Y(l) + YP(2)*Y(2) + YP(3)•"'Y(3),

or

• Grid values for interpolating tabular data, PHI(4)=(MACHUP-M)*(M-MACHLO)
where MACHUP and MACHLO are entries in a table and where M may depend
upon T, Y, and Y'. NACHUP and MACHLO may be incremented when PHI (4) van
ishes, so that the bracketing values of the new region are used.

Such functions change sign as they pass through a zero point identifying con
ditions for activating an option to isolate a zero. The identification proc
ess may encounter difficulties if the PHI components change sign more than
once within a given step or if they "bounce" on the zero value, i.e., if PHI
has the same sign an both sides of a zero . A good understanding of the PHI
components , however, will avoid the need to monitor the PHI vector carefully.

- 4 -

2.3 Convergence Regions

The user is seeking the value T* for which a component of PHI, say PHI(J),
vanishes. In general, however, an iterative process can only approximate the
zero of PHI (J). Thus, a neighborhood of 'f'>\" exists in which any value of T will
satisfy the requirements tbat IPHI(J)I be less than a prescribed tolerance .
(While this tolerance may be quite small, certain restrictions, e.g., the
integration accuracy, dictate a limiting lower bound . Therefore, a conver
gence region exists whose size depends upon tbe tolerance requested and the
nature of the PHI component itself.(See Figure 1.)

T

----- ---------·- ----

Figure 1 . Convergence regions for ~ functions.
'f'>'r E (TLi, TRi), i=1 ,2, 3 .

2.4 Analysis of the PHI Function

ltil < tolerance for

Communicat ion between the RKF45T package and the user occurs, in part,
through the calling sequence of the user-supplied subroutine, SUBPHI, which
computes the PHI component values (See §4 . 1.2). During the solution of the
ODE system, SUBPHI is referenced after each successful integration step to
evaluate the PHI components. The integration continues with the PHI vector
monitored in SETRAP until a sign change is detected in any component or until
a component has vanished at the end of a given step. At this point, tbe inte
gration is halted and the analysis is switched to the TRAPPD subroutine to
isolate the components of PHI vanishing within that step.

In subroutine TRAPPD an iterative procedure is used to isolate the first com
ponent of PHI to change signs. (If the zero is located at the end of the
integration step, no iterations are required .) The user is informed of the
vanishing 'point through an update call to SUBPHI, which identifies the compo
nent and gives the user certain information about tbat function. (The proce
dure used in subroutine TRAPPD is described in § 5.) If multiple components
of PHI vanish at the s ame point, a separate update is made for each vanishing
component. The trapping routine may then continue to locate further vanishing
components within that step or may return to the basic integration package
(and possibly to the user) depending upon the mode of operation selected.

3. THE RKF45T STRUCTURE

The RKF45T integration package, ~.;ith an option to stop the integration should
a constraint vector be satisfied, is a modif ication of the RKF45 system
developed by H.A. Watts and L.F. Shampine [6]. The core of the integration
system is a fifth order Runge-Kutta method due to E. Fehlberg (1], having an
embedded fourth order solution for step size control. Modifications to the
RKF45 subroutines have been inserted in blocks as far as possible, to avoid
reformulating the existing modular structure of the RKF45 package. The major
ity of the work done in analyzing a constraint function is managed through an
additional subroutine, TRAPPD, which is referenced once the integrator
(through subroutine SETRAP) detects a sign change (or a vanishing value) of a
component of the constraint vector, PHI . TRAPPD references a nurober of sub
routines during its normal operation. Additional subroutines, SCALED,
VANISH, and PANIC, are major subroutines which treat particular situations
arising during t he analysis in TRAPPD or SETRAP. The subroutines FLAGCK and
OUTFLG are attached to the integrator itself for analysi.s of the operati.on
parameters. In addition, the user may switch modes of operation easily, even
activating the trapping option after the integration has begun.

3. 1 Subroutines in th~ RKF45T Package

The basic tasks of each of the subroutines in the RKF45T package are
described below:

RKF45T

RKFST

FEHL

SETRAP

TRAP PD

VANISH

is an interfacing routine between the driving program and RKFST.
RKF45T partitions the WORK array and references FLAGCK for possi
ble adjustments to some internal parameters before referencing
RKFST. Before returning to the user RKF45T again references FLAGCK
(for further adjustments to internal flags) and OUTFLG to print
warning messages if the integration or trapping procedure has no~
gone as planned.

is the decision making routine for the solution of the ODE. RKFST
analyzes the step size, deciding the initial step length, estimat
ing the accuracy of each step, and making further adjustments to
the step size. Flags are set and adjusted in RKFST to determine
the success or failure of the integration. RKFST references SETRAP
after each step to monitor the PHI vector.

evaluates the Runge-Kutta so lution at T + H.

serves as the interfacing routine between RKFST and TRAPPD, moni
taring the PHI vector after each integration step and deciding when
TRAPPD should be referenced.

organizes the search for the zeros of PHI (INDEX), referencing
BOUNCD, TSTAR, SHIFTI, and HULTOP to perform simpl e tasks.

studies PHI functions which may have vanished throughout the trap
ping interval (or which have vanished at the initial conditions).

PANIC

SCALED

FLAGCK

OUTFLG

- 6 -

is an emergency routine which studies the PHI components through
out the interval if problems have arise~ during the analysis.

computes the solution at any given T value within a given inte
gration step.

makes internal IFLAG adjustments.

prints warn:lng messages designated by IFLAG.

3.2 An Overview of the RKF45T analysis

The RKF45 package is a well tested, production software package. The modifi
cations forming the RKF45T system would still be considered to be a research
code. Thus, problems encountered during the use of the program are probably
due to the modifications in the code or to user error.

The software package evaluates the derivative, selects the step size automat
ically (including the initial step size), and advances the solution in the
manner requested by the user. Any problems encountered during the solution,
whether due to difficulties in the ODE system or due to user input or
response, are indicated by the parameter IFLAG. Cert u.in values of IFLAG
indicate that problems have arisen, which are sufficiently severe, that a
continued attempt at integrating will terminate t he program. (See Table 1.)
During the solution, the dependent variables, Y, and their derivatives, YP,
(stored in WORK array locations 1 through NEQN) always correspond to the val
ue , T, of the independent variable, although T may not have reached TOUT or
may not even have been advanced a single step since being referenced by the
driving program (as indicated by the parameter IFLAG.)

If a constraint vector PHI is being analyzed, each component is monitared as
the integrat ion proceeds. Whenever any component changes sign over an inte
gration step or vanishes at the end of the step, the integration is temporar
ily interrupted and the analysis is shifted to the TRAPPD subroutine to
isolate the zeros of PHI or to permit updating of any vanishing component of
PHI. Once the PHI vector has been analyzed, the user is informed of the
location of vanishing vallies of PHI isolated by TRAPPD, and the integration
is continued or the solution is returned to the driving program, according to
the user's specifications.

4. CALLING SEQUENCES FOR THE RKF45T PACKAGE AND USER-SUPPLIED
SUBROUTINES

A basic understanding of the parameters used in referencing the RKF45T pack
age and the user-supplied subroutines, F and SUBPHI , is needed before the
actual communication between t he user and the RKF45T package can be
discussed. In this section these parameters, including the various modes of
operationwill be defined. The actual interaction bet ween the user's program
and the RKF45T package is' discussed in §7.

- 7 -

4.1 User-Supplied Subroutines

The user is required to supply two subroutines which are used in conjunction
with the RKF45T package, both being listed in an external reference statement
in the referencing program.

4. 1.1 Subroutine F

Subroutine F, hav ing ca l ling sequence F(T, Y,YP), evaluates YP, the deriva
tive of vector, Y. The input parameters are:

T

y

the independent variable, and

the dependent variable , dimensioned NEQN in the referencing sub
routines

with the returned values

yp the user-supplied derivative of the vector Y (eqn . 1), dimensioned
NEQN in the referencing subroutines.

Parameters T, Y, YP aredouble precision variables.

4.1.2 Subroutine SUBPHI

Subroutine SUBPHI, having cal l ing sequence SUBPHI(NPHI , INDEX, T, Y, YP, PHI,
PHIP, KOUNTR, UPDATE, IVAN, BOUNCE, ABSER) evaluates t he user supplied con
s traint vector, PHI, for analysis in the RKF45T program. The rather lengthy
cal l ing sequence provides considerable flexibility for the user , so that SUB
PHI may perform far more tasks than simply evaluating the PHI function . The
input parameters are listed below.

NPHI

INDEX

T

y

YP

gives t he dimension of the constraint vector PHI (and of its deriv
at ive PHI P),

equals zero if t he analysis of PHI is still handled in RKFST/SETRAP
or designates the component of PHI currently being analyzed in
TRAPPD if a sign change in a PHI component has been observed. (If
INDEX is not zero , the analys is has shifted into the TRAPPD
routine .) INDEX may change values during the trapping process as
the iteration converges to the first component (and eventually to
each component) t hat experiences a sign change over the inte
gration step being analyzed,

is t he independent variabl e,

is a vector of the dependent variabl es, dimensioned NEQN in the
referencing subroutines,

is the derivat·ive of Y, a vector dimensioned NEQN in the referenc
ing subroutines,

KOUNTR

UPDATE

IVAN

BOUNCE

ABSER

- 8 -

counts the nurober of zeros isolated by TRAPPD (KOUNTR=O indicates
the initialization phase in SUBPHI),

a logical parameter, designates the status of the trapping proce
dure,

a logical parameter, indicates whether or not a PHI component has
vanished throughout the interval from T to ~"',

a logical parameter, indicates whether or not a PHI component has
"bounced" on a zero, and

is a user-supplied absolute error tolerance used in defining the
convergence of the PHI vector (the default value being
DMAXl{RELERR,ABSERR}, integration tolerances for RKF45T).

Returned values (user-supplied) for UPDATE=.FALSE. are :

PHI the constraint vector, dimensioned NPHI in referencing routines,
and

PHIP the derivative (or derivative estimate) of t he PHI vector , dimen
sioned NPHI in the referencing routines . (If the derivative or
derivative estimate of any PHI is unavailab le, that PHIP value
should be se.t equal to zero.)

Again, T, Y, YP, as well as, ABSER, PHI, and PHIP, aredouble precision vari
ables, while UPDATE, IVAN, and BOUNCE are logical variables.

The parameters, INDEX, KOUNTR, UPDATE, BOUNCE, and IVAN, are provided for the
user's benefit and may be changed after the initial call to SUBPHI without
affecting the integration or trapping routines . Becaus e the primary function
of these parameters is to communicate information to the user, t hey will be
discussed in greater detail in §7 .

4.2 Calling Sequence and Operating Options for RKF45T

The initial and final interaction between the user and the RKF45T package
occurs through the calling sequence of RKF45T. If a PHI vector is being ana
lyzed, further communication occurs when the vanishing point of a PHI compo
nent is isolated, but the information about the ultimate s uccess or failure
of the integration is generally given by the RKF45T parameters . Since the
returned solution and flags depend upon the mode of operation selected, the
user should fully understand t he information returned by t he RKF45T program
as well as the various modes of operation.

4.2. 1 The RKF45T Calling Sequence

The user supplies the following information to the integration package :

F, SUBPHI

NPHI

NEQN

y

T

TOUT

RELERR

ABSERR

IFLAG

WORK

IWORK

- 9 -

user-supplied subroutines (given in external reference state
ments in the driving program) with ~alling sequences described
in §4. 1 ,

the nurober of components of vector, PHI.

the nurober of components ofthedependent variable, Y,

the initial value ofthedependent variable, Y, dimensioned NEQN

the initial value of the independent variable,

the desired value of the independent variable upon return to the
user (in a continuous mode of operation) or the indicator for the
integration direction (and the limiting value of T in a
step-by-step mode),

an accuracy estimate for the relative error in the solution,

an accuracy estimate for the absolute error in the solution,

a flag designating the mode of operation selected (See§ 4.2.2.),

a work array that masks information which is needed by the pro
gram but which is generally not needed by t.he user (See Table
2.a.), and

an integer work array that masks information which is needed by
the program but which is generally not needed by the user (See
Table 2. b.).

Returned parameters are :

T

y

IFLAG

WORK

IWORK

the current value of the independent variable (not necessari l y
TOUT)

the value of the dependent variable at T

a flag designating the status of the integration,

the work array with new values which are generally not needed by
the user (See Tabl e 2.a.), and

the integer work array with new values which are generally not
needed by the user (See Table 2.b.).

Parameters Y, T, TOUT, RELERR, ABSERR, and WORK aredouble precision vari
ables .

4.2 . 2 RKF45T Modes of Operation

The RKF45T integration package may be operated in several modes . Hore specif
ically, the integrator itself may be operated in two different ways: (1) in a
step-by-step mode, with the solution being returned to the user after each
step, or (2) in a continuous mode, with the solution being returned to the

- 10 -

user when the integration has reached TOUT . In addition, t here are several
trapping options, corresponding, in part, to the mode used in the
integration. The trapping option may be activated during the initial call to
the integrator or may be started during the solution of the ODE system.

Each mode of operation is identified by the parameter IFLAG. In the basic
integrator, IFLAG=-1 activates the step-by-step mode, while IFLAG=1 acti
vates the continuous mode. Upon return t o the user IFLAG is set equal to -2 or
+2, respectively, unle'ss TOUT has been r eached in t he step-by-step mode, in
which case IFLAG=2. Similar modes of operation are avai l ab l e with the trap
ping option, but with two options for both the step-by-step mode and the
continuous mode. Also, similar flags are used: (1) IFLAG=-10 or -15 for t he
step-by-step mode or (2) IFLAG=10 or 15 for the continuous mode, with return
values of -20, -25, 20, and 25, respectively. (For the " late start" option
the starting flag is shifted -1 or +1, depending upon the mode used. The
shifted values are then reset to standard IFLAG valu~s by the RKF45T package .
(See§ 4.2.2.6.)) The two, step-by-step modes may return to the user before
the integration has reached TOUT, whereas the continuous modes return the
solution at TOUT (unless difficulties are encountered during the
integration.) The user should study the two continuous modes carefully.
Although each is designed to handle a different type of problem, one of the
two modes is generally sufficient to treat any problem. Both of t hese methods
isolate all vanishing points of PHI throughout the interval of integration ,
providing communication between the software package and the user whenever a
component of PHI vanisbes. (Thus, printing data, changing the PHI function,
and even changing the ODE system are possible without ever returning to the
driving program.)

4.2.2 . 1 Step-by-Step Mode (with Trapping Option)

The simplest mode of operation is the step-by-step mode (IFLAG=-10). This
option is also the least efficient mode and should be used only when the sol
ution must be carefully monitored. The solution will be advanced a single
step and returned to the user . If a component of the PHI function vanishes
during the step, the solution is returned at the "trapped" point . If several
components of PHI vanish during the step, the solution is returned at the
va l ue of T corresponding to the first PHI component to vanish. After a compo
nent of PHI has been "trapped", an update is made in the SUBPHI routine,
giving the user an immediate opportunity to identify the component. (Also, if
several components vanish at that value of T, an update call will be made for
each component.) Although the solution is returned at the "trapped" point,
the conditions at the end of the step, TF, YF, and YPF, are stored in t he WORK
array if the user should need them. (See §7 .2.) If no component of PHI has
"vanished" during the step, the solution is returned at the end of the step.
If TOUT is reached, IFLAG will be reset to +2. Otherwise, IFLAG=-20, which is
the value needed for continuing the integration in this mode until TOUT is
reached.

4.2.2.2 Trapping Step-by-Trapping Step Mode

A similar mode of operation is the trapping step-by-trappi ng step mode.
IFLAG=-15 activates a mode of operation, which is a combination of the
step-by-step and the continuous integration options. The i ntegration i tself
is advanced in the continuous mode, with a return to the user being activated
whenever a vanishing component of PHI has been isolated within a part icular
step. Conditions and update procedures are similar to those for the

- 11 -

step-by-step mode. If TOUT is reached, IFLAG will be reset to +2. Otherwise,
~ IFLAG=-25, which is the value needed for continuing the integration until

TOUT is reached. Values at the end of the integrätion step, TF, YF, YPF, are
returned in the WORK array locations. (See § 7.2.) The efficiency of the
trapping step-by-trapping step mode decreases with the increasing number of
returns to the user, due, in part, to the overhead involved in referencing
the integration subroutines. The user should investigate the possibilities
of using a fully continuous mode before selecting the trapping
step- by- trapping step mode.

4.2.2.3 Single Trapping Mode (Continuous)

The single trap mode of operation isolates each vanishing value of PHI,
. advancing the solution from the most recently trapped point. If several com
ponents vanish at a specific value ofT, all components are identified, each
in a separate update call to SUBPHI. Should several components of the PHI
vector vanish within a given step, but at different values ofT, this mode of
operation will isolate the first vanishing point and continue the integration
from that point. The further vanishing values will be isolated on subsequent
steps . This mode of operation permits update in both the PHI function and the
differential equation system. Because the ODE may be updated, however, t he
PHI vector (and its zero points) may also change after the trappad point .
Thus, the integration and PHI function analysis must be started again at the
trapped point.

4.2.2.4 Multiple Trapping Mode (Continuous)

The second form of continuous integration, the multiple trap option, searches
for all vanishing values of PHI throughout a given step and then advances the
solution from the end of t he step taken. The multiple trap option does not
allow updates in the differential equation system, but does permit updates in
the PHI function itself. If an update in the PHI function occurs, however,
further vanishing values of PHI are sought only between the last trapped
point and the end of the step. (If the newly introduced PHI funct i on vanishes
over a previously studied region, these values are not considered to be
applicable to the problem. Otherwise, the new PHI function should have been
analyzed as that regionwas being studied.) This mode of operation is ideal
l y suited to treat dense ' output at specified increments of the independent
variable, because the requested output point may be shifted forward at each
update of that PHI component, allowing all points to be isolated throughout
the step with no further derivative evaluation expense. (See exampl e 1, §10.)

4.2.2.5 Combination Trapping Mode (Continuous)

The multiple trap mode may be used in conjunction with the single trap mode.
This combination option is actually a multiple trap mode which stops locating
additional zeros within a given step once a PHI component, designated as a
singl e trap component, is isolated. The PHI vector is partitioned, with the
first M components being analyzed in the multiple trap manner and the remain
ing NPHI-M components, in the single trap manner. Properties of each option
apply to their corresponding PHI components.

The combination option is activated us ing the same IFLAG values as in the
multiple trapping option . The information for designating the combination
option (as opposed to the normal multiple trapping option) occurs in subrou-

- 12 -

tine SUBPHI . (This rather indirect means of activating the option helps
avoid further deviations from the standard RKF45 calling sequence, and per
mits users of the standard continuous options to ignore the mode completely.)
The user must partition the PHI vector so that the first M components are
those which will be analyzed in the multiple trapping sense. The limit M is
conveyed by the user through the parameter INDEX on the first call to SUBPHI
(at which time KOUNTR=O). Failure to supply an initial INDEX (when IFLAG=15)
simply applies the multiple trap mode to the entire vector, i. e., the default
value in RKF45T is NPHI. (Once information from INDEX is obtained on the ini
tial call to SUBPHI, INDEX is reset (to zero) in RKFST, and user changes to
the parameter no langer affect the RKF45T package.) Activating the combina
tion mode i s most easily described by examp le. (See example 2, §10.)

4.2.2.6 The Late Start Option

The user may choose to advance the ODE solution for some time before activat
ing the trapping· option . Rather than reinitializing the entire integration,
the user may select IFLAG so that only the section of the program needed to
activate the trapping option is set. The standard trapping optionsarestill
available, but the IFLAG designation is IFLAG=-16,-11,11,16, corresponding
to the options IFLAG=-15,-10,10,15, respectively. During the initialization,
IFLAG is reset to its appropriate value. Since the options are the same, the
"late start" is not considered to be an actual mode of operation and so is not
generally mentioned with the other options throughout thici report.

5. GENERAL PROCEDURE IN SUBROUTINE TRAPPD

Subroutine TRAPPD handles the major part of the analysis of the vector func
tion PHI once any component of PHI experiences a sign change over a given
step or vanishes at the end of a step. To simplify the analysis in TRAPPD, a
number of subroutines are referenced to perform basic tasks such as selecting
the new zero estimate point or shifting indices. In add i tion, several funda
mental routines are referenced, namely, PANIC, SCALED, and VANISH, to treat
particular important conditions which may arise. TRAPPD, then, may be consid
ered as the final judge concerning the success of the search.

TRAPPD attempts to locate the zeros of the PHI components which have changed
sign over the integration step or which have vanished at the end of the step
(within t he specified tolerance). Since several components of PHI may have
changed sign over a given step, INDEX indicates t hat particular component
(having experienced a sign change) which has the largest magnitude at the
most recently analyzed point across the boundary. INDEX may be shifted
between components as the trapping procedure continues, assuring that the
component which most strongly violates the sign change restriction is being
trapped. Thus, the zeros of the PHI components are isolated in order in the
direction of integration.

- 13 -

5.1 PHI Vanishes at TF

Several situations may exist upon entry into TRAPPD. The simplest conditions
to analyze occurs when PHI (INDEX) has "vanished" at TF, i . e. , when
IPHIF(INDEX)I is less than the prescribed tolerance. The integrator has man
aged to step on a zero of at l east one component of PHI, and no trapping iter
ation is necessary. An update is made for PHI(INDEX) and for any other PHI
component which may also have vanished, and the analysis is returned to the
RKFST routine. (If another component of PHI had changed signs during the
integration step, but had failed to vanish at TF, INDEX would have designated
that component. Thus, if IPHIF(INDEX)I < tolerance, several components may
have vanished at TF, but none should have vanished between T and TF.)

5.2 The Trapping Iteration

The detailed analysis in TRAPPD occurs when at least one component of PHI has
changed sign and has not yet vanished . If several zeros occur within the
step, the INDEX parameter will be shifted automatically until the first van
ishing component is isolated. The trapping portion of the subroutine esti
mates the vanishing point, ~~. calls SCALED to evaluate the so lution at ~~.
shifts INDEX if another component, having experienced a sign change, is of
greater magnitude, and continues "trapping" until convergence is achieved.
The analysis is then shifted to the update section of the routine, where the
user is given the opportunity to update the PHI function, the solution, or
the differential equations, depending upon the .mode of operation designated
by the user.

5.3 The Update of PHI Components

Once the first vanishing component of PHI has been isolated, the analysis
shifts to the update section during which SUBPHI is referenced, giving the
us er a chance to update conditions without returning to the driving program.
Before the user has access to· t he s i tuation, however, TRAPPD sets certain
flags and analyzes the PHI function to inform the user of possible difficul
ties. (See § 6. 5.) A separate update call is made to SUBPHI for each
component of the PHI vector which has vanished at the current value of ~~.
with the parameter INDEX indicating the component of PHI being updated.

5.4 Trapping Additional Values within a Given Step

If the multiple trapping mode of operation is used, al l vanishing values of
PHI within a given step are isolat ed . Once the first vanishing component of
PHI is trapped and updated, t he PHI vector is reevaluated at TF (to assure
correct values, since PHI may have been updat•~d). 'rhnn t.h e PHI vector is ana
lyzed to see if any components have changer.l ~:t,grt between the trapped point
and TF. If additional components need analyzing, t ho trapping iteration is
repeated.

- 14 -

If a combination of the multiple and single trapping modes is used, further
vanishing points are sought until a zero of a PH~ component corresponding to
the single trap mode is isolated . The integration will t hen be continued
from this zero point .

6 . DETAILS OF SUBROUTINE TRAPPD

The analysis in subroutine TRAPPD is handled in several blocks, with addi
tional subroutines being referenced to treat special problems which may
arise. TRAPPD is referenced whenever a component of PHI has either changed
sign over an integration . step or vanished within the specified tolerance at
the end of t he step , i. e., at TF . If several components of PHI have vanished
at TF or changed s ign over a given step , the parameter INDEX designates the
component from this set, having the largest magnitude at TF . All decisions
for estimating the first vanishing point for the PHI components will be made
using PHI(INDEX) . As the trapping iteration continues, however, INDEX may be
switched between components as the values of PHI across the boundary change,
assuring that the component which most strongly violates t he s ign change cri
ter ion i s be ing trapped. Trapped and related subroutines are listed i n
Appendix A.

6.1 The lnitialization Block for TRAPPD

The initialization part of TRAPPD contains two safety features: (1) the
"bouncing" analys is, and (2) the PANIC option . In addition , a standard print
ing option is available, although the option should generally be activated
only if the PHI analys i s encount ers difficulties. The initialization block
l abels t he PHI components and sets other parameters used internally by the
trapping analysis.

The user may need to understand the label ing of the points used in the trap
ping analysis . Bracketing values of T for locating ~'<' (the predicted value at
which PHI(INDEX) will vanish) are established in RKFST and points are labeled
before entry into TRAPPD . TRAPPD then reduces the bracketing interval until
the zero point is i solated. PHI and PHIP vectors are associat ed with each
l abeled point. The solution, however, is stored only at T, TF , and T2 (where
T2 is the current estimate of ~) . The initia l condit i.ons are labeled "L",
the final conditions, "R". (If the emerg~ncy ana lysis has been used in
RKF45T, "L" and "R" are end points of a snbßtef of the integration step
l ength , h. Otherwi se, "L" condit ions are those nt 1 011 , and "R" conditions are
t hose at "F" .) ~·~ estimates are labeled 11 211 with the initial "2" values
being those at "L". (See Figure 2 .)

Subroutine BOUNCE i s referenced upon entry into TRAPPD i n order to see if any
component of PHI has been labeled improperly. The idea of a "bouncing" PHI
component, i.e., a component which does not change sign as i t passes t hrough
zero , is detrimental to the analysis in TRAPPD (and in general , the only
means of detecting such a zero is to step on it). If such a zero has been
isolated, however, an incorrect sign may have been imposed by TRAPPD, and a
correction is in order. (The detection of a bouncing PHI function is not as

- 15 -

------------------ - -+--------o---------o---- -----o---------+-------

Point labeling:

initially

During 1st
iteration

During 2nd
iteration

During 3rd
iteration

End points
for 4th
iteration

T T* T* T~\- T=T+h
0 1 3 2 f 0

1,2 R

L 2 R

L 2 R

L 2 R

L R

Figure 2. Point labelling during trapping iteration. "L" denotes · left end
point, "R", right end point, and "2", the current estimate ofT*,
the vanishing point.

far-fetched as one might think, particularly in analyzing constraint
equations in which the solution stays within a narrow band about the con
straint for a while and then diverges.) The bouncing analysis is protection
which requires little computing time and whi(~h is necessary for some of the
proposed applications of RKF45T. The problem of "bouncing11 PHI functions and
the BOUNCE analysis is described thoroughly in §9.9.

An emergency feature, PANIC, is also available in the initialization block of
TRAPPD (if no PANIC feature is active in RKFST). This feature is not recom
mended for general use. The user may reference PANIC to print information
about PHI throughout the integration step. This emergency option is difficult
to activate (intentionally) because of the amount of additional computing
time required. If major difficulties occur during the trapping procedure,
e.g., if the maximumnurober of derivative evaluations is exceeded, TRAPPD
references PANIC itself in order to print out PHI values throughout the step
before terminating the analysis. Means of activating the PANIC option are
given in§§ 8.5, 9.2 .2 , and 9.3.)

- 16 -

6.2 Determining the Trapping Status of PHI

Upon entry into TRAPPD, t he current status of the PHI components must be
checked. Since several components may have changed sign over the interval or
vanished at TF, the parameter INDEX indicates the component of PHI which most
strongly violates the convergence criteria for the vector . Thus, if
PHI(INDEX) satisfies the convergence criterion at TF, the components of PHI
have failed to change sign over the integration step or have vanished (within
the prescribed to1erance) at TF . In this case, the trapping iteration is not
activated . Ins tead an immediate update in PHI is possible. An additional saf
ety check concerning the PHI vector is made . If PHI(INDEX) has changed signs
(without vanishing at TF), the trapping option is activated. If PHI(INDEX)
has neither changed sign nor vanished at TF, an error has occurred in the
analysis in SETRAP, and TRAPPD should not have been referenced. In this case
a warning mes sage is printed, and the program is terminated.

6.3 Choosing the Iteration Step Size

The trapping routine must est imate the value of ~~ for which PHI(INDEX) will
vanish. The ideal situation i s to have a s ufficiently smooth PHI function
over the current bounds (T, TF), so that a Newton-Rhapson iteration may be
used . In practice, however, one must take certain precautionary measures.
Passihle choices of t he T•"" estimate a r e:

1. Newton-Rhapson (or secant method if derivative approximations are used)

2. False-Position, or

3. Ralf-Interval

The Newton-Rhapson estimate will be chosen as l ang as the estimated value of
~~ remains within the trapping bounds. If this value of ~~ does violate the
trapping bounds , the false-position estimate will be used to give the iter
ation a "kick" and hopefully to move the trapping bounds out of the problern
area. (See Figure 3.)

The Newton-Rhapson estimate needs further discuss ion . The user is asked to
provide derivative values of PHI (or derivative est imates) in the calling
sequence of SUB.PHI. Ta "deactivate" t he Newton- Rhapson estimate, the PHIP
values may be set to zero. TRAPPD will then reset them to the unit round-off
va lue which will give an invalid Newton estimate. If the PHIP values are dif
ficult to generate, secant values may be determined easily in SUBPHI by
mere ly using the PHI values before and after the current PHI eva luation, giv
ing a reasonabl e derivative estimate and requiring the storage of onl y the T
value from the previous step. (See example 2, §10.)

The Newton-Rhapson estimate is initially generated from the end point at
which IPHI(INDEX)I is smaller, unless PHI(INDEX) vanishes at T, in which case
the "R" bound, i.e., TF, i s used. During the i teration , t he Newton estimate
is made from the previous ~.,. point (unless T* has not yet moved outside of the
"vanished region" about TL.)

An initially v anis hing PHI(INDEX) can occur if t he component has vanished an
the previous step and changes sign over the current step. Because PHI(INDEX)

I

- 17 -

is near zero at "TL" (within the prescribed tolerance), the false position
estimate will remain close to TL, thus necessita~ing the half interval esti
mate if the Newton-Rhapson value is unacceptable or repeats a previous ~~
value. (See Figure 3.)

TL I TNR

I
I
I -- - -- - -

(ay -- Newton-Rhapson estimate,
TNR, starting from TL

(b) Newton-Rhapson estimate,
TNR, starting from TR
(unacceptabie). Switch to
False-Position

TL
T

-- ----- -- - -- ---- ------ - ----- - --

(c) ~ vanishes at TL. If the false-position estimate,, TFP, is
unacceptable, use Newton-Rhapson estimate, TNR, starting from TR
or half interval estimate, THI.

Figure 3. ~~ estimates for the vanishing point of ~ = PHI(INDEX) TNR =
Newton-Rhapson estimate, TF = False-postion estimate, and THI =
Ralf - interval estimate .

The selected ~ value determines the iteration interval, (T, ~':) which must
be larger than TBOUND•~TAVG, where TBOUND is related to the machine precision,
and where TAVG is an average magnitude of T. If the interval is too small,
IFLAG is set equal to 97, the iteration is halted, and the subroutine PANIC
will be referenced to print out values of PHI and T throughout the interval
before the program is returned to the user. The values of T, Y, and YP will be
set to conditions at TL, the last point analyzed for which PHI(INDEX) did not
change sign over the interval . If the integration interval is of acceptable
length, the iteration proceeds by calling subroutine SCALED to generate the
scaled solution at ~~.

- 18 -

6.4 INDEX Shift

Once subroutine SCALED has determined the solution at T*, the most recent
iteration point, the PHI vector must be analyzed to assure that INDEX indi
cates that component which most strongly vi o1ates the convergence criteria.
The only possiblilty of a shift i n INDEX occurs when multiple components of
PHI experience a sign change over the interval (TL, 1'>"'). (See Figure 4.)

If several components do change sign over the (TL,T*) interval, INDEX desig
nates the component ofthat set having the l argest magnitude at T>"'. If INDEX
has been shifted, iteration parameters are reset and the convergence test is
made.

Iteration 0 1 2 3 4

INDEX : 1 2 3 3 2

Figure 4. Changes in parameter INDEX . Decisions for chosing T* are based on
the characteristics of PHI (INDEX). (In this example, 'f'/r values
are selected · for illustrative purposes and not by a
Newton-Rhapson or false-position procedure .)

6. 5 The Update of PHI Components

Once the first vanishing component of PHI has been isolated, the analysis
shifts to the update s ection during which SUBPHI is referenced, giving the
user a chance to update conditions without returning to t he driving program.
Before the user has access to the situation, however, TRAPPD sets certain
flags and analyzes the PHI function to inform the user of possible difficul
ties . TRAPPD references VANISH to determine whether or not the solution has
vanished throughout the entire integration step. (See §8.3 .) Then, TRAPPD
references SUBPHI for each component of PHI which has vanished, passing
important information to the user through the parameters UPDATE , INDEX, IVAN,
and KOUNTR. During the updating portion (UPDATE=.TRUE.), UPDATE indicates

- 19 -

that TRAPPD is in its updating mode, while INDEX=J, indicates that PHI(J) has
vanished within the prescribed tolerance (with s_eparate calls to SUBPHI for
each PHI(J) which has vanished). The logical parameter, IVAN, is included to
avoid possible confusion in iterpreting the updating procedure (particularly
if PHI or the differential equations system is being altered). During a given
integration step, a particular PHI component may have vanished throughout the
entire step. IVAN=. TRUE. informs the user that PHI (INDEX) has vanished
throughout the entire step. IVAN=.FALSE. informs the user that PHI(INDEX) has
passed out of any "vanished" region during the integration step. The addi
tional term, KOUNTR, is a counting parameter. For the first call to SUBPHI
(during the intialization process), KOUNTR=O, giving the user a flag for set
ting any initialization parameters needed in evaluating terms in the
user-supplied subroutine SUBPHI. Each time a zero of a PHI component has been
isolated, KOUNTR is incremented by unity before the update call to SUBPHI. If
several components of PHI vanish at one value of T, KOUNTR will be incre
mented as each component is updated. These four parameters are included to
aid the user, who may change them without affecting the RKF45T system.

The P.HI component being updated will be treated as if it were passing through
zero (with an artificially imposed sign if necessary.) If the component
actually bounces on a zero (and the user does not correct the sign error, the
analysis will continue with the incorrect sign. The sign correction will
occur on a subsequent step due to _the analysis in subroutine BOUNCD, and the
user will be given the opportunity to repeat the step if the incorrect sign
has caused computational difficulties. The "bouncing" analysis is described
thoroughly in §9.9.

7. THE RKF45T SYSTEM COMMUN ICA TION WITH THE USER

While a general overview of the RKF45T package is needed to understand the
basic workings of the program and to analyze any difficulties arising during
the solution, another view of the software package is equally important,
namely, the "black box" view. The communication between the user and the
RKF45T system occurs through the calling sequence of both the RKF45T and the
SUBPHI subroutines . Parameters·are included which inform the user of the gen
eral progress of the integration or trapping, as well as of the occurrence of
possible difficulties. Thus, both calling sequences must be carefully stu
died, so that the user can take full advantage of the information at hand.

7. 1 User Input into RKF45T

The parameters for the RKF45T calling sequence are described in §4.2 . 1, and,
along with the description of the modes of operation (§4.2.2), define the
input required to solve the ODE. Briefly, the first two parameters, F and
SUBPHI, define the functions to be analyzed during the solution of the ODE
system, with the next two parameters, NPHI and NEQN, defining the dimensions
of the system. The remaining parameters necessary for defining the initial
value problem, Y and T (the initial values of the dependent variables and the
independent variable, respectively), are listed next, with TOUT designating
both the direction of the integration and the final value of T requested . The

- 20 -

relative and absolute prec1S1.on estimate of the integration is requested
through RELERR and ABSERR, respectively. IFLAG, ~hich designates the mode of
operation of the integrator, is described in §4. 2. 2. The \vORK and IWORK
arrays store parameters needed by the RKF45T system, the partitioning of WORK
being given in Table 2.a and that of IWORK, in Table 2.b.

7.2 Information Returned through the RKF45T Calling Sequence

The RKF45T calling sequence returns the solution, Y, at the current value of
the independent variable, T. In addition, YP, the derivative of Y, is also
available at T, but is stored in WORK array locations, 1 through NEQN. Thus,
as the solution is advanced, the initial values ofT, Y; and YP are updated,
so that T, Y, and YP always correspond to the current point, regardless of
the condition of the integration. The parameter IFLAG informs the user of the
success, temporary suspension, or failure of the integration and should be
carefully monitored. Values of IFLAG, returned to the user, are listed in
Table 1, along with a description of the difficulties encountered. (These
values arealso found in the program listing.)

The goal of the RKF45T integrator is to reach TOUT. Unless IFLAG indicates an
error, this goal is achieved in the continuous integration mode, as well as
in the continuous trapping modes. The step-by-step mode (both with and with
out the trapping option) and the trapping step-by-trapping step mode,
however, may return the solution at any intermediate point even though the
integration is proceeding normally . Thus, for the step-by-step mode IFLAG is
set equal to 2 when TOUT is achieved. If the user wishes to continue the inte
gration in the original mode, IFLAG must be set equal to -2, -20, or -25,
respectively .

If the user sets RELERR too small (though still positive), RKFST resets the
parameter to a minimum acceptable value and returns this value to t he driving
program with a warning IFLAG=3. The integrationwill proceed as lang as the
user does not change RELERR to a smal ler number, and IFLAG will be reset
automatically in RKFST. If the user fails to supply a convergence tolerance
for PHI or if he supplies an unacceptable value , the integration tolerance
will be used (i.e., tolerance=DMAXl{RELERR, ABSERR}).

Changes in IFLAG should be monitared to determine the current status of the
integration. The user should not blindly accept the values ofT, Y, and YP as
being the conditions at TOUT (or as being an acceptable solution at T). Val
ues of IFLAG returned by RKF45T are listed in Table 1, along with the value of
T, (to which Y and YP correspond).

The parameters stored in the WORK and IWORK arrays are also changed during
the solution of the problem. The location of these parameters is listed in
Tables 2. a and 2. b. Of greatest importance to the user are the storage
locations of

YP,

H,

TF,

- 21 -

Parameter:

the derivative of Y at T

the predicted step length for the subseq
quent step

the value of T at the end of the previous
step (the trapping option may have halted
the integration between T and TF)

YF, the value of Y at TF

YPF, the value of YP at TF

7.3 Communication through the SUBPHI Calling Sequence

Location:

1, . .. , NEQN

NEQN + 1

10 NEQN + 2

10 NEQN + 3
through
11 NEQN + 2

11 NEQN + 3
through
12 NEQN + 2

The calling sequence fQr subroutine SUBPHI provides a great deal of informa
tion for the user's benefit, particularly during the update portion of the
program. The user is requ ired to provide the PHI and PHIP values. (If PHIP
expressions are not known, estimates or zero values are acceptable, where a
zero value will activate a false position estimate in the trapping routine.)
The remairring parameters in the calling sequence have .been included for the
user's benefit and are not needed by the RKF45T system. The user is not
required to respond to any parameter in the calling sequence, other than by
supplying the PHI and PHIP values .

7 .3.1 I nitialization of the Trapping Option

If the trapping feature of the 'RKF45T package is being used, an initializa
tion call is made to SUBPHI before the first integration step is made. This
initialization call is identified by the parameter KOUNTR, KOUNTR=O. The user
may wish to convey certain information to t he RKF45T package dur ing this
initial call to SUBPHI. (Default values of parameters needed by RKF45T have
already been set so that the system will attempt to. solve the problem, but
the nature of the PHI function may require special treatment for an effective
solution.) Upon return to the RKFST system, KOUNTR is incremented by unity.
Thus, the user may include an initialization block within SUBPHI, using
KOUNTR=O as the designating flag . (KOUNTR will remain greater than zero
unless the integration is reinitialized, unless the bouncing analysis gives a
warning through KOUNTR, or unless the user tampers with the value.)

7 .3.1.1 User Requested Tolerances

The convergence of the trapping iteration may not need to be as precise as
the integration accuracy. (In fact, for certain classes of PHI functions,
integration accuracy .may not be attainable.) Thus, the user mayMant to spe-

- 22 -

cify a relative error and/or absolute error tolerance for the PHI components.
This separate error tolerance, ABSER, may be set. during the initial call to
SUBPHI with the default value (or with an unacceptable value) being set equal
to the requested integration tolerance, DNAXl(RELERR,ABSERR). The parameters
are then protected on further calls to SUBPHI so that changes by the user
will not affect their values in the RKF45T system. If a relative error con
vergence is appropriate, the user should scale the PHI values by suitable
factors.

7 .3.1.2 lnitialization of the Combination (Multiple and Single Trap) Option

The user may wish to activate the combination trapping mode (§4.2.2.5) which
uses the multiple trapping mode for PHI(J), J ~ M, and the single trapping
mode for PHI (M+l), ... , PHI (NPHI). The combination trapping mode (which is a
special form of the multip le trapping mode), is activated with the same IFLAG
as the multiple trapping mode (IFLAG=15). During the initial call to SUBPHI
(KOUNTR=O), the user simply resets INDEX, INDEX=M. Failure to identify the
partitioning value M or failure to supply an acceptable value of M applies
the multiple trapping option to the ent ire vector, i.e., the default value is
NPHI. (Changes to INDEX affect RKF45T only at the initial call to SUBPHI .
Otherwise, the parameter is protected in the program and is used merely to
inform the user of the current value of PHI being analyzed in TRAPPD or being
updated after a successful trap.)

7.3.2 Update Calls to SUBPHI

Once the trapping option has isolated a vanishing value of PHI , an update
call is made to SUBPHI so that the user may make any aajustments desired . The
logical parameter UPDATE=.TRUE . , identifies the update mode while the param
eter INDEX designates the component of PHI currently being updated. If
several components of PHI have vanished at a given value ofT, an update call
will be made for each vanishing component. KOUNTR is incremented by unity
after each update call and designates the number of vani shing points of PHI
isol ated during the integration (unless the user has tampered with the
values). KOUNTR is provided solely for the user 1 s information and may be
adjusted freely without affecting the RKF45T package. If users wish to ignore
the updating feature, they should simply activate an immediate return to
TRAPPD whenever UPDATE=.TRUE.

TRAPPD assumes that PHI will change sign as it passes through zero. There
fore, if PHI(INDEX) has vanished within the specifi ed tolerance but has not
"stepped over" the zero point into the adjacent area, a sign change in PHI
will be imposed artificially. If the integration step size is so smal l that
the subsequent step has also failed to cross over the zero point, subroutine
VANISH will detect the condition and the sign of PHI will reflect conditions
at the begining of the step. (See Figure 5 and §9 . 5.) If updates are being
made in the PHI function or in the differential equations, the user may wish
to monitor IVAN so that the system is not updated twice in t he same vanishing
region . I f t he user changes the value of PHI at update, the user -supplied
sign will be kept.

If a 11houncing 11 PHI component has disturbed the trapping analysis, an update
call is made to SUBPHI indicating a corrected sign for PHI(INDEX). In this
update case (andin no other case), BOUNCE=.TRUE .. The use may request that

- 23 -

Figure 5. The sign of PHI(INDEX) at update. PHI(l) has crossed the boundary
into the "new" region. PHI(2) has not yet crossed the boundar y.
Therefore an "artificial" sign change must be imposed. PHI(3) has
vanished throughout the entire step.

the step be repeated by adjusting KOUNTR. Details of the "bouncing" analysis
and update are given in §9 . 9.

8. RKFST AND AUXILIARY SUBROUTINES FOR THE TRAPPD SYSTEM

While subroutine TRAPPD performs the majority of the analysis concerning the
PHI vector, several additional subroutines are referenced to treat partic
ular situations . In addition, RKFST handles some of the PHI vector analysis
before switching into the TRAPPD system. Subroutine SCALED evaluates the sca
l ed solution at each point requested by TRAPPD, while VANISH studies the sol
ution throughout the interval during the updating portion of TRAPPD. PANIC is
an emergency routine referenced by the RKFST system if TRAPPD is unable to
isolate a vanishing component of PHI.

8.1 Subroutine RKFST

The structure of RKFST is basically that of RKFS in the RKF45 package. Cer
tain changes have been made to analyze the PHI vector before switching the
analysis to TRAPPD, but these changes have been inserted in two major blocks
so as to affect the RKFST structure as little as possibl e . Any additional
changes involve recognizing flags for the trapping option and are minor in
nature. If the trapping option is not activated, an internal flag, LFLAG=O)
skirts the PHI vector analysis with only minor flag indicators being checked
during the integration.

- 24 -

In the initialization bleck in RKFST, a section has been inserted to eval uate
the PHI vector and toset the parameters needed by the trapping options. This
section can be activated separately from the inÜialization process for t he
i ntegration, making the "late start" possible without restarting the entire
integration. (This basically avoids reevaluating the estimated starting val
ue for the step size, which, in theory, is less accurate than the step size
predicted after a successful integration step.)

The secend large "bleck" inserted into the integr.ation analysis is actually a
subroutine call to SETRAP. All additional analysis of the PHI vector, aceur
ring before TRAPPD is referenced, occurs in SETRAP. After the PHI function is
evaluated at the end of the step (in SETRAP), the analysiswil l be shifted
into the TRAPPD system if any component has changed sign over the step or has
vanished at the end of the step. Otherwise, the analysis returns to RKFST to
continue the integration. (The condition in which a PHI component vanishes at
the beginning of the first integration step is handled in this bleck instead
of in the initialization bleck since the analysis requires information wi t h i n
the first step rather than just at the beginning of the step. The listing for
RKF45T and SETRAP is found in Appendix A.

8.2 Subroutines TRAP PD, SH I FTI, TSTAR, MUL TOP, and BOUNCD

Subroutine TRAPPD organizes the search for the zeros of the PHI components.
To streamline the analysis in TRAPPD, several auxiliary subrautirres are ref
erenced to perform such tasks as selecting the T~"" values, i. e., the vanishing
point estimates, switching INDEX values, etc.. TRAPPD itself has been
described thoroughly in 6. The additional subroutines used in the analysis in
TRAPPD include: SHIFTI, TSTAR, MULTOP, and BOUNCD. SHIFTI checks to see i f
TRAPPD should switch to a new PHI component in the zero search, i.e., SHIFTI
checks to see if a new PHI component more strongly violates the boundary con
ditions than PHI(INDEX) . (Index shifting is described in 6.4.) TSTAR uses
the approach given in §6. 3 to select the new T~ ... value, the est i mate of the
vanishing point of PHI(INDEX). MULTOP is referenced if t he multiple trapping
(or combination trapping) option is in use to see if additional zeros l ie
between the j ust isolated zero and TF. BOUNCD is referenced at t he beginni ng
of each TRAPPD call to see if PHI actually "bounced" on the previous l y iso
l ated zero point rather t han passing through zero. (The problern of a bouncing
PHI component is discussed in §9.9.)

8.3 Subroutine SCALED

Subroutine SCALED is referenced to perform two tasks, with ISCALE being the
designating parameter . For ISCALE=l, SCALED generates the additional deriva
tive evaluations needed to form the scaled solution. For ISCALE=2, SCALED
evaluates the actual scaled solution . Since scaled solutions of orders four
and five are available, the user must set the logical parameter,
FIFTH= .FALSE. to form the fourth order solution or FIFTH=.TRUE. to form t he
fifth order solut ion . (See Table 3.) The procedur e followed by SCALED is
essentially the same for bot h t he fourt h and f i f th order solutions, although
the F2, . .. , FlO vector s, which ar e , in part, s torage parameters, may be
labeled different ly. SCALED i s listed in Appendix A.

- 25 -

8.4 Subroutine VANISH

The convergence criteria imposed upon the vector PHI actually defines a
region in which that component is said to vanish, i. e., there exists an
interval over which the PHI component satisfies the convergence criteria.
Thus, if a vanishing component of PHI is isolated on one step and that same
component vanishes on the subsequent step, the user does not know whether or
not the solution remained within the vanished region or whether the solution
has passed out of the vanished region and "stepped on another zero". Such
information may be important to the user, particularly if the PHI vector or
ODEsystem is being updated. (See Figure 6.) !

T

Figure 6. Two types of PHI components vanishing at t~e beginning and end of
a given step. PHI(l) vanishes at both end points of the step but
not throughout the entire step, while PHI(2) "vanishes"
everywhere within the step. Two distinct zeros of PHI(l) have
been located, ·while a "convergence neighborhood" of PHI(2) has
been found . At update of PHI (2) , IVAN=. TRUE . to indicate that the
subroutine has "vanished" throughout the step.

The updating procedure in TRAPPD begins by referencing VANISH. If no compo
nent has vanished both initially and finally, the analysis is returned · to
TRAPPD to continue the update. Otherwise, each component which has vanished
initially and finally is studied to see if it has a l so vanished throughout
the entire trapping interval . I f the multiple trapping option is being used,
the initial value of T for the trapping bound is the most recent value iso
lated by TRAPPD. Otherwise, the initial value for T corresponds to the
beginning of the integration step. The other trapping bound is the current
"vanishing point" i so l ated by the TRAPPD routine, i. e . , T2 if t he trapping
iteration has been used, or TF if the integrator "stepped on a zero" and no
trapping was necessary. Three equally spaced subdivi sions are used as the
mesh to test for "total" vanishing, al though this nurober may be increased by
the user if desired. (See Table 3.)

- 26 -

Subroutine VANISH is also referenced in a special·mode if a PHI component has
vanished during the initialization of the integ~atiori"" problem. The sign of
the PHI component needs to be set properly for trappirig identification. The
user, however, may not be able to set the initial PHI values correctly .
Raund-off from a zero value or an incorrect si~n on zero (+0 or ~0) cbuld
result in an improper interpretation of trapping conditions . Thus, VANISH is.
referenced by SETRAP, and the sign of the vanishing. component at the initial
condition is set equal to the sign of the component at the first nonvanishing
substep generated in VANISH or at TF if the solution vanished throughout the
entire step. An update call to SUBPHI is then made. frqm· RKFST with the ·cor
rected sign for component PHI(INDEX). The user may change PHI(INDEX) during
this update call, and RKF45T will make no further chang~s to the updated com
ponent .

8 .5 Subroutine PAN IC

An emergency routine is provided to study the PHI v~ctor throughout the inte
gration step, including output ofT, Y, YP, PHI, and PHIP. PANIC is refer
enced by the RKF45T system if subroutine TRAPPD fails to isolate a zero of
the PHI function once conditions have indicated . that a PHI component has
changed signs over an integration step. (Exceeding. the rnaximum limit on it~r
ations and reducing the trapping bounds below an accepta'b l e limit are the two
errors which cause PANIC to be referenced by RKF45T,) The user may also
activate the PANIC option, but, in general, the use of the subroutine is not
recommended and is deliberately awkward to start. Subroutine PANICis listed
in Appendix A.

The user may activate PANIC in two ways. If a us er wishe's to monitor PHI when
ever the analysis shifts into subroutine TRAPPD, the logical parameter, NOT
FAL, which is normally set equal ·to . FALSE . in a data statement in TRAPPD
must be reset to equal .TRUE .. \Yith this change, PANIC will be referenced
each time the analysis switches to subroutine TRAPPD, i.e., each time RKFST
detects that a PHI component has changed sign over the interval or that a PHI
component has vanished at the end of the integration step. The PANIC subrou
tine will print the values of T, Y, YP, PHI, and PHIP at ten equally spaced
points throughout the integration step including at TF. (The density of out
put spacing may be adjusted by the user by changing the parameters POINTS
and NPOINT (double precision and integer values). (See comment cards in the
program listing of PANIC). The condit i ons at TF generated by the defining RK
algorithm are then printed, since the scaled solution (either of fourth or
fifth order accuracy) is not identical to the so lution given by the defining
formula and so may give s lightly different PHI values.

The secend means of activating PANIC analyzes the PHI function over each
integration step, although the printing option may be suppressed. Such a mode
of operation may be of importance if the user fears that the PHI function is
oscillating frequently during the integration. "Frequently" is a relative
term, which is actually defined in terms of the integration step size. (See
example 5, §10 .) This PANIC mode is activated in SETRAP through the use of
the logical parameter, NOTFAL. (NOTFAL in SETRAP and TRAPPD are different
parameters and are neither held in common nor passed between subroutines in
the calling sequence. If PANIC i s r eferenced through SETRAP, it will not be
referenced in TRAPPD, regardless of the value of NOTFAL . (See §§9.2.2 and
9. 3, and the PANIC listing in Appendix A.) If NOTFAL is reset to equal

· .TRUE., SETRAP will reference PANIC after each successful integration step. A

- 27 -

mesh refinement will be made in PANIC (normally set to ten subintervals), and
the PHI vector will be studied at each point, in .sequence, from T to TF. Any
sign change over a subinterval will activat e an immediate return to RKFST and
TRAPPD with T and the bracketing subinterval value as limits for the trapping
iteration.

A warning is in order. If t he multiple trap option (§4.2 . 2.4) is used, fur
ther vanishing pointswil l be sought between any isolat ed zero and TF. Thus,
the thorough search of the PANIC option may be "washed over" by the TRAPPD
routine searching for additional roots. Thus, the multiple trapping option
will be reset to a single trap option if the emergency f eature is used in
RKFST. To reiterate~ the panic options are emergency options and should be
used only as such. A warning message will be printed on the initial call to
PANIC to inform the us e r that an emergency procedure is being act i vated .

8.6 Subroutine FLAGCK

The parameter IFLAG designates the mode of operation of the RKF45T package.
The nurober of available options in RKF45T has been increased from that of the
RKF45 with IFLAG designating both the integration and the trapping mode. In
RKFST , however, IFLAG needs to direct only the integration decisions with the
trapping option decisions made in subroutine TRAPPD. FLßGCK i s again refer
enced to reset IFLAG to a standard value for integration with a secend flag,
LFLAG , being set to identtfy the trapping option. (LFLAG=O implies no trap
ping option, while LFLAG=-1, -2, 1, 2, identifies the step-by-step trapping
mode, the trapping step-by-trapping step mode , the single trapping mode, and
the multiple (er combi nation) trapping mode, respectively. FLAGCK is refer
enced before a return to t he user . If a non-trapping mode has been used, no
changes are made to IFLAG. If a trapping mode has been used, IFLAG will be
r eset to indicate that the trapping mode is in effect. If difficulties have
been encountered, IFLAG will not be reset and wil l serve as a warning to the
user.

8. 7 Subroutine OUTFLG

The IFLAG parameter should be carefully monitared since any change from a
standard value indicates that difficulties have been encountered during the
integrat ion er during the t rapping iteration. Seme values of IFLAG will
cause the program to t erminate if the user fails to r espond to the designated
problem. Other values serve as minor warnings t o the user. Subroutine OUTFLG
will print a warning message, identifying the possible caus e of the difficul
ties. These messages are availab l e in t he program listing . OUTFLG is
provided simply to help t he user recognize possible d ifficulties quickly (and
without having to monitor IFLAG in the driv ing rout ine). If IFLAG is an
appropriate value for continuing , no message is printed. OUTFLG is activated
by setting the logical parameter , FLGOUT=.TRUE. in subroutine RKF45T. The
RKF45T package has been modified so that any terminal error gives a printed
warning (with IFLAG value) before t he program is s topped.

9. SPECIAL FEATURES, SPECIAL PROBLEMS

Although the analysis of the user-supplied PHI vector is, in theory ,
straightforward, the actual iteration process may encounter difficulties due
to the nature of the PHI function. To demand that the user supply a "suffi
cient l y smooth" PHI vector is a restriction that will often be ignored . To
protect the iteration process from all "insuffic iently smooth" PHI compo
nents , however, is impossible . Thus, a compromise must be reached .

An atteropt has been made to provide the user with sufficient options to cover
a wide range of applications of user-supplied stopping conditions , handling
t he additional analysis in an efficient roanner whi le stil l including a good
nurober of safety features. If the user suspects that certain difficulties roay
arise, he may include special emergency options in the analysis. Because
these eroergency features roay reduce the efficiency of the RKF45T package ,
t hey should be used only when the added expense will be offset by the infor
mation gained. Because these features are to be used only in emergencies,
they are de l iberately difficul t to activate.

Prospective users of the RKF45T package should note t hat even well behaved
PHI components roay be difficul t to analyze. Examples of such p r oblems are
given in §10 . The difficulties encountered in the analysis of such a function
ar e generally due to the nature of the PHI vector (or due to its relation t o
t he solution or the roanner in which the solution is generated) and will be
encountered regardless of the i terative procedure.

9. 1 Controlling Constants

Many of t he special f eatures of the RKF45T package involve constants which
must be set by the us er . Some of the constants are roachine dependent nurober
or safety limits and need to be set only once f or a given computing system.
Others have "standard" suppl ied values, which roay be reset by t he informed
and/or desperate user . Additional constants activate certain emergency
options and must be reset froro their standard values . Al l are given in data
statements in their respective · subroutines. Table 3 gives standard values of
these constants and describes their purpose , wit h further clarification of
soroe pararoeters avai l able in the program listing.

9. 2 Special Features in RKFST

Most refinements to the RKF45T package occur in subroutines which have been
attached to the basic integrat ion package. Two special features, however, are
activated in SETRAP .

- 29 -

9 .2. 1 Vanishing PHI Components at the Initial Conditions

Special analysis of the initial conditions must be treated since the user may
not know that a PHI component vanishes initially and since the sign of the
vanishing component (+0 or -0) may not be properly set for continuing into
the next region . These "initial conditions" refer to the PHI vector at the
beginning of the integration (or at the first step using the trapping mode if
the "late start" option is being used) and not to the conditions at the
beginning of each step . If any component of PHI has vanished initially, VAN
ISH is referenced in a special mode, and the sign of the zero is given that of
the value of the PHI component at the first substep. An update call is then
made to SUBPHI for each vanishing component at which time the user may alter
the sign. Any user-altered sign will be used to identify the next sign
change.

9.2.2 The PANIC Option Activated through SETRAP

The PANIC option, described in Section 8.4, should be used only as an emer
gency measure . This option refines the step size mesh, giving dense output
of the PHI vector within the step . The first subinterval, (Ti-1, Ti), indi
cating a sign change in (or the vanishing of) a component of PHI, will acti
vate a return to SETRAP and will shift the analysis to TRAPPD with Ti-1 and Ti
as the bracketing values for the trapping interval. This PANIC scheme should
be activated only if the user fears the PHI function experiences multiple
zeros within single integration steps. (Such zeros might go undetected alto
gether or at least part of the zeros might be overlooked.) (See example 5,
§10.) To activate the option, the user must reset NOTFAL in the data state
ment SETRAP . A print-no print option is also available for this mode being
activated in subroutine PANIC. JPRINT=O suppresses the printing altogether,
while JPRINT=1 prints T and the PHI values throughout the step . Regardless of
the printing option selected, a warning message will be printed at the first
call to PANIC from SETRAP. The mesh size for the subintervals is regulated by
the parameters POINTS and NPOINT given in a data statement in PANIC. (Stand
ard values are lO.ODO and 10, respectively.)

9.3 The PAN IC Option in TRAPPD

Users may activate the PANIC option upon entry into TRAPPD, by setting
NOTFAL= .TRUE . . (The standard value, NOTFAL= .FALSE. , is set in a data state
ment in TRAPPD . See Table 3.) This emergency featurewill print values of
the T, Y, YP, PHI , and PHIP at a specified number of points throughout the
integration step . The analysis will then be continued in the normal fashion
in TRAPPD . Printing options in PANIC should also be set. The standard print
ing option, IPRINT=l, prints T and PHI throughout the interval. Setting
IPRINT=2 gives additional information, Y, YP , and PHIP throughout the step.
The number of output points may be changed from the standard value (10) by
changing POINTSand NPOINT in the data statement in PANIC .

- 30 -

9.4 Order of the Scaled Solution

Two scaled solutions are available in the SCALED subroutine, one of 4th and
one of 5th order accuracy. In general, the 4th order Solution is sufficiently
accurate and requires only one additional derivative evaluation for a given
step. The fifth order solution, requiring 5 additional derivative evalu
ations, is also included. The logical parameter, FIFTH designates the scaled
solution tobe generated. FIFTH=.FALSE . causes the 4th order scaled solution
to be evaluated with FIFTH=. TRUE. giving the 5th order scaled solution.

9.5 PHI Vanishes throughout a Step

Certain difficulties may arise in the analysis of the PHI function if a com
ponent vanishes at the beginning of a step as well as at the end of the step
(or at a trapped point). The .component may have vanished on the previous step
(giving the vanishing value at the beginning of the step), passed out of the
"vanishing region" during the step, and again vanished at TF (or ·'f";'(). This
component may also have remained within the "vanished11 region throughout the
step . If the integration is being advanced using large steps, the former sit
uation is quite possible, while if the integrat~on is encountering
difficulties, the naturally restricted step size could be so small that the
PHI function has still remained within the vanishing region. A PHI component
which vanishes throughout the entire step may also represent a function which
has a very large radius of curvature , and consequently ·a very large conver
gence region. (See example 6, §10.)

Subroutine VANISH is referenced to study components which have vanished at T
and 'f";'(, (See §8 .3.) The component is studied at NPOINT evenly space'd points
through out the substep, (T, 'f";'(), and the user is informed if the component
vanishes at each of the inserted values (IV AN=. TRUE .) during the update call
to SUBPHI.

9.6 Print Options

Various print options are available throughout the RKF45T system. Most of
these options involve the emergency features of the program or warnings when
difficulties have arisen. Subroutine OUTFLG has been included to print out
values of IFLAG and clarifications when IFLAG ,indicates difficul ties have
arisen during the solution of the ODE or during the· trapping iteration. No
messages are printed if the IFLAG indicates ~hat the solution ii proceeding
normally . OUTFLG is referenced by subroutine RKF45T only if FLGOUT is set
equal to . TRUE ..

Printing options are also available in TRAPPD with IOPT=O suppressing the
print statements . IOPT=l will give conditions upon· entry into TRAPPD .and
upon update of each vanishing component.

Subroutine PANIC also includes print statements which 'are described in §§8.4,
9 . 2 . 2 , and 9 . 3 .

- 31 -

9. 7 User Update of the PHI Components and the. Differential Equation Sys
tem

The user is given the opportunity to update the PHI vector or the differen
tial equation system whenever a vanishing value of a PHI component is iso
lated. An update call is made for each component of PHI to have vanished
(i.e., to have satisfied the tolerance criteria) at the point T~\-. The parame
ter INDEX designates the value of PHI currently being updated. Because this
updating feature can provide such computational efficiency and flexibility
in programming, the user should understand the updating portion thoroughly.

9.7.1 Sign of the Vanishing Component

Since a zero is seldom trapped exactly, some confusion about the sign of the
component may arise even though the magnitude is properly bounded, i.e., the
value of PHI(INDEX) may or may not have passed through the zero yet. TRAPPD
assumes that the PHI component will change sign as it passes through zero and
makes an artificial sign change if PHI has· not yet changed signs. Thus, when
PHI enters the update portion of SUBPHI, the trapped component reflects the
sign of PHI in the region (~\-, TF). (If the component vanished throughout the
entire region (T, ~~. the sign 'is held constant, since the component has
remained in a "vanished" region.) If the . user chooses to alter the PHI com
ponent during the update, TRAPPD assumes that the use.r has given the altered
components the proper sign and makes no further adjustments to the PHI
vector. The user may actually change any component of PHI during the update,
but this might affect the analysis of other PHI components. (See §9.7.2.)
Thus, the user may overwrite the artificial sign change, if the particular
PHI component is not correctly described and may make any additional changes
desired.

9.7.2 Changes in the PHI Vector

During an update call, only · one PHI component is identifed as having
vanished, namely PHI(INDEX). If additional components have vanished, these
will be updated in separate calls· to SUBPHI. In s.ome app.lications, the user
may only wish to print information which would require no changes in the PHI
components. Other applications inay actually require changes to the PHI
vector. During an update call for 'PIÜ (INDEX)'· the user may change any compo
nent of PHI, but in doing so, may destroy information gained during the
trapping process. More specifically, the yector PHI represents the PHI vector
at ~"', the value of T for which at least one component of PHI vanishes. The
updating process analyzes IPHI(J)I as J increases, J=l, ... ,NPHI. Each van
ishing component, INDEX, activates an update call to SUBPHI at which time
the user may change any component of PHI. If changes are made to PHI(J), J >
INDEX, however, the information gained during the trapping iteration is
altered before the user is informed of the status of that component at ~.
Thus, such changes should be made only if the user fully understands the PHI
function at ~. In general, the user should only update the component
PHI(INDEX). Any changes to a PHI component must carry the correct sign (in
cluding +0 or -0). Otherwise, further trapping regionswill not be properly
identified.

- 32 -

9. 7.3 Updates in the Differential Equation System

During an update call, the user may actually wish to change the ODE system
itself. For example, in a transfer orbit problem, one would want to incre
ment the velocity at perigee of a particular revolution. (See example 2,
§10.) Such a change involves altering the state vector and, consequently,
the differential equations. Such changes ar e permissible in the single trap
option (or in the single trap partition of PHI in the combination option)
since the solution is advanced from 'I"'<, the trapping point. Of course, such
changes are also possible in the step-by-step or trapping step-by-trapping
step modes since any trapped solution activates a return to the user with
T=T"~ . The multiple trap option, however, is not an accept able mode for an
ODE update since the solution is advanced from the end of the step, where
conditions in TRAPPD are still described by the original state vectors and
corresponding ODE values.

If the user changes the state vector or the differential equat ions, he must
reference F so that the proper derivative values are assigned at 'I"'<, and he
must reevaluate the PHI vector to reflect the altered state variables.

9. 8 Difficulties with the PHI Function

The analysis 'in TRAPPD and associated subroutines assumes that the PHI func
tion is "well behaved" and reasonably well understood. Basically, TRAPPD
assumes that a PHI component does not "bounce" on a zero (i . e., TRAPPD
assumes that a PHI component changes sign as it passes through zero) and that
any component vanishes only once during a given integration step . In
addition, rather than iso l ating the actual zero of a PHI component, TRAPPD
isolates a point, 'I"~, within a convergence region (TL, TR) (such that
I PHI (INDEX) I < TOLERANCE at T~~.) If the radius of curvature of the PHI com
ponent is large, 'I"'< may be some distance from the actual vanishing point of
PHI(INDEX), and, in fact, an accurate estimate of the vanishing point may be
impossible to achieve. Further difficulties may be encountered in the trap
ping iteration itself if discontinuities of PHI or large values of IPHIPI
occur. Such difficulties will plague the user regardless of whether he uses
his own iterative scheme or a supplied routine .

Additional options are included in t he TRAPPD system to help the user analyze
the PHI function if difficulties occur. The PANIC mode permits the user to
study the PHI function over a refined mesh at each integration step, helping
to isolate multiple zeros over a given step. (This refined mesh gives a much
denser output of PHI that may help trap "bouncing" components since t hese are
isolated only if the zero occurs near a mesh point. A far safer way to locate
such a vanishing point, however, is for the user to include the derivative of
that PHI component as an additional PHI component, i.e . , to seek the vanish
ing point of PHIP . (See example 7, §10.) Discontinuities or steep derivatives
which predict iteration steps sizes less than the permitted value will acti
vate the PANIC routine to print out the PHI vector throughout the step if the
iteration fails to converge . Thus, the user has some help in locating diffi
culties. The large convergence region, however, may pose a more difficult
problem. The user may gain some advantage by sca ling the PHI function using
some sufficiently l arge value. If the zero location is strongly affected by
integration errors, t here may be nothing that the user can do to locate the
zero precisely. During the update portion of TRAPPD, the user is informed if

- 33 -

a component has vanished over an entire integration step. In addition, the
PANIC option can also provide a good deal of info~mation about the magnitude
of PHI throughout the step, so that the user can monitor the convergence
region to some extent . An additional PANIC call could be inserted during the
update portion of TRAPPD to study the convergence region, but this difficulty
is not anticipated for the current applications and so this option is not
included in RKF45T, although the user could make such a call from SUBPHI.

9.9 The ßouncing PHI Function

A PHI component which bounces, i.e., a component which fails to change sign
as it passes through zero, poses particular difficulties for the RKF45T pack
age, since the zero detection technique requires a sign change in the PHI
component or an integration step coinciding with the zero point . Thus, in
general, such a zero will go undetected. The only case for which a bouncing
PHI component will be detected and updated is that in which the zero is
stepped upon. The simplest remedy for detecting the zeros of a bouncing PHI
component is to include the derivative of PHI as an additional PHI component .
Then the zero of the derivative should be detected and so the zero of the
desired bouncing PHI function.

If a bouncing zero is.detected further difficulites in ~he RKF45T analysis
arise. The RKF45T pacakge assumes that the PHI component will change sign as
it passes through zero and will "adjust" the sign artificially to reflect the
conditions it assumes will exist across the boundary . (See §7.3.2.) In the
case of a bouncing PHI function this sign adjustment is incorrect . The user
may override this s ign change (or change the value of PHI altogether) and the
user-changed value will be used. In case the user does not recognize a zero
as a "bouncing zero", however, further safety checks are included in the
RKF45T package . (While the RKF45T program is not des igned to "trap" bouncing
zeros, the isolation of such a zero could confuse things greatly if the spe
cial analysis were not included .)

The idea of a bouncing PHI function is not as far-fetched as one might t hink.
An example is presented in [4] in which an inequality constraint is handled
by analyzing an additional ODE which imposes a streng penalty when the con
straint is violated and which has no contribution when the constraint is not
violated. The difficulty in analyzing such a function comes from the fact
that the optimal solution estimates generally stay near such boundaries dur
ing a portion of the integration path. The user does not know in which
direction the ODE solution will diverge from the constraint (since in search
ing for the optimal solution, the constraint equations may be violated).
Thus, an important application exists in which such a boundary analysis need
ed.

The PHI components are checked at each entry into TRAPPD to see if a compo
nent "bounced" (and consequently was given the incorrect sign) on the previ
ous step. The requirements for the detection of a bouncing function are that:
IPHI(I)I < tolerance at T and that IPHI(I) I > tolerance at TF. If a function
bounces and yet remains i n the "vanished" region throughout the integration
step, the detection will be delayed until the solution again passes out of
t he "vanished" region at TF. Any PHI component which has been identified as a
"bouncing" component over a given step will not be analyzed by the TRAPPD
subroutine over that step. Instead, the user will be informed of the bouncing
nature of the component and will be g iven the opportunity to have the step

- 34 -

repeated with whatever updated conditions he ·wishes to "insert in the ODE or
PHI systems.

The bouncing component update is identified in SUBPHI by BOUNCE=. TRUE.,
UPDATE=.TRUE .. The parameter, KOUNTR, will be given the dummy value,
KOUNTR=-1. If changes in the ODE or PHI expressions are needed, the user
should make these changes and reference F if the derivatives need to be ree
valuated. If the step is to be repeated~ KOUNTR must be reset to KOUNTR=-2.
(KOUNTR will be reset to its previous value upon return to TRAPPD.) If the
user has demanded that the step be repeated, the analysis will be returned to
RKFST, and the step repeated with the user-supplied, corrected version of the
ODE or PHI system .

10. APPLICATIONS

The RKF45T package is applied to a variety of pr.oblems to illustrate the use
of its various options. Several of these examples represent simple inte
gration problems which can be handled by the Runge-Kutta method exactly (neg
lecting round-off error) so that the user may see the affects of the trapping
option without having,the results contaminated by integration errors . Other
examples are more representative of practical applications. The basic
equations are given for each example as well as the essential components of
the corresponding SUBPHI routine and a summary of the results. Appendix B
lists the actual SUBPHI program used for each example along with the output
from the problem. The types of problems studied are:

1. the two body problern (elliptic orbit) requesting dense output at speci-
fied values of the independent variable, ·

2. the two body problern (elliptic orbit) transfer to a higher orbit after a
specified number of revolutions,

3. the restricted problern of three bodies with multiple stopping
conditions,

4. an ODE expression involving tabular data, with stops at the table grid
values,

5. a highly oscillatory PHI function,

6. a function having a large convergence region, and

7. a "Bouncing" PHI function.

10. 1 Dense Output at Specified Values of the Independent Variable

Users often monitor the solution of an ODE system by demanding dense output
at specified values of the independent variable. Such demands may severely
restriet the natural selection of the step size, i.e. , the RK method is able
to take much larger steps than the user is permitting. By handling the dense

- 35 -

output restriction in a SUBPHI subroutine, however, the integrator is able to
chose its own step size, and the user receives .the information requested.
Consider the two-body problem, elliptic orbit. The equations of motion are
y" + 1l y/r 3 = 0, where y is a vector and where r = (y~ + y; + y~} 1 1 2 with l.l, a
constant. A normalized version of the problern (in two dimensions) with l.l=l,
having a semi-major axis of unit length and period of 2~, has the following
initial conditions, expressed in terms of the eccentricity, e, OSe<l:
y

1
(0)=1-e, y~(O)=O, y~(O)=O, and y~(O)= {(l+e)/(1-e)} 1

/
2

, the conditions
being given at perigee.

Consider the normalized two body problem, eccentricity e=0.6, in which the
user wishes dense output at specified values of the independent variable. If
the time increment, TINCR, is constant, the problern can be handled using the
following SUBPHI program:

Subroutine Name:
Option:
NPHI:
COMMON b lock:
Initialization:

PHI components

Update:

DENSEl ..
Multipletrap (IFLAG=l5,25)
1
TIMEl/TINCR/
Set TPR = TINCR

PHI(l) = T - TPR
PHIP(l) = l.ODO

Print information;
increment TPR, TPR: TPR + TINC~;
reevaluate PHI(l)

A similar problern involving uneven spacing, requires a vector of output val
ues (say, TPRINT) to be held in common with the driving ' routine or to be
stored in SUBPHI. Otherwise, the procedure is the same.

Subroutine Name :
Option:
NPHI:
COMMON bleck:
Initialization :

PHI components

Update:

DENSE2
Multipletrap (IF~AG=15,25)
1
TIME1/TPRINT(50)
Set TPR = TPRINT(l)

PHI(l) = T - TPR
PHIP (1)' = 1. ODO

Print information;
increment TPR, TPR = TPRINT(KOUNTR+l);
update PHI, PHI(l)=T-TPR

In both problems the initialization b l eck is identified by the parameter
KOUNTR=O. ABSER is not supplied (default value being integration precision)
since the Newton-Rhapson iteration converges to TPR in one iteration. In
DENSE2 the counting parameter, KOUNTR, is used to increment the TPR value,
although a separate counter could have been set in the initialization bleck.
At each update call the time print-out value is shifted forward. The user
must also evaluate the updated PHI components. Listings of DENSEl and DENSE2
are given in Appendix B along with a representative portion of the output .

Treating the problern of dense output at specified values of T by reducing the
step size to correspond to the output point, i.e., by setting IFLAG=l,
TOUT=DT, and then incrementing TOUT upon return, TOUT=TOUT+DT, until the
final time is reached , proves to be a far less efficient means of solving the

- 36 -

problem, with the efficiency dropping markedly as the number of points
increases. (See below.)

The TRAPPD analysis is written assuming that PHI depends upon Y'. Thus, once
the scaled solution is evaluated, a derivative call is also made before SUB
PHI is referenced to determine the PHI components. In DENSEl and DENSE2, how
ever, the PHI vector is independent of Y' so that additional savings in
computing time could be made (one function call per output point). However,
because most practical PHI and PHIP functions include Y and Y', and because
some options included in TRAPPD require Y', the "wasted" evaluations for the
given exampl e are considered an acceptable price. If the user is trapping PHI
functions all of which are solely dependent upon time, and if these functions
involve a large number of stops, he should consider duplicating (and
renaming) subroutine TRAPPD and deactivating the F call after the SCALED call
in the modified routine . All other subroutines would remain the same. The
TRAPPD package itself should be kept as is, since this is the more general
program .

Number of Output Points

20 50 100 200 500 1000

NFE without 247 307 601 1195 2977 5947
trapping

NFE with 207 252 302 403 703 1203
trapping

NEXTRA 38 77 127 228 528 1028

(NEXTRA counts the evaluat ions required by the trapping iteration and
is included in the NFE with trapping count .)

10.2 Update in the ODE System Using the Combination Mode

The user may wish to change the differential equation system at certain
points during the solution. These points, themselves may not be clearly
defined, i.e., one may need an iterative procedure to locate them. Consider
the two body problern (example 1) in which the user wants to increment the
velocity at perigee during the secend revolution to send the satel lite into a
higher orbit.

During the solution, other information may a lso be requested which requires
no changes to the ODE during the update procedure, such as in example 1. By
properly structuring the PHI vector, the user may apply the multiple trap
mode to part of the PHI vector and the singl e trap mode to the remainder of
the vector . This combination mode is a special form of the multiple trap
mode which iterates using the multiple trap option until a T* value corre
sponding to a single trap component of PHI, is isolated . The integration is
then continued from 'f'>'l'.

In the combination mode, the user must structure the PHI vector so that the
first MPART components are those to be trapped using the multiple trap mode.
The remaining NPHI-MPART components wi ll be trapped in the single trap fash-

- 37 -

ion. Since the combination mode is a special form of the multiple trap mode,
the designating IFLAG is a l so 15 with the normal ~eturned value being 25. The
value of MPART is conveyed to RKF45T during the initialization bleck in SUB
PHI (designating flag, KOUNTR=O) by setting INDEX=MPART. (Failure to set
INDEX=MPART will apply the multiple trap option to all components of PHI,
i.e., the default value is NPHI.)

The combination option is applied to the two body problem, an earth-satellite
problem, with initial conditions given at an arbitrar y point along the orbit
path . Upon the secend pass through perigee, the satellite will be boosted
into a higher orbit by incrementing the velocity. The RKF45T package will
continue to integrate the new system of equations until the final specified
time . For this problem, ~=398601.3DO km 3 /s 2

, with initial conditions :
Y(l)=-.7196D+4 km, Y(2)=-.1546D+4km, Y(3)=-.9840D+3 km, Y(4)=-.4201D+l km/s,
Y(5)=-.8359D+l km/s, and Y(6)=-.2074D+l km/s.

The velocity increments to boost the satellite into a higher orbit require a
change in the ODE system. Therefore, the single trap mode is appropriate for
the corresponding PHI component. Other stopping conditions may involve no
updates to the state vector or differential equations. These could be better
handled in the multiple trap mode. Thus, the combination mode is
appropriate. In addition to perigee and apogee conditions, two additional
stopping conditions are requested for print out: specified values ofT (even
spacing) and vanishing values of R". The PHI representations for the T and R"
stops are clear. Both the perigee and apogee stops, however, are defined by
V•R=O . The R" value may be used to distinguish between the positions, with R"
< 0 at apogee, R" > 0, at perigee.

For the combination mode , the PHI vector is structured so that t he T and R"
stops are listed first with the apogee-perigee stops being the final compo
nent in the array. IFLAG=15 with INDEX set equal to 2 during the initializa
tion bleck in SUBPHI. These flags activate the combination mode, with PHI (l)
and PHI(2) trapped in the multiple trap manner and PHI(3), in the single trap
manner. During the update of PHI(3), R" is used to identify perigee. A count
er, IPER, is set equal to zero· initially and incremented each time perigee is
reached. When IPER=2, the transfer orbit conditions are activated .

Subroutine Name:
Option:
NPHI:
COMMON bleck:
Initialization:

PHI components

Update:

TRANSF
Combination mode (IFLAG=15, 25, ~1PART=INDEX=2)
3
TIME / TINCR
To activate the combination mode set INDEX=2 (MPART is set
equal to INDEX in RKF45T) ;
Set counter, IPER=O for counting passes through perigee;
Set TPR=TINCR

PHI(l) = T - TPR
PHI (2) = R"
PHI(3) =V • R

PHIP(l) = l.ODO
PHIP(2) = D(R") /DT (secant approximation)
PHIP(3) = V' • R +V • V

Print information;
if INDEX=l, time print out update: increment TPR, TPR = TPR
+ TINCR;
if INDEX=2, no additional changes;

- 38 -

if INDEX=3, and position is apogee, RETURN;
if INDEX=3, and position is _perigee, increment perigee
counter , IPER=IPER+l . If IPER=2 , increment velocity, Y',
reevalutate F(T,Y,Y ') with new conditions, reevaluate
PHI (3), RETURN.

Details of the independent variable stop are gi ven in example 1. The vanish-·
ing R" points i nvolve the second derivative of a scalar function,

R" = {Y Y" + Y Y" + Y Y" + Y' 2 + Y' 2 Y' 2 }/R- R' 2 /R
11 22 33 1 2 3

where R = {Y~ + Y~ + Y;} 1
/

2 and where R' = {Y1 Y~ + Y2 Y1 + Y3 Y1}/R. The R"
values are of great importance as t he perigee-apogee indicator.

During the initialization bleck in SUBPHI, the perigee counter and the first
T print out value are set. ABSERR, the error tolerance, is ignored which
imposes the integration tolerances. During the perigee update for the trans
fer orbit, the state vector is changed (increased by 5%) necessitating the
evaluation of both the PHI(3) and PHIP(3) values. The SUBPHI ·program, TRANSF ,
and results are given in Appendix B. Figure 7 illustrates the stopping condi
tions (schematically) and t~e transfer orbit .

--- ----- ---- -- ------- - - --- - --

Figure 7. Vanishing PHI(3) values for transfer orbit probl em . Perigee and
apogee are located.

10.3 Large system of Stopping Conditions

The us er may wish to employ a large system of stopping conditions involving
printing, PHI updates, and/or ODE updates. Thus, single, multiple, or combi
nation options could be applicable depending upon the problem. The restricted
problern of three bodies (a body of negligible mass, orbiting ar eund two
"heavy" bodies) is a good test prob lern, since at certain poi nts several func
tions of practical interest vanish, e . g . , as t he radius reaches a minimum, a

- 39 -

velocity component vanishes, and V•R = 0 . Such a problern provides a good test
of RKF45T' s ability to switch between components .during a given step .

The equations of motion for the restricted three body problern are: Y1'=Y3 ,

Yd=Y4 , along with

Yd=2Y:z'+Y1 -l.I~""(Y 1 +l.1)/R1 3 -l.I(Y1 -l.1''>)/R2 3
, and

Y~=-2Y~+Y2 -l.I*Y2 /IÜ 3
- l.IY 2 /R2 3

,

with initial conditions:

Y1 (0)=1.2, Y2 (0)=0, Y3 (0)=0, and Y4 (0)=-1.04935750983031990726.

The satellite will recover initial conditions at T=6.19216933131963970674. A
necessary (but not sufficient) condition for the success of the ODE solution
is that the Jacobi integral, J = {Y; 2+Yk2 -Y~-Y~ }/ 2 - ll'""/Rl - l.1/R2, remain
constant during the integration.

The restricted three body problern is solved with eight stopping conditions
imposed. The first five components have physical significance, being vanish
ing values of the state vector or points where the velocity and position vec
tor are perpendicular. The expressions for the corresponding PHIP compqnents
are clear. The remaining stopping conditions are mo~e artificial in nature,
being non-zero specified values of the dependent _variables: Y1 =0.5, Y2 =-0.6,
and V1 =1 .0) . The Jacobi integral could be inc l uded as a PHI function, but the
user really only wants to know if the value explodes and .does not need to know
exactly where. Thus, monitaring the value at each integration step is really
a sufficient analysis . The structure of SUBPHI is simple since only print out
is requested . An additional section is added, however, .to monitor .the Jacobi
integral during the integration (flags: INDEX=O, UPDATE=.FALSE.)

Subroutine Name:
Option:
NPHI:
COMMON b lock:
Initialization:

PHI components

Update:

RP3Bl, RP3B2
Multipletrap (IFLAG=15,25)
8
None
Set parametets for monitaring the Jacobi integral

PHI (1) = V • R
PHI (2) = Y(l)
PHI (3) = Y (2)
PHI(4) = Y(3)
PHI(S) = Y(4)
PHI(6) = Y(l) -O.SDO
PHI(7) = Y(2) +0.6DO
PHI(8) = Y(3) - l.ODO

PHIP(l) = V'• R +V • V
PHIP(I+l) = YP(I), I= 1 , 2,3,4
PHIP(I+S) = YP(I), I= 1,2,3

Print information;
no changes are made to the ODE -or state vector

- 40 -

The Jacobi integral is monitared in both RP3B1 and RP3B2 but is not listed as
a PHI component.

Two SUBPHI programs, RP3B1 and RP3B2, are presented having identical stops
but different monitaring sections for the Jacobi integral. Output, along
with listings is presented in Appendix B. Figure 8 illustrates the stopping
conditions for the given PHI components. Several comments about the pre
sented results are needed. If the exact solution could be generated, several
components of PHI would vanish simultaneous ly at specific values of T along
the particle path. The initial condition stops (1,2,3) for example occur at
T=O . Stops (7,8,9), (14,15,16), and (20,21,22) should also occur simultane
ously. In addition, there should be three stops at TF. These stopping
conditions are: (1) the velocity in the Y1 or Y2 direction vanishes, (2) the
velocity and the radius are perpendicular, and (3) either Y1 or Y2 vanishes
(depending upon the particular T va1ue). (In the print out in Appendix B, Y1
is designated X and Y2 ,Y, with corresponding ve1ocities being V and V .)
Stops (1,2,3), occurring at the initial conditions, arenot contaminated by
integration errors, and so the updates are simultaneous. As the integration
pr oceeds, however, errors in _position and velocity perturb the zero points of
the PHI components from their true values. Thus, with strict tolerances
imposed, the three stopping conditions are satisfied at three different val
ues ofT. Stops (7,8,9) and (20,21,22), at Y1 =0 (X=O), occur during the most
"difficult" part of the solution, i. e., the magnitude of the position vector
reaches a minimum at this point causing a "near singularity" in the differen
tial equations and, copsequently, severely reduced integration step size to
maintain the requested accuracy. In this region, the "simultaneous" vanish
ing points occur within a t ime space of 0 .0026, whereas the stop (14,15,16)
(at maximum position vector) occurs within a time space of 0. 00016 . (The
requested integration and trapping tolerances are 1 . D-06 with the global
error achieved at TF being less than 1. 8D-04.) The remaining multiple stop
ping point illustrates an important difficulty. A PHI function which vanishes
at the final conditions may not be detected because errors in the solution
have shifted the zero slightly beyond the final time. (These zeros, which
would be isolated on subsequent steps , have not yet been detected at TF .)
Thus, only the stop, Y =0, which precedes its true zero, is actually
detected. The user should always be aware of vanishing difficulties at t he
final time.

10.4 Tabular Data Expressions in ODE Systems

In engineering applications, the differential equations often include param
eters which are determined from tabular data. The drag coefficient, for exam
ple, may be expressed as a function of ~lach number, altitude and lift
coefficient. If the tables are treated using constant values or bilinear
interpolation, discontinuities in the function or its derivatives occur at
the grid mesh defining the table. Even the slight discontinuities in slopes
in the tables may be amplified further by the expressions involved in the
ODE, seriously affecting the integration accuracy.

In theory, the user should stop at each discontinuity, since piecewise conti
nuity is needed for a valid RK algorithm . In practice, howeve r, a good soft
ware package may be able to isolate the discontinuities to some degree,
giving a reasonable estimate of the solution. The "natural trapping" ability
of the given integrator involves rejecting steps near discontinuities until
the step size is small enough that t he abrupt changes no langer v i olate the

- 41 -

17

12
---- --· --- - --- -··-----

Figure 8. Orbit for the restricted problern of three bodies with stopping
points marked.

specified tolerance bounds. Although this "natural trapping" feature of a
program requires no analysis by the user, the convergence regions are vaguely
defined and execution is inefficient . Thus, the user should have some under
standing of the effect of the interpolation scheme on the integration .

Consider an example involving the integration of a two dimensional step func
tion, similar to the integration of a set of building blocks. Setting
YP(l)=AAl•""T and YP(2)=AA1 with Y1(0) = YJO) = 0.50DO, (where AAl is the value
of the step function at the particular (Y 1 , Y 2) point (See Figure 9.)), gives
a solution that is a set of connected parabolic or s t raight line segments.
The sirnplicity of the problern allows one to analyze the effects of the dis
continuities on the "tiapped'' and the "untrapped" prob lern, i. e., the
integration is exact (except for round-off) and the grid crossings can be
determined analytically to check the accuracy of the trapping procedure.

The application of the trapping option requires that the particular plane
segment covering the solution point at TO represent the F function over the
entire domain until a grid value is isolated. Then the F function is updated
to reflect the new region of the table, i.e., as the PHI components stop on
the grid entries, the plane segments are changed. The PHI components are
written as parabclas with with zeros at the current bracketing bounds. Thus ,
PHI(l)=(Xl-Y(l))*(Y(l)-XO) and PHI2=(Yl-Y(2))*(Y(2)-YO), where XO, Xl, YO,
Yl are the grid values which bracket Y(l) and Y(2), respectively. Any point
within the current bounding values gives PHI(I) > 0, while all points outside
of the current bounds give PHI(I) < 0. The iteration converges to the Xl or Yl
bound if the corresponding PHIP < 0 and to the XO or YO bound if the PHIP > 0.
The F value is held constant until a boundary is trapped . The bounds (XO, Xl)
or (YO, Yl) are shifted and the plane representing F is reset and held at the

- 42 -

Figure 9 . Discontinuous ODE expression, a step function.

new value until the next boundary is crossed. (See Figure 10.) (A chal lenging
problern involving extensive use of tabular data is presented in [3))

Subrout ine Name:
Option:
NPHI:
COMMON bleck:

Initialization:

PHI components

Update:

TABLE
Singletrap (IFLAG=l0,20)
2 .

GRID/AA,XX,YY,IX,IY/
FVAL/AAl/
Set XO, Xl, YO, Yl; set ABSER

PHI(l) = (Xl-Y(l))*(Y(l)-XO)
PHI(2) = (Yl-Y(2))*(Y(2)-YO)

PHIP(l) = ((Xl+X0) - 2*Y(l))*YP(l)
PHIP(2) = ((Yl+Y0)-2*Y(2))*YP(2)

Print T, Y(l), Y(2);
shift bracketing indices;
shift XO, Xl, YO, Yl, AAl;
evaluate F, s et PHI(INDEX)=O, and evaluate PHIP(INDEX)

The grid partition is defined in the main program as XX(I), YY(J), with the F
values being AA(I,J), I=l, ... ,9, J=l, . . . ,9, and being held in common. IX, IY

·/
/

/

I
1/
~

- 43 -

Figure 10. The plane surfaces defining the F function. The plane surface
remains constant until the grid value is isolated. At update, the
plane surface is redefined and this value will be used until the
next grid value is isolated.

define the indices for the bracketing values, A~(IX) ~ Y(l)<XX(IX+l), YY(IY)
~ Y(2)<YY(IY+l), and AAl= AA(IX,IY). XO and Xl are the current bounds for
Y(l), with YO and Yl being those for Y(2). During update, IX or IY is shifted
forward or backward depending upon which border is crossed. The XO, Xl, YO,
Yl values as well as the AAl value are shifted to the new XX, YY values. (If
the trapping iteration converged to a point not yet acros s the boundary, the
"trapped val ue" of Y (INDEX) is used instead of the corresponding XX or YY
value to give the proper sign to the new PHI component.) ABSER is set auto
matically to integration precision .

The grid values have been set in unit increments for easy identification in
the output. In addition, the simplicity of the defining problern permits the
trapping precision to be checked analytically. Thus, the error due to the
trapping precision can be seen. Appendix B contains th.e SUBPHI listing along
with the computed results showing t he trapping stops and corresponding Coor
dinates. The problern has also been run with exact stopping conditions, the
time corresponding to the grid crossings being listed along with t~e inte
gration resul ts at T=l. 0. The resul ts achieved by "natural" trapping using
RKF45 are also presented showing the number of additional derivative evalu-

- 44 -

ations required when the integrator attempts to locate the points of
discontinuity itself.

10.5 A Highly Oscillatory Problem

During the solution of an ODE system, a PHI function 1ßBY vanish several times
within a given step. Since the trapping procedure is activated only if a sign
change is observed, zeros of the PHI component could easily go undet.ected.
The user may activate the PANIC mode during the integration so the solution
is monitared throughout each integration step. Any detected s·ign change or
vanishing component will activate TRAPPD. This PANIC analysis is expensive
since the derivative is calculated at each substep for the PHI evaluation. If
PANIC is referenced in SETRAP, the user should apply the single trap contin
uaus mode (or the step-by-step modes). Since the multiple trap mode is likely
to step over additional zeros, the option will be shifted to the single-trap
option if the panic option is. active in SETRAP.

The term "high oscillatory" is a relative one, depending in part, upon the
integration step size. Thus, the analysis of PHI (l)=SIN(OSC~'~-PI~'~-T) poses no
difficulties as lang as the integration step size is less than 1/0SC. If the
natural step size of the integration, however, steps over two or more zeros,
these vanishing point~ (or part of these points) may 50 undetected . As an
example, consider an ODE system with a polynomial solution of order less than
five . Because the truncation error terms are zero in the RKF45.T package,
large step sizes will be attempted (restricted only by an imposed limit on
the allowable step size increase in RKFST) . The PHI function is sinusoidal
with a period of 2/0SC. Two examples, OSC=S . ODO and OSC=10.0DO, are presented
with PANIC activated in SETRAP by setting NOTFAL~. TRUE.. The example
OSC=S . ODO is repeated without the PANIC option.

Subroutine Name:
Option :
PANIC Option:
NPHI:
COMMON bleck :
ODE:
Initialization:

PHI c;omponents

Update:

OSCIL8
Singletrap (IFLAG=10,20)
in SETRAP, NOTFAL=. TRUE.
1
NOSC/OSC
Y' = 4 T3 + 3 T2 + 2 T + 1, Y=O at T=O
none

PHI (1) = DSIN(OSC~'~-PP'<-T)

PHIP(2) = DCOS(OSC*PI*T)*OSC*PI

Print T, PHI and Y

Without the use of the PANIC option in SETRAP, only the initial and final
zeros were isolated . All intermediate points were missed. With the PANIC
option in RKFST, however, all zeros were isolated for both OSC=S. ODO and
OSC=lO .ODO. The OSC=lO.ODO is included since the PANIC mesh points coincide
with the zeros .of the PHI function. SUBPHI and output for both values of OSC
are given in Appendix B.

As lang as the mesh refinement in PANIC isolates only one zero per substep,
no difficulties should be encountered. If multiple zeros occur within a mesh
grid, the user should consider using a step-by-step mode and monitor PHI at

- 45 -

each step. If PHI is actually oscillating so quickly over the integration
steps, another integration method may be prefera~?le.

10.6 A Large Convergence Region

One of the most difffcult problems to analyze concerns determining the van
ishing point when the convergence region is large. If the derivative of a
PHI component is nearly zero in the vacinity of a vanishing point, the con
vergence region can be quite large, and locating the zero point accurately
may be impossible (regardless of the iteration procedure.) Detection of the
problem, however, is quite simple since the user need only monitor the PHIP
values. In some applications the vanishing region of PHI is the important
featurerather than the exact zero location (e.g., interpolation from tabular
data or bounding a control parameter) in which case the large convergence
region poses no difficulty .

To illustrate a PHI component having a flat convergence region a simple
polynomial is considered, PHI (l)=(T-2)~h':IPOW. The zero occurs at T=2 with the
flatness controlled by the parameter IPOW. The ODE is not of importance for
the example. Consider the two body problern (example 1) with eccentricity=O,
i.e., a circular orbit, and apply the PANIC option in SETRAP to better iden
tify the convergence r.ßgion.

Subroutine Name:
Option :
PANIC Option:
NPHI:
COMMON bleck:
Initialization :

PHI components

Update:

FLAT
Singletrap (IFLAG=10,20)
in SETRAP, NOTFAL=.TRUE.
1
EXPO/IPOW,POWER,IPOWMl
none

PHI(l) = (T-2.0DO)**IPOW

PHIP(2) = POWER*(T-2.0DO)~h':IPOWM1

Print T, PHI and PHIP

The values of IPOW, IPOWMl(=IPOW-1), and POWER (double prec1swn value of
IPOW) are held in common with the driving program. The example is run with
IPOW=3, 5 , and 9 to show the degree of flatness of the PHI component. PHIP is
also monitared to inform the user of the flatness. The example is also run
without the PANIC option in RKFST to show the zero estimate. In such cases,
PHIP provides an important indication of the flatness difficulties. Greater
accuracy is achieved using PANIC because the limits are closer to the zero
points . The accuracy using the standard option, however, is quite acceptable.
No warning message has been printed concerning 11Vanishing throughout the
step11 since the problern was contrived to show the convergence region of a
single zero. In general, the user would include such a warning which would
give another indication of the extreme flatness of the PHI function.

- 46 -

10.7 A Bouncing PHI Function

The TRAPPD analysis is not designed to handle a "bouncing" PHI component,
i.e., a vanishing component which does not change signs as it passes through
zero. (The example in §10.6, for IPOW=2,4, ... , is an example of such a bounc
ing function.) The user may finesse the location of the zeros, however, by
including the corresponding PHIP as an additional PHI component . The
location of the PHIP iero will automatically locate the zero of the PHI com
ponent by "stepping" on it. The major difficulty in the TRAPPD strategy
comes with the sign adjustment . If the user reevaluates the PHI (INDEX) compo
nent at update, then he must give PHI(INDEX) the sign associated with the
region "across the boundary" or the same zero will be trapped again. If no
update of PHI (or reevaluation of PHI) is made, TRAPPD automatically adjusts
the sign (even for a "bouncing" function).

Polynomials provide a simple :but effective test for "bouncing" PHI
components. Three such polynomials (in even powers) are studied. Their
derivatives are also given as PHI components. The zeros ,to be located are
T=3, 6, 10, and 12 (See PHI statements) . An extraneous zero will also be iso
lated since the PHIP component (treated as a PHI component) has an additional
zeronot corresponding to an original PHI zero). Since the zeros of the PHIP
components being analyzed as PHI components are not of interest no print out
has been made of these zeros . Figure 11 illustrates the PHI(I) components,
I=1,3,5 being studied . .

3 6 10 12 t

------· - --- ----------

Figure 11. PHI components which "bounce" on zero".

Subrout ine Name:
Option:
PANIC Opt ion :

· NPHI :

BOUNCE
Si ngle t r ap (IFLAG=10,20)
in SETRAP , NOTFAL=. TRUE .
6

- 47 -

COMMON bleck: none
Initialization: none

PHI components

Update:

PHI(l) = (T-3.000)**4 * (T-6.000)**2
PHI(3) = (T-10.00)**6
PHI(S) = (T-12 .00)**8

with derivatives also a PHI components
PHI (2) = PHIP(l)
PHI(4) = PHIP(2)
PHI(6) = PHIP(3)
Print T, PHI and PHIP

PHI(I), ! =2,4,6 areessential for this approach to the problem. (The deriva
tives, PHIP(I), !=2,4,6, may be approximated by secants or may be set equal
to zero activating a false position estimate of the zero points in TRAPPD).
All zeros of the PHI components are isolated. The lack of accurac~ in some
zeros comes from the flatness of the PHI· curves. (See example 6.) rather than
from the "bouncing" effects ~ The SUBPHI listing and output for this example
are given in Appendix B.

11. CONCLUSIONS

The RKF45T software package extends the RKF45 package to include intermediate
integration stops whenever components of a user-supplied function vanish.
These PHI components may be a function of the independent variable, the
dependent variables, or their derivatives. Should multiple zeros occur at a
given point or within a given step, each zero will be isolated in order,
i.e., in the direction of the integration. After each zero is isolated, an
update call is made to SUBPHI (the user-supplied subroutine for evaluating
the PHI components) at which time the user may print information or change
the PHI functions or even the differential equations themselves. Several
modes of operation are available so that the user may execute the integration
in a step-by-step fashion or in a continuous fashion (corresponding to the
RKF45 options) with intermediate communication to the user occurring at the
update for each vanishing PHI component . Safety features are included which
may be activated if the PHI function analysis indic.ates difficulties are
occurring. The trapping feature performs well for the examples presented. The
success of this feature, however, may depend upon the user' s understanding of
the PHI components before applying the trapping options. The examples pre
sented show a wide range of applications, but are, in part, academic in
nature . Practical examples involving the solution of of optimal control prob~
lems with discontinu'ities i n the differential equations or higher
derivatives are given in [3) and (4].

- 48 -

Table 1. IFLAG values returned from the RKF45T package.

- 2 T + 1 step Step-by-step integration without trapping option. Inte-
gration is proceeding normally . TOUT has not been
reached.

+2 TOUT Continuous integration without trapping option, or
step-by-step or trapping step-by-trapping step option
with TOUT having been reached.

(Normal mode for advancing the solution in the contin
uaus mode after TOUT has been reached. For continuing in
the step-by-step or trapping step-by-trapping step mode,
IFLAG must be reset. In all cases, TOUT must be reset .)

-25 ~~ Trapping step-by-trapping step mode stopping at a zero
value of a PHI component. (Before the return to the
driving program, an update call was made to SUBPHI iden
tifying the component of PHI which had vanished.)

-20 T + 1 step Step-by-step mode . with trapping option . If a zero has
vanished at the current T value,. an update call has
already been made to SUBPHI identifying the component of
PHJ which has vanished .)

+20 TOUT Continuous integration with trapping option. Update
calls to SUBPHI have informed the user of each vanishing
point. PHI, Y, and the differential equations may be
altered at each update call. The integration is contin
ued from the trapped point each time a zero is isolated.

+25 TOUT Continuous integration with trapping option. Update
calls to SUBPHI have informed the user of each vanishing
point. PHI and Y may be a ltered at each update call but
no updates in the differential equation expressions are
permitted. If several zeros lie within the given step
all should be detected by the RKF45T package . The inte
gration is continued from the end of the integration
step rather than from the isolated zero point.

IFLAG values if difficulties have been encountered during the
integration or trapping .

+94 TL The trapping option is being used. Too many iterations
were required in TRAPPD. PANIC has printed out informa
tion concerning PHI, and the solution is returned at TL,
the. last point analyzed which has not passed through the
zero point. Calling RKF45T without changing IFLAG will
terminate the program . Resetting IFLAG will continue
the integration and zero s earch but may waste computing
time or l ead to an "infinite l oop" because of difficul
ties in the PHI component .

+97 TL

+3 Initial T

+4 T < TOUT

+5 T < TOUT

+6 T < TOUT

+7 T < TOUT

+8 Initial T

- 49 -

The trapping option is being us ed . The trapping bounds
have become too close. The same exit procedure is used
as with IFLAG = 94.

RELERR is too small . RKFST has reset the value. The
integration will continue if RKF45T is referenced again.
No ste has been taken . (IFLAG will be r eset by RKF45T.)

More than 3000 derivative evaluations (more than 500)
steps have been used in generating the solution. If
RKF54T is referenced again, the function counter will be
reset to 0 and the integratio will be continued . (IFLAG
will be reset by RKF45T.)

A pure relative error is being requrested, and the sol
ution is identically zero. An absolute error toleracne
must be used to continue the integration . The
step-by-step mode may be a good way to proceed. Terminal
error if ABSERR remanis zero.

The requested accuracy could not be acheived using the
minimum allowable step size. Terminal error.

Too much output is restricting the natural step size
choice. RKF45T may be inefficient for solving this
problem. Perhaps the user should consider the trapping
option 20, 25 with PHI (J)=T-TOUT, in which TOUT is
updated at each zero point of PHI. (See example 1, §10.)
A step-by-step mode may also be applicable . Terminal
error if the user does not reset IFLAG.

Invalid input parameters, occurring if:

NEQN ~ 0,

T=TOUT and IIFLAG I .ne. 1
(T may equal TOUT when the problern is initialized. This
sets up internal parameters for the integration includ
ing the initial derivative evaluation, resets IFLAG = -2
or +2, and · returns to the user for printing out initia1
YP values.).

RELERR or ABSERR < 0,

IFLAG error
for the non- trapping option: IFLAG = 0, IFLAG < -2, or
IFLAG < 8
for the trapping option: IFLAG ~ -25, -20, -15, -10 , 10,
15' 20, 25.

- 50 -

Table 2.a. The partitioning of the WORK array for the RKF45T package

1

KH1

Kl

K2

K3

K4

K5

K6

K7

K8

K9

KTF

KlO

Kll

K12

K13

K14

K15

K16

K17

Kl8

K19

K20

1

NEQN+l

NEQN+2

2 NEQN+2

3 NEQN+2

4 NEQN+2

5 NEQN+2

6 NEQN+2

7 NEQN+2

8 NEQN+2

9 NEQN+2

10 NEQN+2

10 NEQN+3

11 NEQN+3

12 NEQN+3

13 NEQN+3

14 NEQN+3

14 NEQN+3
+ NPHI

14 NEQN+3
+ 2 NPHI

14 NEQN+3
+ 3 NPHI

14 NEQN+3
+ 4 NPHI

14 NEQN+3
+ 5 NPHI

14 NEQN+3
+ 6 NPHI

NEQN

2 NEQN+1

3 NEQN+l

4 NEQN+l

5 NEQN+l

6 NEQN+l

7 NEQN+l

8 NEQN+l

9 NEQN+l

• 10 NEQN+1

11 NEQN+2

12 NEQN+2

13 NEQN+2

14 NEQN+2

15 NEQN+2

15 NEQN+2
+ 2 NPHI

14 NEQN+2
+ 3 NPHI

14 NEQN+2
+ 4 NPHI

14 NEQN+2
+ 5 NPHI

14 NEQN+2
+ 6 NPHI

14 NEQN+2
+ 7 NPHI

YP values at T

Step size estimate, H

F1, ODE eva1uation

F2, ODE evaluation

F3, ODE evaluation

F4, ODE evaluation

F5, ODE evaluation

F6, ODE evaluation

F7, ODEevaluation

F8, ODE evaluation

F9, ODE evaluatio:..1

TF, T value at end of integra
tion step (for trapping option)

YF, solution at TF

YPF, derivative of Y at TF

Y2, solution at T2

YP2, derivative of Y at T2

PHIO, PHI vector at T

PHIPO, derivative of PHI at T

PHI2, PHI vector at T2

PHIPO, derivative of PHI at T2

PHIF, PHI vector at TF

PHIPF, derivative of PHI at TF

PHIR, PHI vector at TR

- 51 -

K21 14 NEQN+3 14 NEQN+2 PHIPR, derivative of PHI at TR
+ 7 NPHI + 8 NPHI

K22 14 NEQN+3 14 NEQN+2 PHIL, PHI vector at TL
+ 7 NPHI + 8 NPHI

K23 14 NEQN+3 14 NEQN+2 PHIPL, derivative of PHI at TL
+ 8 NPHI + 9 NPHI

K24 14 NEQN+3 14 NEQN+2 PHIB, information about bouncing
+ 9 NPHI +10 NPHI PHI components

K25 14 NEQN+3 14 NEQN+2 PHIV, information about vanish·
+10 NPHI +11 NPHI ing PHI components

K26 14 NEQN+3 14 NEQN+2 PHIPV, derivative of PHIV
+11 NPHI +12 NPHI

KSAVRE 14 NEQN+3 RELERR value saved
+13 NPHI

KSAVAE 14 NEQN+3 ABSERR value saved
+13 NPHI

- 52 -

Table 2.b. The partitioning of the IWORK array for the RKF45T package

1 NFE

2 NREJ

3 NEXTRA

4 KOP

5 INIT

6 IFLAG

7 KFLAG

8 LFLAG

9 ISTART

10 KOUNTR

The number of derivative evaluations used by RKF45T (NFE
includes NEXTRA)

The number of rejected steps encountered in RKF45T dur
ing the solution of the ODE

The number of de;rivative evaluations required by the
trapping option (NEXTRA is included in NFE)

Counting index in RKFST to guard agains too many output
points

Index in RKFST which shifts analys is into or away from
the initialization block in RKFST

A flag t<lhich defines the mode of operation for RKF45T

Safety flag which protects IFLAG between calls to RKFST

Designating flag in RKFST for the trapping option (If
the trapping option is used, IFLAG is reset to a standard
RKF45 value, and LFLAG defines the trapping mode of
operation.)

Initializing flag for the trapping option if the "late
start" option is being used

Counting parameter for updates in the PHI components
(and for identifying the initialization stage in the
user-supplied subroutine, SUBPHI

- 53 -

Table 3. Pre-set and user-supplied constants for the RKF45T package.

FIFTH

FLGOUT

IOPT

IPRINT

JPRINT

MAXIT

NOTFAL

NPOINT

POINTS

REM IN

Notation: S = subroutine name,
SV = standard value
AV = additional value(s) .

designates the order of the scaled solution generated~n SCALED.
FIFTH=.FALSE. gives a 4th order solution; FIFTH=.TRUE. gives a
5th order solution.
(S : SCALED , SV : . F ALSE . , AV : . TRUE .)

controls referncing of OUTFLG to print out integration error
messages. FLGOUT=. TRUE. , references OUTFLG.
(S: RKF45T, SV: .TRUE., AV: .FALSE.)

controls printing option in TRAPPD. IOPT=O suppresses printing
option. IOPT=1 prints entry and exit conditions.
(S: TRAPPD , SV: 0 , AV : 1)

controls printing in PANIC when referenced by TRAPPD. IPRINT=1,
prints T and PHI; IPRINT=2, prints T, PHI, PHIP, Y, and YP.
(S: PANIC, SV: 1 , AV: 2)

controls printing in PANIC when referenced by SETRAP.
suppresses all printing; JPRINT=1 prints T and PHI;
prints T, PHI, PHIP, Y, and YP.
(S: PANIC, SV : 0 , AV: 1, 2)

JPRINT=O,
IPRINT=2,

gives the maximum number of iterations permitted an each trap
ping attempt.
(S: TRAPPD, SV: 10, AV: user-supplied in data statement)

controls the referencing of PANIC (from SETRAP and TRAPPD).
(NOTFAL may have different values in SETRAP and TRAPPD.) If NOT
FAL=.TRUE. PANIC will be referenced; if NOTFAL= . FALSE., PANIC
will not be referenced. (If difficulties are encountered in the
trapping analysis in TRAPPD (e.g., too many iteration are being
required), then PANIC will be referenced regard l ess of the value
of NOTFAL.)
(S: SETRAP, TRAP PD, SV: . F ALSE . , A V: . TRUE .)

controls the number of increments for the partition of the inte
gration step (integer value of POINTS)
(S: PANIC, SV: 10, AV: user - supplied in a data statement)
(S: VANISH, SV: 4, AV : user-supplied in a data statement)

controls the number of increments for the partition of the inte
gration step (souble precision value of NPOINT)
(S: PANIC, SV: 10.0DO, AV: user-supplied in a data statement)
(S: VANISH, SV: 4.0DO, AV: user-supplied in a data statement)

is the tolerance threshold for the relative error tests . Bound
ing values are vaguely deinded, say , REMIN > MAX{U, l.OD-12)
(S: RKFST, SV: given above, AV: user-supplied in a data state
ment)

- 54 -

TBOUND is the limiting iteration step size in TRAPPD (being related to
unit round-off (see parameter U) or set to a somewhat larger val
ue by the user .

u

(S: TRAPPD, SV: 26*U or user-supplied)

is the unit round-off for the particular computer system. (See
computer listing .)
(S: RKFST, SV: machine dependent (user-supplied))

12 . REFERENCES

[1] Fehlberg, E. Low-Order Classical Runge-Kutta Formulae with Step Size Con
trol and Their Application to Some Heat Transfer Problems.
NASA TR R-315 (July 1969).

[2] Horn, M.K. Scaled Runge-Kutta Algorithms for Handling Dense Output.
DFVLR-FB 81-13 (Apri l , 1981).

[3] Horn, M.K. A Fortran Program for Solving State/Control-Constraint Opti
mal Control Proble~s with System Equations Having Expressions Involving
Tabular Data.
DFVLR-IB 515/1 (1983).

[4] Horn, M.K. A Numerical Solution of State/Control-Constraint Optimal Con
trol Problems with Piecewise Continuous Derivatives Using RKF45T
DFVLR-IB 515/2 (1983).

[5] Horn, M.K. Subroutines for Handling Tabular Data Used in System
Equations.
DFVLR-IB 515/4 (1983).

[6] Shampine, L.F. and H.A . Watts Practical Salutions of Ordinary Differen
tial Equations by Runge-Kutta Methods.
SAND 76-0585 (1976) Sandia Laboratories, Albuquerque, New Mexico, (Dec .
1976).

APPENDIX A. PROGRAM LISTING FOR RKF45T AND RELATED SUBROU
TINES

SUBROUTINE RKF45T(F,SUBPHI,NPHI,NEQN,Y,T,TOUT,RELERR,ABSERR,
1 IFLAG,WORK,IWORK)

c
C IS A FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA HETHOD WITH AN
C OPTION TO HALT THE INTEGRATI ON IF ANY cmtPONENT OF A USER
C SUPPLIED VECTOR FUNCTION VANISHES, PHI(J) = FUNCTION(T,Y,YP),
c
C SUBROUTINES RKF45 AND RKFS,
C WRITTEN BY H.A.WATTS AND L.F.SHAMPINE
C SANDIA LABORATORIES
C ALBUQUERQUE, NEW MEXICO,
C HAVE BEEN MODIFIED SLIGHTLY (INTO RKF45T AND RKFST) WITH AN
C ADDITIONAL SUBROUTINE, TRAPPD, WHICH STOPS THE INTEGRATION
C IF ANY COMPONENT OF PHI VANISHES. THE HODIFICATIONS TO
C RKF45 AND RKFS AND THE TRAPPD ROUTINE HAVE BEEN ADDED BY
C M.K. HORN
C DFVLR-OBERPFAFFENHOFEN
c
C RKF45T IS PRIMARILY DESIGNED TO SOLVE NON-STIFF AND HILDLY STIFF
C DIFFERENTIAL EQUJ\TIONS \vHEN DERIVATIVE EVALUATIONS ARE INEXPENSIVE
C RKF45T SHOULD GENERALLY NOT BE USED WHEN THE USER IS DEMANDING
C HIGH ACCURACY.
C-- ------------------------------- ----------------------- ---------------
e ABSTRACT
C- ------ -- ---------- ------
e SUBROUTINE RKF45T INTEGRATES A SYSTEH OF NEQN FIRST ORDER
C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM
C DY(I)/DT = F(T,Y(1),Y(2), ... ,Y(NEQN))
C WHERE THE Y(I) ARE GIVEN AT T
C WITH AN OPTION TO TO STOP THE INTEGRATION WHEN ANY COHPONENT OF
C A CONSTRAINT VECTOR, PHIO(J), A FUNCTION OFT, Y, AND YP IS
C SATISFIED.
c
C TYPICALLY THE SUBROUTINE IS USED TO INTEGRATE FROM T TO TOUT BUT
C CAN BE USED AS A ONE-STEP INTEGRATOR TO ADVANCE THE SOLUTION A
C SINGLE STEP IN THE DIRECTION OF TOUT OR TO THE VALUE OF T FOR
C WHICH A CONPONENT OF THE PHI VECTOR VANISHES. ON RETURN THE
C PARMiETERS IN THE CALL LIST ARE SET FOR CONTINUING THE INTEGRA-
C TION. THE USER HAS ONLY TO CALL RKF45T AGAIN (AND PERRAPS DEFINE
C A NEW VALUE FOR TOUT) . ACTUALLY, RKF45T IS AN INTERFACING ROUTINE
C WHICH CALLS SUBROUTINE RKFST FOR THE SOLUTION . RKFST IN TURN
C CALLS SUBROUTINE FEHL WHICH COMPUTES AN APPROXIHATE SOLUTION
C OVER ONE STEP.
c
C RKF45T USES THE RUNGE-KUTTA-FEHLBERG (4,5) HETHOD DESCRIBED IN
C THE REFERENCES
C E. FEHLBERG, LO\v-ORDER CLASSICAL RUNGE-KUTTA FOR~lULAS WITH STEPSIZ
C CONTROL, NASA TR R-315.
C ALSO IN COMPUTING, 6(1970),PP.61-71.
c
C L.F . SHAMPINE AND H.A. WATTS, PRACTICAL SOLUTION OF ORDINARY
C DIFFERENTIAL EQUATIONS BY RUNGE-KUTTA HETHODS.
C SANDIA LABORATORIES REPORT SAND76-0585.

- 56 -

c
C THE PERFOimANCE OF RKF45 IS ILLUSTRATED IN THE REFERENCE
C L.F. SHAHPINE, H.A. WATTS, S. DAVENPORT, SOLVING NON-STIFF ORDINAR
C DIFFERENTIAL EQUATIONS-THE STATE OF THE ART.
C SANDIA LABGRATORTES REPORT SAND78-0182 ALSO IN
C SIAM REVIEW,18(1976),PP .376-411.
c
c
c
C THE PARMiETERS REPRESENT
C F -- SUBROUTINE F(T,Y,YP) TO EVALUATE DERIVATIVES YP(I)=DY(I)/DT
C SUBPHI -- SUBROUTINE SUBPHI
C A SUBROUTINE FOR DETERMINING A CONSTRAINT VECTOR USED FOR
C TEMPORARILY STOPPING THE INTEGRATION (AT PHI(J) =O)
C NEQN -- NUHBER OF EQUATIONS TO BE INTEGRATED
C NPHI -- NUNBER OF COMPONENTS OF THE PHI VECTOR
C Y() -- SOLUTION VECTOR AT T
C T -- INDEPENDENT VARIABLE
C TOUT -- OUTPUT POINT AT \VHICH SOLUTION IS DESIRED
C RELERR,ABSERR -- RELATIVE AND ABSOULTE ERROR TOLERANCES FOR LOCAL
C ERROR TEST . AT EACH STEP THE CODE REQUIRES THAT
C ABS(LOCAL ERROR) .LE . RELERR~"'ABS(Y) + ABSERR
C FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS
C IFLAG -- INDICATOR FOR STATUS OF INTEGRATION
C WORK() -- ARRAY,TO HOLD INFORMATION INTERNAL TO ID~F45 WHICH IS
C NECESSARY FOR SUBSEQUENT CALLS. HUST BE DIMENSIONED
C AT LEAST 3+14'''NEQN+5''<NPH1
C IWORK() -- INTEGER ARRAY USED TO HOLD INFORMATION INTERNAL TO
C RKF45 WHICH IS NECESSARY FOR SUBSEQUENT CALLS. MUST BE
C DI~lliNSIONED AT LEAST 10
c
c
C--
e FIRST CALL TO RKF45T
C----------------------------- ------ -- ---------------------------------
C
C THE USER MUST PROVIDE STORAGE IN HIS CALLING PROGRAM FOR THE ARRAY
C IN THE CALL LIST - Y(NEQN), WORK(3+14*NEQN+5*NPHI) , IWORK(10),
C DECLARE FAND SUBPHI IN AN EXTERNAL STATEMENT, SUPPLY SUBROUTINE
C F(T,Y,YP) AND SUBPHI
c
C AND INITIALIZE THE FOLLOWING PARAMETERS
C NEQN -- NUMBER OF EQUATIONS TO BE INTRGRATED. (NEQN .GE. 1)
C Y() -- VECTOR OF I NITIAL CONDITIONS
C T -- STARTING POINT OF INTEGRATION, MUST BE A VARIABLE
C T=TOUT IS ALLOWED ON THE FIRST CALL ONLY, IN WHICH GASE
C RKF45T RETURNS WITH IFLAG=2 IF CONTINUATION IS POSSIBLE.
C RELERR,ABSERR -- RELATIVE AND ABSOLUTE LOCAL ERROR TOLERANCES
C WHICH MUST BE NON-NEGATIVE. RELERR MUST BE A VARIABLE WHILE
C ABSERR MAY BE A CONSTANT. THE CODE SHOULD NORMALLY NOT BE
C USED \VITH RELATIVE ERROR CONTROL SHALLER THAN ABOUT 1. E-8 .
C TO AVOID LIMITING PRECISION DIFFICULTIES THE CODE REQUIRES
C RELERR TO BE LARGER THAN AN INTERNALLY CONPUTED RELATIVE
C ERROR PARMiETER WHICH IS MACH INE DEPENDENT. IN PARTICULAR,
C PURE ABSOLUTE ERROR IS NOT PERMITTED. IF A SMALLER THAN
C ALLOWABLE VALUE OF RELERR IS ATTEMPTED, RKF45 INCREASES
C RELERR APPROPRIATELY AND RETURNS CONTROL TO THE USER BEFORE
C CONTINUING THE INTEGRATION.

- 57 -

c
C IFLAG -- INDICATES THE HODE OF OPERATION Of THE PROGRML IF
C THE INTEGRATOR IS TO BE USED \VITHOUT THE TRAPFING OPTION,
C IFLAG = +1 OR -1 INITIALLY. IF THE TRAPFING OPTION IS TOBE
C USED, IFLAG = -15, -10, 10, OR 15 INITIALLY (SEE BELO\V).
c
C IFLAG -- +1,-1 INDICATOR TO INITIALIZE THE CODEFOREACH NEW
C PROBLEM. NORMAL INPUT IS +1. THE USER SHOULD SET IFLAG=- 1
C ONLY WHEN ONE-STEP INTEGRATOR CONTROL IS ESSENTIAL. IN THIS
C CASE, RKF45T ATTENPTS TO ADVANCE THE SOLUTION A SINGLE STEP
C IN THE DIRECTION OF TOUT EACH TIME IT IS CALLED. SINCE THIS
C ~10DE OF OPERATION RESULTS IN EXTRA cmtPUTING OVERHEAD, IT
C SHOULD BE AVOIDED UNLESS NEEDED.
c
C IFLAG OPTIONS--IF THE CONSTRAINT VECTOR, PHI, IS TO BE ANALYZED.
C IF IFLAG = -15, · -10, +10, +15, RKF45T RESETS IFLAG EQUAL TO
C -1, -1, +1, OR +1, RESPECTIVELY, AND INITIALIZES OTHER
C PARA~ffiTERS TO ACTIVATE THE TRAPFING OPTION. UPON RETURN TO
C TO USER, IFLAG IS RESET TO -25, -20 , 20, OR 25, RESPECTIVLEY.
c
C IFLAG = 15--INTEGRATES FROM T TO TOUT, STOPPING INTERNALLY AT
C T = 'f''< IF PHI (J) = 0 AT T~'< , AND THEN CONTINUING THE
C INTEGRATION FROH CONDITIONS AT THE END OF THE STEP
C IN \VHICH PHI (J) VANISHED. IF FURTHER cmtPONENTS OF
C PHI J/ANISH \VITHIN A GIVEN STEP, THESE \viLL ALSO
C BE TRAPPED \VITHOUT FURTHER INTEGRATION. UPDATE
C CALLS ARE MADE TO SUBPHI SO THAT THE USER ~1AY PRINT
C INFOR~tATION OR UPDATE PHI, BUT THE DIFFERENTIAL
C EQUATIONS SHOULD NOT BE ALTERED SINCE THE SOLUTION
C IS ADVANCED FROM T+H AND F(T+H) WOULD NOT REFLECT
C THE CHANGES. UPDATES IN THE PHI FUNCTION ARE POS-
e SIELE , SINCE PHI AT '!"'~ AND T+H ARE REEVALUATED AT
C OR AFTER UPDATE, HAKING FURTHER TRAPPINGS POSSIBLE,
C BUT ANALYSIS OF THE PHI FUNCTION \viLL OCCUR ONLY
C FOR VALUES OF T > T* . UPON RETURNING, IFLAG EQUALS
C 25, \VHICH IS THE NOR~tAL MODE FOR CONTINUING.
c
C = 10--INTEGRATES FROM T TO TOUT, STOPPING INTERNALLY AT
C T = '!"'• IF PHI (J) = 0 AT T>'<, AND THEN CONTINUING THE
C INTEGRATION FRm1 CONDITIONS AT T>'•. UPDATE CALLS TO
C SUBPHI ARE MADE DURING \VHICH THE USER MAY OUTPUT IN-
C FüRNATION OR ALTER THE PHI FUNCTION. THE SOLUTION
C VECTOR AND/OR THE DIFFERENTIAL EQUATIONS MAY ALSO
C BE CHANGED SINCE F(T,Y,YP) IS REEVALUATED AND THE
C INITITAL VALUE PROBLEM IS ESSENTIALLY RESTARTED. ·
C EXTREME CARE, HO\vEVER , SHOULD BE EXERCISED IF THE
C DIFFERENTIAL SYSTEM IS ALTERED. IF PHI VANISHES
C - AT POINTS BETWEEN T* AND T+H, THESE VALUES ARE
C TRAPPED BY CONTINUED INTEGRATION. UPON RETURN ING,
C IFLAG EQUALS 20, WHICH IS THE NO~AL MODE FOR CON-
C TINUING.
c
C =-10--INTEGRATES FROM T TOWARDS TOUT, STEP BY STEP , RETURN-
C ING TO THE MAIN PROGRAM AT T>'< INSTEAD OF T+H IF
C PHI(J) = 0 AT T>'•, \vHERE T . LT. '!"'~' . LT. T+H. VECTORS
C Y AND YP AT T+H ARE RETURNED IN WORK ARRAY LOCATIONS
C 1 >'~'NEQN+2 TO 2*NEQN+ 1 AND 2>'~'NEQN+2 TO 3~'~'NEQN+ 1,
C RESPECTIVELY, WITH T+H RETURNED IN \VORK(3>'~'NEQN+2) .

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

- 58 -

UPDATES IN BOTH THE PHI VECTOR AND THE DIFFERENTIAL
EQUATIONS SYSTEM ARE POSS IELE AS IN THE IFLAG=10
OPTION . UPON RETURNING, IFLAG .EQUALS -20 , WHICH IS
THE NOR~1AL MODE FOR CONTINUING.

=-15--INTEGRATES FROH T TO\vARDS TOUT RETURNING TO THE
HAIN PROGRM1 AT T = T~'<, IF PHI (J) = 0 AT T~': . THE
VECTORS Y AND YP AT T+H ARE RETURNED IN \vORK ARRAY
LOCATIONS 1~~NEQN+2 TO 2~':NEQN+1 AND 2~'<NEQN+2 TO
31'~-NEQN+1 , RESPECTIVELY, WITH T+H RETURNED IN
WORK(3~':NEQN+2) . UPDATES IN BOTH THE PHI VECTOR AND
THE DIFFERENTIAL EQUATIONS SYSTEH ARE POSSIELE AS IN
THE IFLAG=10 OPTION. UPON RETURNING, IFLAG EQUALS
-25, WHICH IS THE NORMAL HODE FOR CONTINUING.

c-------- ---------------~----------------------------- ------------------
c OUTPUT FRm1 RKF45T
C- -- ----------
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Y() -- SOLUTION AT T
T -- LAST POINT REACHED IN INTEGRATION.
IFLAG = 2 INTEGRATION REACHED TOUT. INDICATES SUCCESSFUL RETURN

AND I S THE NORMAL HODE FOR CONTINUING INTEGRATION.
=-2 A SINGLE SUCCESSFUL STEP IN THE DIRECTION OF TOUT

HAS. BEEN TAKEN. NORHAL MODE FOR CON1INUING
INTEGRATION ONE STEP AT A TIHE.

= 3 -- INTEGRATION \vAS NOT COHPLETED BECAUSE RELATIVE ERROR
TOLERANCE WAS TOO SHALL. RELERR HAS BEEN INCREASED
APPROPRIATELY FOR CONTINUING .

= 4 -- INTEGRATION \vAS NOT COMPLETED BECAUSE MORE THAN
3000 DERIVATI VE EVALUATIONS WERE NEEDED. THIS
IS APPROXIMATELY 500 STEPS

= 5 -- INTEGRATION WAS NOT COHPLETED BECAUSE SOLUTION
VANISHED HAKING A PURE RELATIVE ERROR TEST
H1POSSIBLE. MUST USE NON-ZERO ABSERR TO CONTINUE.
USI NG THE ONE-STEP INTEGRATION MODE FOR STEP
IS A GOOD WAY TO PROCEED.

= 6 -- INTEGRATION WAS NOT COHPLETED BECAVSE REQUESTED
ACCURACY COULD NOT BE ACHIEVED USING SMALLEST
ALLOWABLE STEPSI ZE. USER MUST INCREASE THE ERROR
TOLERANCE BEFORE CONTINUED INTEGRATION CAN BE
ATTEMPTED .

= 7 - - IT IS LIKELY THAT RKF45 IS INEFFICIENT FOR SOLVING
THIS PROBLEM. TOO ~1UCH OUTPUT IS RESTRICTING THE
NATURAL STEPSIZE CHOICE. USE THE ONE-STEP INTEGRATOR
MODE.

= 8 -- INVALID INPUT PARAMETERS
THIS INDICATOR OCCURS IF ANY OF THE FOLLOWING IS
SATISFIED - NEQN . LE . 0

T=TOUT AND IFLAG .NE. +1 OR -1
RELERR OR ABSERR .LT. 0.
IFLAG .EQ. 0 OR .LT. - 2 OR .GT.8

= 20 - - I NTEGRATION HAS RETURNED USING TRAPPD OPTION WITH
TOUT HAVING BEEN REACHED. THIS IS THE NORMAL HODE
FOR CONTINUING INTEGRATION USING THE TRAPFING OP
TION. DURING THE INTEGRATION, THE SOLUTION WAS AD
VANCED FROM T* IN ANY STEP IN WHICH THE A COMPO
NENT OF THE VECTOR PHI VANISHED.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

WORK(

- 59 -
.·

= 25-- INTEGRATION HAS RETURNED USING TRAPPD OPTION WITH
TOUT HAVING BEEN REACHED. THIS IS THE NORNAL MODE
FOR CONTINUING INTEGRATION USING THE TRAPPING OP
TION. DURING THE INTEGRATION THE SOLUTION WAS AD
VANCED FROM THE END OF ANY STEP IN \VHICH THE TRAP
PING OPTION WAS APPLIED TO THE VECTOR PHI .

=-20-- INTEGRATION HAS RETURNED USING TRAPPD OPTION AFTER
TAKING A SINGLE STEP IN THE DIRECTION OF TOUT. IF THE
TRAPFING OPTION WERE NOT ACTIVATED, CONDITIONS ARE
RETURNED AT T+H. IF A COMPONENT OF PHI VANISHED
WITHIN THE STEP CONDITIONS ARE RETURNED AT T=~~,
WHERE PHI(J) = 0 AT~~ FOR AT LEAST ONE VALUE OF J
IN THIS CASE, Y AND YP AT THE END OF THE STEP HAVE
BEEN STORED IN WORK ARRAY LOCATIONS l~~NEQN+2 TO
2~~NEQN+l AND 2~~NEQN+2 TO 3~'(NEQN+l WITH T STORED IN
WORK (3~i'NEQN+2) . NORMAL MODE FOR CONTINUING
INTEGRATION ONE STEP AT A TIME USING THE TRAPPD
OPTION .

=-25-- INTEGRATION HAS RETURNED USING TRAPPD OPTION AFTER
REACHING TOUT OR ~~, THE FIRST VALUE OFT FOR WHICH
A COMPONENT OF PHI VANISHED. IF TOUT WERE NOT
REACHED, CONDITIONS AT THE END OF THE STEP IN
WHICH THE COMPONENT OF PHI VANISHED WILL HAVE
BEEN STORED IN WORK ARRAY LOCATIONS l~'(NEQN+2 TO
2~~NEQN+l AND 2~~NEQN+2 TO 3~~NEQN+l WI1H T STORED IN
WORK(3~'<'NEQN+2) . NORMAL ~10DE FOR CONTINUING
INTEGRATION FROM ONE T~'<' TO THE NEXT USING THE
TRAPPD OPTION.

= 94-- ERROR HAS ARISEN IN TRAPPD ROUTINE. TOO MANY
ITERATIONS WERE USED IN ATTEMPTING TO ISOLATE
A VANISHING COMPONENT OF PHI. CONDITIONS ARE
RETURNED AT THE LAST ESTABLISHED POINT FOR WHICH
THE PHI COMPONENT HAD NOT YET CHANGED SIGN.

= 97-- ERROR HAS ARISEN IN TRAPPD ROUTINE. TRAPFING
LIMITS ON PHI ARE TOO GLOSE TO PERMIT FURTHER
TRAPPING. CHECK PHI FUNCTION OR ITS DERIVATIVE
FOR POSS IELE DISCONTINUITIES.

),IWORK() --INFORMATION WHICH IS USUALLY OF NO INTEREST
TO THE USER BUT NECESSARY FOR SUBSEQUENT CALLS
WORK (l) , ... ;WORK(NEQN) CONTAIN THE FIRST DERIVATIVES
OF THE SOLUTION VECTOR Y AT T. WORK(NEQN+l) CONTAINS
THE STEP SIZE H TO BE ATTEMPTED ON THE NEXT STEP.
I\VORK(l) CONTAINS THE DERIVATIVE EVALUATION COUNTER.

C---------------- ---
C SUBSEQUENT CALLS TO RKF45T
C--------------------------- -- --
C
c .
c
c
c
c
c
c
c
c

SUBROUTINE RKF45T RETURNS WITH ALL INFORMATION NEEDED TO CONTINUE
THE INTEGRATION. IF THE INTEGRATION REACHED TOUT, THE USER NEED
ONLY DEFINE A NEW TOUT AND CALL RKF45T AGAIN. IN THE ONE-STEP
INTEGRATOR MODE (IFLAG=-2) THE USER MUST KEEP IN MIND THAT EACH
STEP TAKEN IS IN THE DIRECTION OF THE CURRENT TOUT. UPON REACHING
TOUT INDICATED BY CHANGING IFLAG TO 2), THE USER MUST THEN DEFINE
A NEW TOUT AND RESET IFLAG TO -2 TO CONTINUE IN THE ONE STEP INTE
GRATOR MODE.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

- 60 -

IF THE TRAPFING OPTION HAS BEEN USED, SIMILAR FLAGS ARE SET
(IFLAG = +20, OR +25 FOR REACHING TOUT OR iFLAG = -20 OR -25
IN THE STEP-BY-STEP MODE OR TRAPFING STEP-BY-TRAPPING STEP
MODE.) TO DEACTIVATE THE TRAPFING OPTION, THE USER NEED ONLY
SET IFLAG = -2 OR +2 IF THE INTEGRATION IS BEING CONTINUED OR
SET IFLAG = - 1 OR +1 IF A NEW INTEGRATION IS TO BE STARTED.

IF THE INTEGRATION \vERE NOT COMPLETED BUT THE USER STILL WANTS
TO CONTINUE (IFLAG=3,4 GASES), HE JUST CALLS RKF45T AGAIN. WITH
IFLAG=3, THE RELERR PARAMETER HAS BEEN ADJUSTED APPROPRIATELY FOR
CONTINUING THE INTEGRATION . IN THE GASE OF IFLAG=4 THE FUNCTION
COUNTER WILL BE RESET TO 0 AND ANOTHER 3000 FUNCTION EVALUATIONS
WILL BE ALLOWED. (IF TRAPFING OPTIONS WERE USED ON THE PREVIOUS
STEP, IFLAG WILL BE RESET IN RKFST TO ACTIVATE THESE OPTIONS.)

HOWEVER, IN THE GASE IFLAG=5, THE USER MOST FIRST ALTER THE
ABSOLUTE ERROR CRITERION TO USE A POSITIVE VALUE OF ABSERR.
IFLAG=5 HAY OCCUR IN RKF45T WHEN A PURE RELATIVE ERROR TEST
IS USED TO CHECK THE ACCURACY OF THE SOLUTION. IF ALL COHPO
NENTS OF THE SOLUTION VANISH AND NO ABSOLUTE ERROR TEST IS
USED, IFLAG IS SET EQUAL TO 5 . THE USER ~tUST SPECIFY
A POSITIVE VALUE OF ABSERR BEFORE THE INTEGRATION
CAN PROCEED. IF HE DOES NOT, EXECUTION IS TERHINATED .

ALSO, IN THE GASE IFLAG=6, IT IS NECESSARY FOR THE USER TO RESET
IFLAG TO 2 (OR -2 WHEN THE ONE-STEP INTEGRATION HODE IS BEING USED
AS WELL AS INCREASING EITHER ABSERR, RELERR OR BOTH BEFORE THE
INTEGRATION CAN BE CONTINUED . IF THIS IS NOT DüNE, EXECUTION WILL
BE TERHINATED. THE OCCURRENCE OF IFLAG=6 INDICATES A TROUBLE SPOT
(SOLUTION IS CHANGING RAPIDLY, SINGULARITY HAY BE PRESENT) AND IT
IS OFTEN INADVISABLE TO CONTINUE.

IF IFLAG=7 IS ENCOUNTERED, THE USER SHOULD USE THE ONE-STEP
INTEGRATION MODE WITH THE STEPSIZE DETERHINED BY THE CODE OR
CONSIDER SWITCHING TO THE ADAMS CODES DE/STEP,INTRP. IF THE USER
INSISTS UPON CONTINUING THE INTEGRATION WITH RKF45, HE MUSTRESET
IFLAG TO 2 BEFORE CALLING RKF45 AGAIN. OTHERWISE, EXECUTION WILL
BE TERMINATED.

IF IFLAG=8 IS OBTAINED, INTEGRATION CAN NOT BE CONTINUED UNLESS
THE INVALID INPUT PARMiETERS ARE CORRECTED.

IT SHOULD BE NOTED THAT THE ARRAYS \VORK, IWORK CONTAIN INFORMATION
REQUIRED FOR SUBSEQUENT INTEGRATION. ACCORDINGLY, WORK AND IWORK
SHOULD NOT BE ALTERED.

C---
C

c

c

c
c

IMPLICIT REAL""8 (A-H, 0-Z)

DIMENSION Y(NEQN),WORK(1),IWORK(10)

EXTERNAL F,SUBPHI
LOGICAL FLGOUT
DATA FLGOUT/.TRUE./

c

c
c

- 61 -

INDIC = 0
CALL FLAGCK (IFLAG, IND I C, I\VORK (8) , IWORK (9))

IF (IWORK(8) .EQ. 0) NPHI = 1

C COMPUTE INDICES FOR THE SPLITTING OF THE WORK ARRAY
c

c

KU1 = NEQN + 1
K1 = K1M + 1
K2 = K1 + NEQN
K3 = K2 + NEQN
K4 = K3 + NEQN
K5 = K4 + NEQN

C PARTITION FOR DIMENSIONING ADDITIONAL F VECTORS
c

c

K6 =·Ks + NEQN
K7 = K6 + NEQN
KB = K7 + NEQN
K9 = KB + NEQN

C PARTITION FOR RETURNING TF (FOR TRAPPING OPTIONS (IFLAG < -2))
c

KTF = K9 + NEQN .
c
C PARTITION FOR DIMENSIONING ADDITIONAL Y VECTORS
c

c

KlO = KTF + 1
Kll = KlO + NEQN
Kl2 = Kll + NEQN
K13 = Kl2 + NEQN

C PARTION FOR DIMENSIONING PHIO(K)-S
c

c

K14 = Kl3 + NEQN
Kl5 = K14 + NPHI
Kl6 = K15 + NPHI
Kl7 = K16 + NPHI
Kl8 = Kl7 + NPHI
Kl9 = Kl8 + NPHI
K20 = K19 + NPHI
K2 1 = K20 + NPHI
K22 = K21 + NPHI
K23 = K22 + NPHI
K24 = K23 + NPHI
K25 = K24 + NPHI
K26 = K25 + NPHI

C PARTION FOR SAVRE,SAVAE, TZERO
c

c

KSAVRE = K26 + NPHI
KSAVAE = KSAVRE + 1
KTZERO = KSAVAE + 1

C- -- -------------------- -- --------------- --- ----------------- -----------
C THIS INTERFACING ROUTINE MERELY RELIEVES THE USER OF A LONG
C CALLING LIST VIA THE SPLITTING APART OF TWO WORKING STORAGE

- 62 -

C ARRAYS. IF THIS IS NOT COMPATIBLE WITH THE USERS COMPILER,
C SHE MUST USE RKF45T DIRECTLY.
c---------------------- - - - ------~---------------------------------------
c
c

CALL RKFST(F,SUBPHI,NPHI,NEQN,Y,T,TOUT,RELERR,ABSERR,IFLAG,
1 WORK(1),WORK(K1M),WORK(K1),WORK(K2),WORK(K3),
2 WORK(K4),WORK(K5),WORK(K6),WORK(K7),WORK(K8),
3 WORK(K9),WORK(KTF),WORK(K10),WORK(K11),WORK(K12),
4 \vORK(K13) ,WORK(K14) ,WORK(K15) ,WORK(K16) ,WORK(K17),
5 WORK(K18),WORK(K19),WORK(K20),WORK(K21),WORK(K22),
6 \WRK (K23) , WORK (K24) , WORK (K25) , WORK (K26) ,
7 WORK(KSAVRE),WORK(KSAVAE),WORK(KTZERO),
8 IWORK(1),IWORK(2),I\VORK(3),IWORK(4),IWORK(5),
9 IWORK(6),IWORK(7),IWORK(8),I\VORK(9),IWORK(10))

c
IF (FLGOUT) CALL OUTFLG(IFLAG)

c
C ADJUST IFLAG IF TRAPPED OPTION HAS BEEN USED
c

c

c
c

INDIC = 1
CALL FLAGCK(IFLAG,INDIC,IWORK(8),IWORK(9))

RETURN
END

SUBROUTINE RKFST(F,SUBPHI,NPHI,NEQN,Y,T, TOUT,RELERR, ABSERR,
1 IFLAG,YP,H,F1,F2,F3,F4,F5,F6,F7,F8,F9,TF,YF,YPF,
2 Y2,YP2,PHIO,PHIPO,PHI2,PHIP2,PHIF,PHIPF,
3 PHIR,PHIPR,PHIL,PHIPL,PHIB,PHIV,PHIPV,SAVRE,SAVAE,
4 TZERO, NFE,NREJ,NEXTRA,KOP,INIT,JFLAG,KFLAG,
5 LFLAG,LSTART,KOUNTR)

IMPLICIT REAU•8 (A-H,O-Z)
C FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METROD
c
c
c
c
c
c
c
c
c
c
c
c
c

RKFST INTEGRATES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATIONS AS DESCRIBED IN THE COMMENTS FOR RKF45T.
THE ARRAYS YP ,F1 ,F2 ,F3 ,F4, AND F5 (OF DHlENSION AT LEAST NEQN) AND
THE VARIABLES H,SAVRE,SAVAE,NFE,KOP,INIT,JFLAG,AND KFLAG ARE USED
INTERNALLY BY THE CODE AND APPEAR IN THE CALL LIST TO ELIMINATE
LOCAL RETENTION OF VARIABLES BETWEEN CALLS. ACCORDINGLY, THEY
SHOULD NOT BE ALTERED. ITEMS OF POSSIELE INTEREST ARE

YP - DERIVATIVE OF SOLUTION VECTOR AT T
H - AN APPROPRIATE STEP SIZE TO BE USED FOR THE NEXT STEP
NFE- COUNTER ON THE NUNBER OF DERIVAITVE FUNCTION EVALUATION

C---
C

c
LOGICAL HFAILD,OUTPUT,UPDATE,IVAN,FIND,EVALF,BOUNCE

DIMENSION Y(NEQN),YP(NEQN),F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN),
1 F5(NEQN),Y2(NEQN) ,YP2(NEQN),YF(NEQN),YPF(NEQN),
2 F6(NEQN),F7(NEQN),F8(NEQN),F9(NEQN)

DIMENSION PHIO(NPHI),PHIPO(NPHI),PHIF(NPHI),PHIPF(NPHI)
DI MENSION PHI2(NPHI),PHIP2(NPHI) ,PHIB(NPHI),PHIV(NPHI),PHIPV(NPHI)
DIMENSION PHIR(NPHI),PHIPR(NPHI) , PHIL(NPHI),PHIPL(NPHI)

- 63 -

c
c---
c,·bbb'dnbbbbbb'dr,'r,b'r,b'ddr,•dntr-- -- -- - - - ---- - --- -?bhhh'r?~?~?bbhb'r?b'r*?bbb'r- -- 't.-.;-----

COMMON/FSTEP/ITOPH

c--------------- -- -----------------------------~-~~~---------~---------c .
EXTERNAL F,SUBPHI

c
c------ ------- - - ----- ------ ----------------------~---~------------------c
c
c
c
c
c
c
c
c

THE COMPUTER UNIT ROUND OFF ERROR U IS THE SMALLEST POSITIVE VALUE
REPRESENTABLE IN THE MACH! NE SUCH THAT 1. +U . GT·. 1.

VALUES TO BE USED ARE .
U = 9.5E-7 FOR IBM 360/370
U = 1.5E-8 FOR UNIVA~ 1108 .
U = 7.5E-9 FOR POP-10
U = 7.1E- 15 FOR CDC 600& SERIES
U = 2.2E- 16 FOR IBM 360/370. DOUBLE PRECISION

DATA U/2.2D-16/ .
c--- -- - ----------------------- ----- -------- ------ ~ ----------------~----- .
c
c
c
c
c
c

REMIN IS A TOLERANCE THRESHOLD WHICH IS ALSO DETERMINED BY THE
INTEGRATION METHOD. IN PARTICULAR, A FIFTH ORDER ~ffiTHOD WIL.
GENERALLY NOT BE CAPABLE OF DELIVERING ACCURACIES NEAR
PRECISION ON COMPUTERS WITH LONG WORDLENGTHS .

DATA REMIN/1.D-12/ '
c-------- ----------- - - ------- - - ---- ------- - ----------~-------- - ---------

DATA MAXNFE/3000/ .
c
C PROTECTION FOR !FIRST PARAMETER

!FIRST = 2

c
c

LFLAGS = LFLAG

ITOPH = 0

C CHECK INPUT PARMiETERS ·
c

IF (NEQN .LT.1) GO TO 10
IF ((RELERR.LT.O . ODO) OR . (ABSERR.LT. O.ODO)) GO TO 10
MFLAG = IABS(IFLAG)
IF ((MFLAG . GE. 1) .AND . (MFLAG .LE. 8)) GO TO 20

c
C INVALID INPUT
c

c

10 IFLAG = 8
RETURN

C IF THIS THE FIRST CALL
20 IF (MFLAG .EQ . 1) GO TO 50

c
C CHECK CONTINUATION POSSIBILITIES

c

IF ((T .EQ . TOUT) .AND. (KFLAG .NE. 3)) GO TO 10
IF (MFLAG .NE . 2) GO TO 25

c

c

IFLAG = +2 OR -2
IF (KFLAG . EQ. 3) GO TO 45
IF (INIT . EQ. 0) GO 1"0 45
IF (KFLAG .EQ.4) GO TO 40
IF ((KFLAG . EQ. 5) .AND.
IF ((KFLAG .EQ. 6) .AND.

1 (ABSERR .LE . SAVAE))
GO TO 50

- 64 -

(ABSERR.EQ. O.ODO)) GO TO 30
(RELERR . LE . SAVRE) . AND.
GO TO 30

C IFLAG = 3,4,5,6,7, OR 8
25 IF (IFLAG .EQ. 3) GO TO 45

IF (IFLAG .EQ. 4) GO TO 40
IF ((IFLAG . EQ. 5) . AND. (ABSERR : GT. 0. ODO)) GO TO 45

c
C INTEGRATION CANNOT BE CONTINUED SINCE USER DID NOT RESPOND TO
C THE INSTRUGTIONS PERTAINING TO IFLAG=5,6,7, OR 8
c

30 CONTINUE
c

STOP
c
C------------------------------- --
C
C RESET FUNCTION EVALUATION COUNTER

40 NFE=O
IF (MFLAG .EQ. 2) GO TO 50

c
C RESET FLAG VALUE FORM PREVIOUS CALL

45 IFLAG = JFLAG
IF (KFLAG .EQ. 3) MFLAG=IABS(IFLAG)

c
C SAVE INPUT IFLAG AND SET CONTINUATION FLAG FOR SUBSEQUENT
C INPUT CHECKING

c

50 JFLAG = IFLAG
KFLAG = 0

C SAVE RELERR AND ABSERR FOR CHECKING INPUT ON SUBSEQUENT CALLS
SAVRE = RELERR
SAVAE = ABSERR

c
C RESTRICT RELATIVE ERROR TOLERANCE TO BE AT LEAST AS LARGE AS
C 2U+REMIN TO AVOID LIHITING PRECISION DIFFICULTIES ARRISING FROM
C IMPOSSIBLE ACCURACY REQUESTS
c

RER = 2.0DO*U + REMIN
IF (RELERR.GE.RER) GO TO 55

c
C RELATIVE ERROR TOLERANCE TOO SMALL

RELERR = RER

c

IFLAG = 3
KFLAG = 3
RETURN

55 U26 = 26 . DO•':U
DT = TOUT - T
IF (MFLAG .EQ. 1) GO TO 60
IF (INIT .EQ. 0) GO TO 65
IF (LSTART . EQ . 1) GO TO 62

c
c

GO TO 80

- 65 -

C---
C
c
c
c
c
c
c
c
c

c

c

c

60 INIT = 0
KOP = 0

A = T
CALL F(A,Y,YP)
NFE = 1

62 CONTINUE

NEXTRA = 0
NREJ = 0
IVAN = .FALSE .
JUSTR = 0

SET INITIALIZATION COMPLETION INDICATOR,INIT
SET INDICATOR FOR TOO MANY OUTPUT POINTS,KOP
EVALUATE INITIAL DERIVATIVES

. SET COUNTER FOR FUNCTION EVALUATIONS,NFE
ESTIMATE STARTING STEP SIZE
SET PARAMETERS FOR ACTIVATING CONSTRAINT

FUNCTION IF THIS OPTION IS BEING USED

IF (LFLAG .EQ. 0) GO TO 64

C---
C INITIALIZATION FOR TRAPPING OPTION
c---
c

c
c

c

c

c

ABSER = 0. 5DO ~~r (ABSERR + RELERR)
KOUNTR = 0

UPDATE = .FALSE .
IVAN = .FALSE.
BOUNCE = .FALSE.
INDEX = 0

CALL SUBPHI(NPHI,INDEX,NEQN,A,Y,YP,PHIO,PHIPO,KOUNTR,UPDATE,
1 IVAN,BOUNCE , ABSER)

MPART = NPHI
IF (LFLAG .EQ. 2 .AND. INDEX .GT. 0 .AND. INDEX .LT. NPHI)

1 MPART = INDEX
INDEX = 0
IF (ABSER . LT . RER) ABSER = RER

DO 63 J = 1,NPHI
IF (DABS(PHIO(J)) .LT. U26) PHIO(J) = DSIGN(U26,PHIO(J))

63 CONTINUE
KOUNTR = 1
!FIRST = 1
IF (LSTART .EQ. 1) GO TO 80

c------------ ---
64 CONTINUE

IF (T .NE. TOUT) GO TO 65

c
c

c

IFLAG = 2
RETURN

65 INIT = 1
H = DABS(DT)
TOLN = O.ODO
DO 70 K = 1,NEQN

- 66 -

TOL = RELERR•'<DABS (Y (K)) + ABSERR
IF (TOL .LE. O.DO) GO TO 70
TOLN = TOL
YPK = DABS(YP(K))
IF (YPK•'<H•h'<5 . GT. TOL) H = (TOL/YPK)*":O. 2DO

70 CONTINUE
IF (TOLN .LE . O.DO) H = O.DO
H = DMAX1(H,U26*DMAX1(DABS(T),DABS(DT)))

C---
e
c
c
c

c

INSERT NEW BLOCK FOR INITIAL STEP SIZE ESTIMATE- -HSTART

PRINT 1588 ,H
ETOL = 0.5DO*(ABSERR+RELERR)
BIG = DSQRT(1 . 0D+10)
CALL HSTART(F,NEQN,T,TOUT,Y,YP,ETOL,5,

1 U,BIG,Fl,F2,F3,F4,DUM1,NFE ,H)

c-------------------------~---
c

c
c

JFLAG = ISIGN(2,IFLAG)

C---
C
C SET STEP SIZE FOR INTEGRATION IN THE DIRECTION FROM T TO TOUT
c

80 H = DSIGN(H,DT)
c
C TEST TO SEE IF RKF45 IS BEING SEVERELY IMPACTED BY TOD MANY
C OUTPUT POINTS
c

c

IF (DABS(H) .GE . 2 .DO*DABS(DT)) KOP = KOP + 1
IF (KOP .NE. 100) GO TO 85

C UNNECESSARY FREQUENCY OF OUTPUT
c

c
c

c

KOP = 0
IFLAG = 7
RETURN

85 IF (DABS(DT) .GT. U26*DABS(T)) GO TO ~5

C IF TOO GLOSE TO OUTPUT POINT, EXTRAPOLATE ANDRETURN
c

DO 90 K = 1,NEQN
90 · Y(K) = Y(K) + D~'<YP(K)

A = TOUT

c

CALL F(A,Y,YP)
NFE = NFE + 1

PRINT 1600,T

- 67 -

1600 FORMAT(/ I I, 1 -t:~tr~hhtr~hh<: USING EXTRAPOLATED SOLUTION AT T = 1 ,D15. 7,

c
c

1 ' '#1('f'(;':o;'c;'r-;':.,':"i~ I ' I I)

GO TO 300

C INITIALIZE OUTPUT INDICATOR
c

95 OUTPUT = . FALSE.
c
C TO AVOID PREMATURE .UNDERFLOW IN THE TOLERANCE FUNCTION,
C SCALE THE ERROR TOLERANCES
c

c
c

SCALE '= 2.DO/RELERR
AE = SCALE>'rABSERR

C----- ---
e-- -------------------- -------------------------------------- -- ~-- --- ---
c
C STEP BY STEP INTEGRATION
c

100 HFAILD = . FALSE.
c
C SET SMALLEST ALLOWABLE STEPSIZE
c

HMIN = U26~':DABS (T)
c
C ADJUST STEPSIZE IF NECESSARY TO HIT THE OUTPUT POINT.
C LOOK AHEAD TWO STEPS TO AVOID DRASTIC CHANGES IN THE STEPSIZE AND
C THUS LESSEN THE IMPACT OF OUTPUT POINTS ON THE CODE.
c

c

DT = TOUT - T
I F (DABS(DT) .GE. 2.DO*DABS(H)) GO TO 200
IF (DABS(DT) .GT . DABS(H)/0.9DO) GO TO 150

C THE NEXT SUCCESSFUL STEP \viLL COMPLETE THE INTEGRATION TO THE
C OUTPUT POINT
c

c

c
c
c

OUTPUT = . TRUE .
H = DT
GO TO 200

150 H = 0 . 5DO~trDT

C---
C CORE INTEGRATOR FOR TAKING A SINGLE STEP
c-----------------------------~------------- --- ------~------------------
c THE TOLERANCES HAVE BEEN SCALED TO AVOID PREMATURE UNDERFLOW IN
C COMPUTING THE ERROR TOLERANCE FUNCTION ET. .
C TO AVOID PROBLEMS WITH ZERO CROSSINGS, RELATIVE ERROR IS MEASURED

- 68 -

C USING THE AVERAGE OF THE HAGNITUDES OF THE SOLUTION AT THE
C BEGINNING AND END OF A STEP. .
C THE ERROR ESTIMATE FORMULA HAS BEEN GROUPED TO CONTROL LOSS OF
C SIGNIFICANCE
C TO DISTINGUISH THE VARIOUS ARGUMENTS, H IS NOT PERMITTED
C TO BECOME SMALLER THAN 26 UNITS OF ROUND OFF IN T.
C PRACTICAL LIMITS ON THE CHANGE IN THE STEP SIZE ARE ENFORCED TO
C SMOOTH THE STEP SIZE SELECTION PROCESS AND TO AVOID EXCESSIVE
C CHATTERING ON PROBLEMS HAVING DISCONTINUITIES.
C TO PREVENT UNNECESSARY FAILURES, THE CODE USES 9/ 10 THE STEP SIZE
C IT ESTIMATES WILL SUCCEED.
C SINGE LOCAL EXTRAPOLATION IS BEING USED AND EXTRA CAUTION SEEMS
C WARRANTED.
C------------- -- --
C
c
C TEST NUMBER OF DERIVATIVE FUNCTION EVALUATIONS
C IF OKAY, TRY TO ADVANCE THE INTEGRATION FROM T TOT+ H
c

200 IF (NFE .LE. MAXNFE) GO TO 220
c
C TOO MUCH WORK

IFLAG = 4
KFLAG = 4
RETURN

c
C ADVANCE AN APPROXH1ATE SOLUTION OVER ONE STEP OF LENGTH H
c

c
c

220 CALL FEHL(F,NEQN,Y,T,H,YP,Fl,F2,F3,F4,F5,F1)
NFE = NFE + 5

C Cm1PUTE AND TEST ALLOWABLE TOLERANCES VERSUS LOCAL ERROR ESTIMATES
C AND REMOVE SCALING OF TOLERANCES. NOTE THAT RELATIVE ERROR IS
C MEASURED WITH RESPECT TO THE AVERAGE OF THE MAGNITUDES OF THE
C SOLUTION AT THE BEGINNING AND END OF THE STEP.
c

c

EEOET = O.ODO
DO 225 K = l,NEQN
ET = DABS(Y(K)) + DABS(F1(K)) + AE
IF (ET.GT .O .DO) GO TO 224

C INAPPROPRIATE ERROR TOLERANCE
IFLAG = 5

c

c

c

c
c

KFLAG = 5
RETURN

224 EE = DABS((-2090.DO*YP(K)+(21970.DO*F3(K)-15048.DO*F4(K)))+
1 (22528.DO*F2(K)-27360.DO*FS(K)))

225 EEOET = DMAX1(EEOET,EE/ET)

ESTTOL = DABS(H)*EEOET*SCALE/752400.DO

IF (ESTTOL .LE . 1.DO) GO TO 230

C 'UNSUCESSFUL STEP
C REDUCE THE STEP SIZE, TRY AGAIN

c
c

c
c

c

HFAILD = . TRUE.
OUTPUT = .FALSE.
S = 0.100

- 69 -

THE DECREASE IS LINITED TO A FACTOR OF 1/10

IF (ESTTOL . LT. 59049. DO) S = 0. 9DO/ESTTOL~h'r0. 2DO

NREJ = NREJ + 1
H = s~trH

IF (DABS(H) .GT. HMIN) GO TO 200

C REQUESTED ERROR UNATTAINABLE AT SMALLEST ALLOWABLE STEP SIZE
c

c

IFLAG = 6
KFLAG = 6
RETURN

C SUCCESSFUL STEP
C STORE SOLUTION AT T + H
C AND EVALUATE DERIVATIVES THERE
c

230 CONTINUE
IF (LFLAG .EQ. 0) GO TO 269

c---------------------~--------- - ---------------------------------------
c CALL SETRAP TO SET UP AND CHECK CONDITIONS FOR REFERENCING TRAPPD
c--------- --

c

CALL SETRAP(F,SUBPHI,NPHI,NEQN,TOUT,H,ABSER,TZERO,
1 T, Y, YP, PHIO, PHI PO, TF, YF, YPF ,. PHIF, PHIPF,
2 T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,PHIB,PHIV,PHIPV,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,
4 REMIN,U26,
5 IFLAG,LFLAG,JUSTR,KOUNTR,IFIRST,NFE~NEXTRA,

6 MPART,
7 OUTPUT,UPDATE,BOUNCE,IVAN,FIND,HFAILD)

IF (IFLAG .GT. 2) RETURN
GO TO 275

c-----------------------------~---

c
c
c
c
c

269 CONTINUE
T = T + H
DO 270 K = 1,NEQN

270 Y(K) = F1(K)
A = T

ITOPH = 1

CALL F(A,Y,YP)

ITOPH = 0

NFE = NFE + 1

CHOOSE NEXT STEP SIZE
THE INCREASE IS LIMITED TO A FACTOR OF 5
IF STEP FAlLURE HAS JUST OCCURRED, NEXT

c
c

c

c

2 7 5 CONTINUE
S = 5.0DO

HSAVE =H

- 70 -

STEP SIZE IS NOT ALLOWED TO INCREASE

IF (ESTTOL .GT. 1.889568D-4) S = 0.9DO/ESTTOU'""'"0.2DO
IF (HFAILD) S = mHN1(S,l.DO)

H = DSIGN(DHAX1(S~ ... DABS(H) ,HMIN) ,H)

C--- --
e END OF CORE INTEGRATOR
c
c
c
C SHOULD WE TAKE ANOTHER STEP
c

c

IF (OUTPUT) GO TO 300
IFLAG = ISIGN(2,IFLAG)

C IF LFLAG=2 AND JUSTR=1, TRAPPD RAS JUST ISOLATED A ZERO OF PHI
C AND THE USER SELECTED THE OPTIONTORETURN (IFLAG=-15,-25)
c

'
IF (LFLAG .EQ. -1) GO TO 280
IF (LFLAG .EQ. -2 .AND. JUSTR .EQ. 0) GO TO 100
IF (IFLAG . GT. 0) GO TO 100

c---- ---------- - ---- - - - -------------------------------~----------------
c---
c

280 CONTINUE
c
C INTEGRATION SUCCESSFULLY COMPLETED
c
C ONE-STEP MODE

IFLAG = -2
RETURN

c
C INTERVAL MODE

c

c

300 T = TOUT
IFLAG = 2
RETURN

END
SUBROUTINE FEHL(F,NEQN,Y,T,H,YP,F1,F2,F3,F4,FS,S)

C FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METROD
c
C---
C FEHL INTEGRATES A SYSTEM OF NEQN FIRST ORDER
C ORDINARY DIFFERENTIAL EQUATIONS OF THE FORH
C DY(I)/DT = F(T,Y(1),---,Y(NEQN))
C WHERE THE INITIAL VALUES Y(I) AND THE INITIAL DERIVATIVES
C YP(I) ARE SPECIFIED AT THE STARTING POINT T. FEHL ADVANCES
C THE SOLUTION OVER THE FIXED STEP H AND RETURNS
C THE FIFTH ORDER (SIXTH ORDER ACCURATE LOCALLY) SOLUTION
C APPROXIMATION AT T+H IN ARRAY S(I)

- 71 -

c
C F1,---F5 ARE ARRAYS OF DIMENSION NEQN WHIC~ ARE NEEDED
C FOR INTERNAL STORAGE
C THE FORMULAS HAVE BEEN GROUPED TO CONTROL LOSS OF SIGNIFICANCE .
C FEHL SHOULD BE CALLED WITH AN H NOT Sl'!ALLER TRAN 13 UNITS OF
C ROUNDOFF IN T SO TRAT THE VARIOUS INDEPENDENT ARGUMENTS CAN BE
C DISTINGUISHED.
c---- ------------------------~------------ --------- --- ------------------
c

c

c

c

c

c

c

c

IMPLICIT REAU•8 (A-H,O-Z)

COMMON/SAFETY/IPR
DH!ENSION Y(NEQN), YP(NEQN) ,Fl (NEQN) ,F2 (NEQN) ,F3 (NEQN) ,F4(NEQN),

1 F5(NEQN),S(NEQN)

IPR = 0
CH = H/4.DO
DO 221 K = 1,NEQN

221 F5(K) = Y(K) + CH*YP(K)
CALL F(T+CH,F5,F1)

CH = 3 .DO*H/32 .DO
DO 222 K = 1,NEQN

222 FS(K) = Y(K) + CH*(YP(K) + 3.DO*F1(K))
CALL F(T+3. DO>"H/.8. DO ,F5 ,F2)

CH = H/2197.DO
DO 223 K = 1,NEQN

223 FS(K) = Y(K) + CH*(1932.DO*YP(K) + (7296.DO*F2(K)
1 - 7200 . 0DO*Fl(K)))

CALL F(T+12 .DO*H/13.DO,F5,F3)

CH = H/4104.DO
DO 224 K = 1,NEQN

224 FS(K) = Y(K) + CH*((8341 .DO*YP(K)-845.DO*F3(K)) + .
1 (29440.DO*F2(K)-32832. DO*Fl (K)))

CALL F(T+H,F5,F4)

CH = H/20520.DO
DO 225 K = 1,NEQN

225 F1(K) = Y(K)+CH*((-6080.DO*YP(K) + (9295.DO*F3(K)-5643.DO*F4(K)))
1 + (41040 .DO*F1(K)-28352 .DO*F2 (K)))

CALL F(T+H/2.DO,F1,F5)

C COMPUTE APPROXIMATE SOLUTION AT T + H
c

c

c

CH = H/7618050.DO
DO 230 K = 1,NEQN

230 S(K) = Y(K) +CH""((902880.DO>'>YP(K) + (3855735 .DO*F3(K)
1 -1371249 .DO*F4(K))) + (3953664.DO*F2(K) + 277020.DO*F5(K)))

IPR = 1

RETURN
END

c---
suBROUTINE SETRAP(F,SUBPHI,NPHI,NEQN,TOUT,H,ABSER,TZERO,

1 T,Y,YP,PHIO,PHIPO, TF,Yf.,YPF, PHIF,PHIPF,

- 72 -

2 T2 ,Y2,YP2, PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,PHIB,PHIV,PHIPV,
3 F1,F2,F3,F4,F5,F6,F7,F8,j9,
4 REMIN,U26,
5 IFLAG,LFLAG,JUSTR,KOUNTR,IFIRST,NFE,NEXTRA,
6 MPART,
7 OUTPUT,UPDATE,BOUNCE,IVAN,FIND,HFAILD)

c---
c

IMPLICIT REAL~':8 (A-H,O-Z)

DH1ENSION Y (NEQN) , YP (NEQN), YF (NEQN) , YPF (NEQN), Y2 (NEQN), YP"2 (NEQN)
DIMENSION F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN), F5(NEQN), F6(NEQN)
DIMENSION F7(NEQN),F8(NEQN),F9(NEQN)
DIMENSION PHIO(NPHI), PHIF(NPHI), PHI2(NPHI)
DIMENSION PHIL(NPHI), PHIR(NPHI), PHIB(NPHI), PHIV(NPHI) -~
DH1ENSION PHIPO(NPHI) ,PHIPF(NPHI) ,PHIP2(NPHI)
DIMENSION PHIPL(NPHI),PHIPR(NPHI), PHIPV(NPHI)
LOGICAL OUTPUT,UPDATE,BOUNCE,IVAN,NOTFAL,FIND,HFAILD,EVALF·
DATA ~fODE0/0/ ,MODE2/2/ .

c--- ----- --- ------------------------------ ----~---~---------------------
DATA NOTFAL/.FALSE./

c------- - --------------- - ----------------------~~~----------------------
COMMON/FSTEP/ITOPH

c--~~~--------------------
EXTERNAL F, SUBP}{I

c------- ------------------------- -----------------~~--------------------
c ANALYZE CONDITIONS FOR SUBROUTINE TRAPPD ,
c------ ----------- - ---- - -----------------------~------~----------------
c------- ------------------------ -------- ---- --------~~~-----------------
c

c

JUSTR = 0
TF = T + H
IF (OUTPUT) TF = TOUT

DO 235 J = 1,NEQN
235 YF(J) = F1(J)

- • 6 ~ •

. . .
c-:':.,'r--.'(-.~:._~: ... ·:-.t:-;t:*•"..,""i't·*-;"c.,"..," ... "*•'r·-k-.'r·*·* __________________ ')'(;':•t:•tr ... ':-l:..,~ _*;"•"*~~..,~ ... tr.,t:.,tr;t:** ____ - ··- ____ _

ITOPH = 1

CALL F(TF,YF,YPF)
c-.':··l:"i':"i'r"#':;':-.':"i'r"''r;'r')':"ln':"i'r"'J'r"i':'i':"#':;'r*•";':-;':- - - -- -- -- - ------- - "#':"i't-.':"i'r··k•':~:'l.':;':'"i::-.':"'J':;'r*•'r•'r"''':-;'r-;':-- --- --- _.--

c

c

ITOPH = 0

NFE = NFE + 1

UPDATE = .FALSE.
BOUNCE = .FALSE .
IVAN = .FALSE.
INDEX = 0
TOLER = ABSER
CALL SUBPHI(NPHI,INDEX,NEQN,TF,YF,YPF,PHIF,Pl{IPF,KOUNTR,UPDA:TE,

1 IVAN, BOUNCE, TOLER)

DO 200 J = 1,NPHI
IF (DABS (PHIF(J)) . LT.
IF (DABS(PHIPF(J)) .LT.

200 CONTINUE
I NDEX = 0

U26)
U26)

...
<' .(

PHIF (J) = ·. D·S IGN CU26, PHIF (j) ~
PHIPF(J) = .pSIG~HU26,PHIPF(J).)

... · ..

·

- 73 -

EVALF = .FALSE.
c

IF (IFIRST .EQ . 2) GO TO 258
C---
C FIRST STEP (IFIRST = 1).
C SEE IF A PHI COMPONENT VANISHED AT THE INITIAL T VALUE.
C---
C
c
c
c
c

c

c

IF THE EMERGENCY- FEATURE (NOTFAL = .TRUE .) IS USED, THE INTEGRA
WILL BE RESTARTED FROM EACH TRAPPED POINT EVEN IF THE MULTPLE
TRAP OPTION IS DESIGNATED BY THE USER

IF (NOTFAL .AND . LFLAG .EQ. 2) LFLAG = 1

ITEST = 0
DO 245 I = 1,NPHI
PHIV(I) = -1. ODO
IF (DABS(PHIO(I)) . LT . ABSER) ITEST = 1

245 CONTINUE

C TZERO, THE ~lOST REGENT VANISHlNG POINT, NEEDS A DUMMY VALUE AT
C THE BEGINNING OF THE INTEGRATION. SET TZERO EQUAL TO A POINT
C IN THE OPPOSITE DIRECTION OF THE INTEGRATION.
c

TZERO = T - H
c

IF (ITEST .EQ. 0) GO TO 258
c
c-------------------------- ----------------------------_-----------------
c A PHI COMPONENT VANISHED AT THE INITIAL T VALUE.
C STUDY THE COMPONENT FOR POSSIBLE SIGN ERROR .
C---
C

T2 = TF
c
C CALL PANIC TO ESTABLISH SUB-MESH STEP SIZE IF NOTFAL
C (EMERGENCY OPTION IS BEING USED)
c

c

c

c
c

IF (NOTFAL)
1
2
3
4
5
6

IND = 0

CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,
PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,
T2,Y2,YP2,PHI2,PHIP2,PHIL,PHIPL,
PHIR,PHIPR,TL,TR,PHIB,
F1,F2,F3,F4,F5,F6,F7, F8,F9,
ABSER,KOUNTR,NEXTRA,EVALF,FIND,
MODEO,IFIRST,U26)

CALL VANISH(F,SUBPHI,NPHI,NEQN,NFE,IND,T,Y,YP,
1 T,T2,TF,PHIO ,PHIPO,PHI2,PHIF , PHIPF,PHIR,PHIPR,
2 PHIV,PHIPV,F1,F2,F3 ,F4,F5,F6,F7,F8,F9,ABSER,KOUNTR,
3 EVALF,IVAN,NEXTRA,U26,MODE2)

DO 256 I = 1,NPHI
IF (DABS(PHIO(I)) .GT. ABSER) GO TO 255

IF (DABS(PHIO(I)) .LT. U26) PHIO(I) = U26
PHIO(I) = DSIGN(PHIO(I),PHIV(I))

- 74 -

PHIV(I) = +1 . ODO
C UPDATE COMPONENT WHICH VANISHED AT INITIAL CONDITIONS

c

c

KOUNTR = KOUNTR + 1 .
IND = I
UPDATE= .TRUE.
BOUNCE = .FALSE.
IVAN = . FALSE .
TOLER = ABSER

CALL SUBPHI(NPHI,IND,NEQN,T,Y,YP,PHIO,PHIPO,KOUNTR,UPDATE,
1 IVAN,BOUNCE,TOLER)

GO TO 256
255 CONTINUE

PHIV(I) = - 1. ODO
256 CONTINUE

DO 257 J = 1,NPHI
IF (DABS(PHIO(J)) . LT. U26) PHIO(J) = DSIGN(U26 ,PHIO(J))
IF (DABS(PHIPO(J)) .LT. U26) PHIPO(J) = DSIGN(U26 ,PHIPO(J))

25 7 CONTINUE
TZERO = T
1=2

C-- -- -----------------------------
C

25 8 CONTINUE
c

. !FIRST = 2
c
C SET CONDITIONS AT "L" EQUAL TO THOSE AT "o"
C SET CONDITIONS AT "R" EQUAL TO THOSE AT "F"
c

c

c

c
c

DO 259 J = 1, NEQN
Y2(J) = Y(J)
YP2(J) = YP(J)

25 9 CONTINUE

DO 260 J = l, NPHI
PHIL(J) = PHIO(J)
PHI2 (J) = PHIO(J)
PHIR(J) = PHIF(J)
PHIPL(J) = PHIPO(J)
PHIP2(J) = PHIPO(J)
PHIPR(J) = PHIPF(J)

260 CONTINUE
T2 = T
TL = T
TR = TF

FIND = .FALSE.
IF (NOTFAL) CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,

1 PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,
2 T2 ,Y2, YP2,PHI2,PHIP2,PHIL,PHIPL,
3 PHIR,PHIPR,TL,TR ,PHIB,
4 Fl,F2 ,F3,F4 ,F5,F6,F7,F8,F9,
5 ABSER,KOUNTR,NEXTRA,EVALF,FIND ,
6 MODE2,IFIRST,U26)

c

- 75 -

IF (NOTFAL .AND .. NOT.FIND) GO TO 266
IF (FIND) HFAILD = . TRUE.

C IF THE EHERGENCY FEATURE DETECTED A ZERO OVER A SUBSTEP,
C CONDITIONS AT "L" AND "R" ARE RESET IN PANIC. POINT "2"
C IS SET EQUAL TO "L" (INCLUDING Y2, YP2)
c

c

c

PHIMAX = O.ODO
DO 262 J = 1,NPHI

IF (DABS(PHIR(J)) . LT. ABSER) GO TO 261
IF (PHIL(J)*PHIR(J) .GT. O.ODO) GO TO 262

261 CONTINUE

C THE JTH COMPONENT OF PHI EXPERTENCES A SIGN CHANGE OR PHIF(J)
C VANISHES (PHIO(J) WILL NEVER BE IDENTICALLY ZERO AT THIS POINT
C BECAUSE TRAPPD SETS ZERO VALUES OF PHI EQUAL TO UNIT ROUNDOFF
C WITH APPROPRIATE SIGN)
c

IF (DABS(PHIR(J)) .LT . PHIMAX) GO TO 262
c

INDEX = J
PHIMAX = DABS(PHIR(J))

c
262 CONTINUE

c
IF (INDEX .EQ. 0) GO TO 266

c
c----- -------------------- -----------------------------~----------------
c
C A COMPONENT OF PHI VANISHED AT T OR BETWEEN T AND T
C F 0 F
c---~-------------------------
c

CALL TRAPPD(F,SUBPHI,NPHI,NEQN,NFE,INDEX,IFLAG ,T,Y,YP,
1 PHIO , PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2 ,
2 PHI2,PHIP2,PHIR,PHIPR,PHIL,PHIPL,TL,TR ,PHIB, PHIV,PHIPV,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,TZERO,
4 KOUNTR,MPART,UPDATE,OUTPUT,FIND,EVALF,
5 REMIN,U26,LFLAG,NEXTRA)

c
JUSTR = 1
IF (IABS(IF~AG) .GT. 2) RETURN

c
C CONDITIONS AT THE END OF THE STEP HAVE BEEN SET IN TRAPPD
c

RETURN
c---

266 CONTINUE
c
C--- -- -- ----------------------
C NO COMPONENT OF PHI HAS CHANGED SIGN
c-- ----------------------------- --
c

IVAN = .FALSE.
DO 267 J = l,NEQN
Y(J) = YF(J)

267 YP(J) = YPF(J)

c

T = TF
DO 268 J = 1,NPHI
PHIV(J) = -1. ODO
PHIO(J) = PHIF(J)

268 PHIPO(J) = PHIPF(J)

RETURN
END

- 76 -

c------------------------------------ - -----------~----------------------
SUBROUTINE FLAGCK(IFLAG,INDIC,LFLAG,LSTART) .

C---
e

IF (INDIC .EQ. 1) GO TO 50
c
C ADJUSTMENTS TO IFLAG IF TRAPPD ROUTINE IS TO BE USED
c

c
c

c

MFLAG = IABS(IFLAG)
1START = 0

IF (MFLAG .LE . 25) GO TO 10

C ERROR IN TRAPFING PHI ON PREVIOUS STEP
PRINT 1985,IFLAG,LFLAG

1985 FORMAT(//, 1 TRAPYING ERROR ON PREVIOUS STEP. OR US~R INPUT ERROR 1
,

1 /, I IFLAG = I ,I3,4X,/, I LFLAG = I ,I3,/)
RETURN

c
10 CONTINUE

c
IF (MFLAG .GE. 3 .AND. MFLAG .LE. 8) RETURN

c
LFLAG = 0
IF (MFLAG .LE. 2) RETURN

c
C TRAPFING OPTION TO BE USED. NO PROBLEMS WITH PREVIOUS IFLAGS.
c

c

c

c

c

c
c

ISGN = ISIGN(1,IFLAG)
IF (MFLAG .EQ. 11 .OR. MFLAG .EQ. 16) GO TO 12

GO TO 14
12 CONTINUE

1START = 1
l-fFLAG = MFLAG - 1
IFLAG = IFLAG - ISGN

14 CONTINUE

II = MFLAG - MFLAG/ 10~'~'10

IF (II .EQ. 0) LFLAG = ISGN
IF (II .EQ. 5) LFLAG = ISGN*2
IF (LFLAG .EQ . 0) GO TO 30

C MUST CHANGE IFLAG TO +1,2 OR -1,-2 TO CALL RKFST, IFLAG WILL .
C BE RESET BEFORE RETURN TO ·usER UNLESS ERROR OCCURS
c

- 77 -

IFLAG = IFLAG I 10
c

RETURN
c

30 CONTINUE
c
c INACCEPTABLE VALUE OF IFLAG

STOP
c

50 CONTINUE
c
C ADJUST IFLAG IF TRAPPED OPTION HAS BEEN USED
C IF AN ERROR HAS OCCURRED, THE TRAPFING OPTION WILL BE
C SWITCHED OFF TEHPORARILY AND IFLAG WILL INDICATE THE PROBLEM
c
C LFLAG WILL STORE INFORHATION· ON TRAPFING OPTION PREVIOUSLY
C USED .
c

c

c
c
c

c

c

IF (IFLAG .GT. 2) RETURN

IF (LFLAG .EQ . 0) RETURN
IF (IFLAG .EQ . 2 .AND. LFLAG .LT. 0) RETURN

TRAPFING OPTION WAS USED SUCCESSFULLY--RESET IFLAG
.

ISGN = ISIGN(1,IFLAG)
IFLAG = ISGN~'<'15 + S*LFLAG

RETURN
END

C OUTFLG PRINTS WARNING HESSAGES IF IFLAG INDICATES THAT
C . RKF45T HAS ENCOUNTERED DIFFICULTIES
c

c

c

SUBROUTINE OUTFLG(IFLAG)

LOGICAL ISKIRT
DATA ISKIRTI .TRUE . I

c---------------------- -- ---
c
c
c
c
c
c

IFLAG = 3 OR =4 IS A HINOR WARNING TO THE USER AND CONDITIONS
HAVE BEEN (OR WILL BE) RESET IN RKFST FOR
CONTINUING. IF A WARNING HESSAGE IS NOT WANTED
FOR THESE VALUES OF IFLAG, SET ISKIRT = .TRUE.

C----- ----- -- --- --
C

c

c

IF (IABS(IFLAG) .EQ . 2) RETURN

IF (ISKIRT) GO TO 30

IF (IFLAG .EQ. 3) PRINT 1500 ,
1500 FORHAT(I,54H THE USER SUPPLIED, RELATIVE ERROR TOLERANCE WAS TOO S

1 , 6HMALL.
2 , I ,54H RELERR HAS BEEN INCREASED TO A SUITABLE VALUE FOR CON
3• ' 8HTINUING. 'I' .
4 53H SIHPLY RECALL RKF45T (NO CHANGE TO IFLAG IS NEEDED).

- 78 -

5 ,/)
c

If (IFLAG .EQ. 4) PRINT 1501
1501 FOIDfAT(/ ,54H LIHITING NUHBER OF DERIVATIVE EVALUATIONS HAS BEEN EX

1 ,6HCEEDED,
2 / ,54H MAXNFE = 3000 PEID1ITS APPROXIMATELY 500 STEPS TO BE A
3 ,9HTTEMPTED . ,/)

c
30 CONTINUE

c
IF (IFLAG .EQ. 5) PRINT 1502

1502 FORMAT(/,54H A COMPONENT OF THE SOLUTION HAS VANISHED (AT BOTH END
1 ,12HS OF A STEP),
2 /,46H MAKING A PURE RELATIVE ERROR TEST IMPOSSIBLE.
3 /,41H A NON-ZERO VALUE OF ABSERR MUST BE USED.
4 /,48H THE STEP-BY-STEP MODEISA GOOD WAY TO PROCEED.,/)

c
IF (IFLAG .EQ. 6) PRINT 1503

1503 FORMAT(/ ,54H THE REQUESTED INTEGRATION ACCURACY COULD NOT BE ACHIE
1 , 3HVED
2 ,/,40H USING THE SMALLEST ALLOWABLE STEP SIZE .
3 ,/,54H INTEGRATION TOLERANCES MUST BE INCREASED BEFORE THE S
4 ,25HOLUTION CAN BE ATTEHPTED. ,/)

c
IF (IFLAG .EQ. 7) PRINT 1504

1504 FORMAT(/,54H TOO HUCH OUTPUT IS RESTRICTING THE NATURAL STEP SIZE
1 , 7HCHOICE.
2 ,//,54H THE MULTIPLE TRAP OPTION MAY BE USEFUL (IFLAG=15,25),
3 ,/,47H WITH TOUT AS THE TEMPORARY STOPPING CONDITION.
4 ,/,54H INTERACTION WITH THE USER IS POSSIBLE DURING UPDATE
5 ,/,40H IN THE USER SUPPLIED SUBROUTINE SUBPHI .
6 ,//,34H OTHERWISE, USE THE ONE-STEP MODE.,/)

c
IF (IFLAG .EQ. 8) PRINT 1505,IFLAG

1505 FORMAT(/,26H INVALID INPUT PARAMETERS:
1 ,//,12H NEQN .LE. 0
2 ,/,33H T = TOUT AND IFLAG .NE . +1 OR -1
3 ,/,28H RELERR OR ABSERR .LT. O.ODO
4 'I I 3H OR
5 ,/,46H IFLAG HAS BEEN SET TO AN INACCEPTABLE VALUE.
6 ,/, 9H IFLAG = ,I3,/)

c
IF (IFLAG .EQ. 94) PRINT 1506

1506 FORMAT(/,54H DIFFICULTIES WERE ENCOUNTERED USING THE TRAPFING OPTI
1 ,3HON.,/,31H TOO MANY ITERATIONS WERE USED.
2 ,/,53H CONDITIONS HAVE BEEN RETURNED AT THE LAST VALUE OFT
3 ,/,31H BEFORE THE BORDER WAS CROSSED. ,/)

c
IF (IFLAG .EQ. 97) PRINT 1507

1507 FORMAT(/,54H DIFFICULTIES WERE ENCOUNTERED USING THE TRAPFING OPTI

c
c
c
c

1 ,3HON . ,/,46H THE TRAPFING ITERATION BOUNDS WERE TOO CLOSE .
2 ,/,56H CONDITIONS HAVE BEEN RETURNED AT THE LAST VALUE OFT
3 ,/,31H BEFORE THE BORDER WAS CROSSED. ,/)

123456789 123456789 123456789 123456789 123456789 1234
0 1 2 3 4 5

RETURN

- 79 -

END
c
C- ---
e----------------------- -- --

SUBROUTINE TRAPPD(F,SUBPHI,NPHI,NEQN,NFE,INDEX,IFLAG,
1. T,Y,YP,PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,
2 PHI2,PHIP2,PHIR,PHIPR,PHIL,PHIPL,TL,TR,PHIB,PHIV,PHIPV,
3 F1,F2,F3,F4,FS,F6,F7,F8,F9,ABSER,TZERO,
4 KOUNTR,MPART.,UPDATE, OUTPUT ,FIND ,EVALF,
5 REMIN,ZAPP,LFLAG,NEXTRA)

c--------------------------------- -------------------------------------
c---
c

c

c

c

IMPLICIT REAL~"'B (A-H,O-Z)

DH1ENSION Y(NEQN), YP (NEQN), Y2 (NEQN), YP2 (NEQN)
DIMENSION YF(NEQN)., YPF(NEQN) ,F1(NEQN) ,F2 (NEQN)
DI~ffiNSION F3(NEQN),F4(NEQN),F5(NEQN)
DIMENSION F6(NEQN),F7(NEQN) , F8(NEQN),F9(NEQN)
DIMENSION PHIO(NPHI),PHIPO(NPHI),PHIF(NPHI),PHIPF(NPHI)
DIMENSION PHI2(NPHI),PHIP2(NPHI),PHIB(NPHI)
DIMENSION PHIR(NPHI),PHIPR(NPHI),PHIL(NPHI),PHIPL(NPHI)
DIMENSION PHIV(NPHI) ,PHIPV(NPHI) .
COMMON/CRKF45/IOPT,JOPT,IDUM(3)
DATA TBOUND/1.0D-10/
DATA MAXIT/25/ .
DATA MODEO/O/,MODE1/1/,MODE2/2/

LOGICAL UPDATE,IVAN,EVALF,ENDPT,OUTPUT,PUTOUT,
1 NOTFAL,FIND,BOUNCE,SEARCH

DATA NOTFAL/.FALSE./

EXTERNAL F,SUBPHI

C- -- ------- -- ---------------- -- ---
C STANDARD PRINTING OPTION--IOPT = 1
c- ----- -- -- --- ---- --

c

IF (IOPT .EQ. 0) GO TO 777
PRINT 901,NFE,NEXTRA
PRINT 760,T,TF,INDEX
IF (FIND) PRINT 763,TL;TR,PHIL(INDEX),PHIR(INDEX)
DO 762 J = l,NPHI

762 PRINT 761,J,PHIO(J),J,PHIF(J)
777 CONTINUE

IF (.NOT. FIND) EVALF = .FALSE.
C------- --
C CALL BOUNCD TO SEE IF ANY COMPONENT OF PHI HAS BOUNCED ON A
C ZERO ON THE PREVIOUS STEP .
c--- -- ------------------

c

CALL BOUNCD(F,SUBPHI,NPHI,NEQN,T,Y,YP,PHIO,PHIPO,
1 TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,ZAPP,
4 ITEST,INDEX,NFE,NEXTRA,KOUNTR,
5 EVALF,FIND)

IF (ITEST .EQ. 1) RETURN
IF (INDEX .EQ . 0) RETURN

- 80 -

C---
e PANIC OPTION FOR STUDYING PHI THRDUGHOUT THE INTEGRATION STEP
C (EMERGENCY FEATURE--PANIC NOT REFERENCED Ir" E~1ERGENCY FEATURE
C IS USED IN RKFST)
c---

IF (.NOT. FIND .AND . NOTFAL)
1 CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,
2 PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
3 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
4 Fl,F2,F3,F4,FS,F6,F7,F8,F9,ABSER,KOUNTR,
5 NEXTRA,EVALF,FIND,MODEl,MODEO,ZAPP)

c
C---
e INITIALIZATION BLOCK--BRACKETING VALUES HAVE BEEN SET IN RKFST
C-- ------ ---- -------
C

c

c

620 CONTINUE

STEP = TF - T
TLSTAR = TL
T~tAG = 0. SDO "' (DABS (TR) + DABS (TL))
ITERAT = 0
TOLER = ABSER
ENDPT = .FALSE.
POTOUT = . F ALSE . ,

PHILL = PHIL(INDEX)
PHIPLL = PHIPL(INDEX)
PHIRR = PHIR(INDEX)
PHIPRR = PHIPR(INDEX)

C---- ---
C ROUTE ANALYSIS THROUGH PROPER SECTION
c--- ------------------------------------ - ------ - - -- ~--------- -----------
c IF IPHIR(INDEX) I . LT. TOLERANCE--GO TO 300 FOR UPDATE PREPARATION
C IF PHI(INDEX) CHANGED SIGNS FROM TL TO TR--GO TO 55 TO ITERATE
C UNTIL A ZERO IS TRAPPD.
C (OTHERWISE, AN ERROR IN THE ANALYSIS WAS ~tADE IN RKFST--STOP)
c

IF (DABS(PHIR(INDEX)) . LT . TOLER) GO TO 300
IF (PHIL(INDEX)>'<PHIR(INDEX) . LT. 0. ODO) GO TO 55
PRINT 902,INDEX,PHIL(INDEX),PHIR(INDEX)
STOP

C----- ---
e- ---------- --
C AT LEAST ONE COMPONENT OF PHI HAS BEEN BRACKETED .
C BEGIN ANALYSIS FOR ISOLATING THE ZERO OF PHI(INDEX).
C------ -- --- -- ---
e---

55 CONTINUE
C---
C GENERATE THE ADDITIONAL F VALUES IF THEY HAVE NOT BEEN EVALUATED
c- --

IF (.NOT . EVALF) CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,
1 F5,F6,F7,F8 ,F9,Fl,MODE1,NFE,NEXTRA,Y2)

EVALF = .TRUE.
C------------------ -- ---
C 1START DETERMINES THE SIDE FROM WHICH THE NEWTON APPROXIHATION
C IS HADE.

- 81 -

.. : . · -.

I , • •,

. C IF PHI (INDEX) V ANISRED ON THE PREVIOUS. STEP, THE
C THE FIRST NEWTON ESTIMATE IS MADE F~O~f tHE RIGHT SIDE.
C OTHERWISE, THE ITERATION STARTS FROM ·THE SIDE FOR .
C IPHI(INDEX)j IS SMALLER . . -
C FOR SUBSEQUENT ITERATIONS, START FROH THE PREVIOUS T*
C 1START = 0 START FROM LEFT HANO SIDE (TL SIDE)
C 1START = 1 START FROM RIGHT HAND &IDE (TR SIDE)
c--- ---------------------- ----- - -- -------------- ~~~--~ --------------~--- ·

1START = 0 .
IF (DABS(PHIL(INDEX)) .GT. DABS(PHIR(INDEX))) LSTART = 1
IF (PHIV(INDEX) .GT. O.ODO) . LSTART = 1

C---
C STORE Y AND YP AT TO IN F2 AND F3 (WHICH A~E · NO .LONGER NEEDED FOR
C GENERATING THE SCALED SOLUTION
c--------------- ---------------------- - --- ------ ~ ~~-~-- -- ----- ------·---

no 116 J = 1 ,NEQN . ' · ·
F2(J) = Y2(J)
F3(J) = YP2(J)

116 CONTINUE
c
c--~---~-------------------c----------------;...----------------- ----_._-----.--'-: -- ~-.,. ':"'.:.------------:..----
C MAJOR ITERATION LOOP .
C EXIT WHEN jPHI(INDEX)I < TOLERANCE
c----------- ----------~--- --------- - ----- -----~-~---:-~~.,.-- - -- ----------c--- ';' --~----------------.--- .:. --

120 CONTINUE ..
c

ITERAT = ITERAT + 1
IF (ITERAT .GT. MAXIT) GO TO 650

c
c--- --------------------- ---------------------------~-------------------
c CHOOSE NEW INTEGRATION STEP SIZE TO LOCATE THE Z-E-RO OF
C PHI (INDEX) USING A FALSE-POSITION OR NEWTON:..RHAPSON METROD
c--- -------------------- -------------------- - - -- -----~------------------

CALL TSTAR(Z,T,TL,TR,TF,TLSTAR,TZERO,T~A_G,PHLAST,
1 INDEX, NPHI, PHI 2, PHIV, PHILL, PH.IPLL, PHIRR, PHIPRR,
2 ABSER,TBOUND,ZAPP,LSTART,ITERAT,ISHIFT)

c------------------ ------ ------------------------~- ~~ - ~- ---- -------~ ----
c Z = T•'< ESTIMATE HAS BEEN · SELECTED , SET H .·= Z -~ T .
c--~-----------------~----· ' . H=Z -T ·- . 'l
c--~·-----------------
c IF (TL, TR) BOUNDS ARE TOO GLOSE, EXIT THROUGH 648
c------------ ------------------------- --------- --~-~-~~-- --------~---;.. __ ..

IF (DABS (TL-TR) . LT. 0. SDO•'<DABS ((TR+TL))>'<TBOUNJ?-) · . GO TO 648
c--~-~~ ~----------------
c EVALUATE THE SOLUTION AT T2 = T + H USING THE :_SCALED ALGORITHM
c---·

SIGMA = H/STEP . ,
CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5;F6,F7,F8,F9,F1,

1 MODE2,NFE,NEXTRA,Y2) .
T2 = Z
CALL F(T2,Y2,YP2)
NFE = NFE + 1
NEXTRA = NEXTRA + 1

c-- ---~------------------------------------- -------------- - -------------
c EVALUATE PHI AND PHIP AT T2

- 82 -

c-------------------- ---
UPDATE = .FALSE .
BOUNCE = .FALSE .
IVAN = .FALSE .
INDX = INDEX
PHLAST = PHI2(INDEX)
CALL SUBPHI(NPHI, INDX,NEQN,T2,Y2,YP2,PHI2,PHIP2,KOUNTR,UPDATE,

1 IVAN,BOUNCE,TOLER)
IF (JOPT .EQ . 1) PRINT 1523,T,INDEX,PHILL,INDEX,PHI2(INDEX),PHIRR

1523 FORMAT(' T= 1 ,D15.7,2X, 'INDEX=' ,I3,/, 1 PHILL=' ,D15 . 7,2X, 1 PHI2(1 ,I3,
1 1

) =I ,D15 . 7,2X, 'PHIRR=' ,D15.7)
TOLER = ABSER

C---- ---
C ADJUSTMENTS TO PHI2, PHIP2 :
C IF IPHI21, IPHIP2 1 < UNIT ROUND-OFF, SET EQUAL TO UNIT ROUND-OFF
C IF PHI(J) BOUNCED, . GIVE PHI2(J) THE SIGN OF PHIR(J)
c---------------- --- --

c

no 154 L = 1,NPHI
IF (DABS(PHI2(L)) . LT. ZAPP)
IF (DABS(PHIP2(L)) .LT. ZAPP)

154 CONTINUE
DO 155 J = 1,NPHI

PHI2(L) · = DSIGN(ZAPP,PHI2(L))
PHIP2(L) = DSIGN(ZAPP,PHIP2(L))

IF (PHIB(J) . GT. O. ODO) PHI2(J) = DSIGN(PHI2(J),PHIR(J))
155 CONTINUE

C--
C CALL SHIFTI TO SEE IF INDEX SHOULD BE SHIFTED
c------------- ---

CALL SHIFTI (NPHI,T2,PHI2,PHIP2,PHIL , PHIPL,P~IR,PHIPR,PHIF,
1 PHIB,ABSER, LSTART,
2 PHLAST,PHILL,PHIPLL,PHIRR,PHIPRR,INDEX,ISHIFT)

C--
e---
C CHECK FOR CONVERGENCE
C--
e-------~- - ---

IF (DABS(PHI2(INDEX)) .LT. TOLER) GO TO 188
c
C---
C CONTINUE ITERATING- ~CONVERGENCE WAS NOT ACHIEVED
C ADJUST TL AND TR
c---

180 CONTINUE
IF (PHI2 (INDEX)~'tPHIR(INDEX) .GT. O.ODO) GO TO 185

c------------- - ---------------------~-------- - --------------------------
c PHI (T2) IS NOT ACROSS THE BOUNDARY--SHIFT 11111 TO 11 211

c---------------- -- -- --- --

c

TL = T2
PHILL = PHI2(INDEX)
PHIPLL = PHIP2(INDEX)
1START = 0

C STORE Y,YP AT TL IN F2,F3 WHICH ARE NO LONGER NEEDED IN SCALED
c

DO 182 J = 1,NEQN
F2 (J) = Y2(J)
·F3 (J) = YP2 (J)

182 CONTINUE

- 83 -

GO TO 120
c

185 CONTINUE
C---
C PHI(T2) IS ACROSS THE BOUNDARY--SHIFT "R" TO "2"
c---

c

TR = T2
PHIRR = PHI2(INDEX)
PHIPRR = PHIP2(INDEX)
1START = 1
GO TO 120

188 CONTINUE
C---
e CONVERGENCE HAS BEEN ACHIEVED.
C SAFETY CHECK--IS SOME COMPONENT ACROSS THE BOUNDARY AND OUTSIDE
C THE CONVERGENCE RANGE ?

C---
e

c

ISTOP = 0
DO 178 J = 1,NPHI
IF (PHIB(J) .GT. O.ODO)
IF (PHIL(J)*PHI2(J) .GT. O.ODO)
IF (DABS(PHI2(J)) .LT. TOLER)

GO TO 178
GO TO 178

GO TO 178

C COHPONENT J CHANGED SIGNS FROH TL TO T2 BUT RAS NOT YET VANISHED
c

c

PRINT 927,J,INDEX
PHIDIF = DABS(DABS(PHIL(J)) - TOLER)
PRINT 925,J,PHIL(J),PHI2(J),PHIR(J),PHIDIF,TOLER
ISTOP = 1

178 CONTINUE
IF (ISTOP .EQ. 0) GO TO 400
PRINT 1411
STOP

300 CONTINUE
C--
e---
C PREPARE FOR EXIT--SOLUTION VANISHED AT T = TR SO NO ITERATIONS
C WERE REQUIRED
c--~---------------
c---

IF (FIND .AND. TR .NE. TF) GO TO 308
c---~-----
c TR AND TF ARE THE SAME POINT
C---
e

ENDPT = .TRUE.
IF (OUTPUT) PUTOUT = .TRUE.
DO 303 J = 1,NEQN
Y2(J) = YF(J)
YP2(J) = YPF(J)

303 CONTINUE
T2 = TF
DO 306 J = l,NPHI
PHI2(J) = PHIF(J)
PHIP2(J) = PHIPF(J)

c

306 CONTINUE
GO TO 400

- 84 -

c---
c TR AND TF ARE NOT THE SAME POINT (TR SET BY ENERGENCY FEATURE
C IN RKFST--A SUBSTEP OF THE INTEGRATION STEP WAS ANALYZED)
C (THE SOLUTION HAS BEEN DELETED AT TR AND NUST BE RE-EVALUATED.)
c------------------- -- -------------------------------- ------------------
c

c

c

308 CONTINUE

SIGMA = (TR-T)/STEP
T2 = TR
CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,FS,F6,F7,F8,F9,F1,

1 MODE2 ,NFE,NEXTRA,Y2)
CALL F(T2,Y2,YP2)
NFE = NFE + 1
NEXTRA = NEXTRA + 1
DO 310 I = l,NPHI
PHI2(I) = PHIR(I)
PHIP2(I) = PHIPR (I)

310 CONTINUE

400 CONTINUE

c--------------- ---- -~--- -------- ------ ----- --- -- ------- ---- -----------
c- -- ----- --- -- --------------
C TRAPPD \vAS SUCCESSFUL AND THE FUNCTION WILL BE UPDATED
C--
e---------------- -------------------------------- ----- -- --- -------------
C EACH COMPONENT OF PHI WILL BE CHECKED TO SEE IF IT HAS
c "VANISHED. II IF PHI(J) HAS "VANISHED, II SUBPHI WILL BE
C REFERENCED TO UPDATE THIS PARTICULAR COMPONENT, I.E.,
C INDEX WILL INDICATE THAT cmtPONTENT WH ICH IS BEING UPDATED.
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE TRAPPD ASSUMES THAT PHI WILL CHANGE SIGN
AS IT GROSSES A BOUNDARY UNLESS THE COMPONENT HAS
REMAINED IN THE "VANISHED" RE GION FROM T TO T2. THEREFORE,
IF PHI(J) HAS BEEN TRAPPED (AND IS ESSENTIALLY ZERO) , THE
SIGN IS CHANGED TO REFLECT CONDITIONS ACROSS THE BORDER.
THIS SIGN ADJUSTMENT IS MADE BEFORE ENTRY INTO SUBPHI FOR
UPDATING . IF PHI(J) VANISHED THROUGHOUT (T,T2), THE SIGN
REMAINS THE SAME. (THE SIGN OF A BOUNCING CmfPONENT HAS
BEEN GIVEN THE SIGN OF PHIR DURING THE TRAPPING ANALYSIS.)

C IF THE USER CHANGES THE SIGN DR MAGNITUDE OF PHI DURING UPDATE,
C NEITHER WILL BE ALTERED UPON RE-ENTRY INTO TRAPPD AS LONG AS THE
C MAGNITUDE IS GREATER THAN UNIT ROUND-OFF. IF THE USER-SUPPLIED
C VALUE IS LESS THAN UNIT ROUND-OFF, THE VALUE WILL BE SET EQUAL
C TO UNIT-ROUNDOFF WITH THE USER-SUPPLIED SIGN.
c- --

c
c
c- -

CALL VANISH(F ,SUBPHI,NPHI,NEQN ,NFE ,INDEX, T,Y,YP,TLSTAR,T2,TF,
2 PHIO,PHIPO,PHI2,PHIL,PHIPL,PHIR,PHIPR,PHIV,PHIPV,
3 Fl,F2,F3,F4,FS,F6,F7,F8,F9,
4 ABSER,KOUNTR,EVALF,IVAN,NEXTRA,ZAPP,MODE1)

NOTE: PHIPL IS CHANGED IN VANISH

UPDATE = . TRUE .

- 85 -

c- -
c---

no 410 J = 1,NPHI
c--·----------------------

PHIV (J) = -1. ODO
IF (DABS(PHI2(J)) .GT. TOLER) GO TO 410
PHIV(J) = +1.0DO

c--~--------------------
c THE JTH cmtPONENT OF PHI RAS VANISHED--PHIPL(J) > 0 INDICATES
C TRAT PHI(J) VANISHED THROUGHOUT (T,T2)
c--- -- ------------------------

IND = J
IVAN = .FALSE.
IF (PHIPL(J) .GT. O.ODO) IVAN = .TRUE.

C---
C CHECK SIGN OF PHI(J) FOR POSSIELE ADJUSTMENT
c---

sGN = -l.DO
IF (IVAN) SGN = +1.0DO

C---
C PHI2(J) AND PHIL(J) WILL HAVE OPPOSITE SIGNS IF PHI(J) DID NOT
C VANISH THROUGHOUT (TLSTAR, T2). IF PHI(J) DID VANISH THROUGHOUT
C THIS INTERVAL, PHI2(J) WILL BE GIVEN THE SIGN OF PHIL(J).
c---

PHI2(J) = SGN•\-DSIGN(PHI2(J) ,PHIL(J))
C---
C SAVE PHI2(J) VALUE BEFORE ENTERING PHI. IF. THE USER CHANGES PHI2
C AND THE PRINTING OPTION IS AeTIVE, OUTPUT WILL ALSO BE GIVEN
C AFTER THE SUBPHI CALL.
e---

SAVEPH = PHI2(J)
C---
e STANDARD PRINTING OPTION--IOPT = 1
e---

IF (IOPT .EQ. 0) GO TO 783
PRINT 780,T2,INDEX
DO 778 JJ = 1,NPHI

778 PRINT 779,JJ,PHI2(JJ)
783 CONTINUE

C---
C CALL SUBPHI TO UPDATE PHI2
e---

UPDATE = .TRUE.
BOUNCE = .FALSE.
INDD = !ND
eALL SUBPHI(NPHI, INDD,NEQN,T2,Y2,YP2,PHI2,PHIP2,KOUNTR,UPDATE,

1 IVAN,BOUNCE,TOLER) .
TOLER = ABSER
KOUNTR = KOUNTR + 1
DIFF = DABS(PHI2(J) - SAVEPH)

C---
C STANDARD PRINTING OPTION:
C IF CONDITIONS ARE UPDATED, THEY WILL BE REPRINTED (FOR IOPT=1)
e---

IF (IOPT .EQ. 0 .OR. DIFF .LT. ZAPP) GO TO 785
PRINT 780,T2,INDEX
DO 784 JJ = 1,NPHI

784 PRINT 779,JJ,PHI2(JJ)

- 86 -
.~ .:

7 85 CONTINUE .
c---

410 CONTINUE
c---

TZERO = T2
C---
e MAKE MAGNITUDE ADJUSTNENT IN CASE A USER SUPPLIED, UPDATE VALUE
C OF PHI IS LESS THAN UNIT-ROUNDOfF. (USER SUPPLIED SIGN REMAINS.)
c---

Do 411 L = 1,NPHI
IF (DABS(PHI2 (L)) . LT . ZAPP) PHI2(L) = DSIGN(ZAPP,PHI2 (L))

411 IF (DABS(PHIP2(L)) . LT . ZAPP) . PHIP2(L) = DSIGN(ZAPP,PHIP2 (L))
c---- ---

UPDATE = .FALSE.
INDEX = 0
IF (LFLAG .LT. 2) , GO TO 450

C---------------- -- ---
e IF MULTIPLE TRAPPING OPTION IS ACTIVE (LFLAG=2), CALL MULTOP
C TO IDENTIFY FURTHER ZEROS.
c-------------------------- ---

c

JLIM = :t-1PART + 1
IF (JLIM .GT. NPHI) GO TO 448
DO 447 J = JLIM,NPHI
IF (PHIV(J) .GT. 0) GO TO 450

44 7 CONTINUE
448 CONTINUE

C ANY UPDATES OCCURRED WITH COMPONENTS IN THE MULTITRAPFING
C OPTION
c

CALL MULTOP(F,SUBPHI,NPHI,NEQN,T,Y,YP,PHIO,PHIPO,
1 T2,Y2,YP2,PHI2,PHIP2,TF,YF,YPF,PHIF,PHIPF,PHIB,
2 TL,TR,PHIL,PHIPL,PHIR,PHIPR,
3 PHILL,PHIPLL,PHIRR,PHIPRR,TLSTAR,TZERO,
4 ABSER,ZAPP,F1 ,F2,F3,F4,F5,F6 ,F7, F8,F9,
5 INDEX,MPART,KOUNTR,NFE,NEXTRA,ITERAT,
6 OUTPUT,PUTOUT,ENDPT,SEARCH,FIND)

c-- --------------------- -- --
rr (SEARCH) GO TO 620
RETURN

c
450 CONTINUE

c
C---
C PREPARE FOR EXIT--SOLUTION IS RETURNED AT THE TRAPPED POINT
C (LFLAG = -2,-1, OR 1)
C--- --- -----------
C

c

c

T = T2
DO 415 J = 1,NEQN
Y(J) = Y2(J)

415 YP(J) = YP2(J)

DO 416 J = 1,NPHI
PHIO(J) = PHI2(J)

416 PHIPO(J) = PHIP2(J)

455 CONTINUE

- 87 -

c
C IF AN OUTPUT POINT OCCURRED IN RKFST AND T~E TRAPPED POINT
C OCCURRS AT TF, OUTPUT WILL STILL BE .TRUE., OTHERWISE
C OUTPUT= .FALSE.
c

OUTPUT = .FALSE.
IF (PUTOUT) OUTPUT= .TRUE .

c
RETURN

c
C--
e---
C TERMINAL ERRORS ENCOUNTERED--PREPARE FOR FINAL EXIT.
C--
e-- ---------------------
C THE DIFFERENCE BETWEEN THE TRAPFING BOUNDS IS BELOW
C AN ACCEPTABLE TOLERANCE--TERMINAL ERROR--IFLAG = 97.
C OR
C ITERATION REQUIRES TOO MANY STEPS--TERMINAL ERROR--IFLAG = 94
c---

c

648 CONTINUE
IFLAG = 97
GO TO 652

650 CONTINUE
IFLAG = 94

652 CONTINUE

C---
C RETURN SOLUTION AT TL .
C---
C

c

c

CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,
1 PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
3 F1 ,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,KOUNTR,
4 NEXTRA,EVALF,FIND,MODE1,MODEO,ZAPP)

DO 356 J = 1,NEQN
Y(J) = F2(J)
YP(J) = F3(J)

356 CONTINUE
T = TL
DO 367 J = 1,NPHI
PHIO(J) = PHIL(J)
PHIPO(J) = PHIPL(J)

367 CONTINUE

760 FORMAT(I ENTERED TRAPPD \YITH T = I ,D15. 7' I AND TF = I ,D15. 7'
1 2X, I INDEX= I ,I3)

761 FORMAT(' PHIO(' ,I2, 1) = I ,D15.7,2X, I PHIF(' ,I2, 1
) = t ,D15.7)

763 FORMAT(I FROM PANIC ROUTINE--TL = I ,D15. 7 ,3X, I TR = I ,D15. 7,/'
1 I PHIL(INDEX = I ,D15.7,3X, 'PHIR(INDEX) = I ,D15.7)

779 FORMAT(' PHIO(',I2,') = ',D15.7)
780 FORMAT(' CONDITIONS-----AFTER SUCESSFUL TRAP--T = ',D15.7,2X,

1 I INDEX= I ,I3)
901 FORMAT(' NFE = I ,I5,2X, I NEXTRA = I ,I5)
902 FORMAT(//,' TRAPPED WAS REFERENCED WHEN PHI NEITHER VANISHED NOR',

1 I CHANGED SIGN' ,/,I INDEX= I ,I3,2X, 'PHIL(INDEX) = I

c

- 88 -

2 Dl5.7,2X, 'PHIR(INDEX) = ',D15.7,11,' TERMINAL ERROR 1 ,II)
925 FOR~1AT(I J 'PHIL' PHI 2' PHIR, I PHI 2 -TOLER I , TOLJ;:R I 'I, 2X, I3,

1 3(2X,D15.7),/,2(2X,D15.7))
927 FORNAT(' TERHINAL ERROR \YITH COMPONENT J = 1

, I 3, I,
1 I INDEX= 1 ,I3)

1411 FORNAT(/ /, 1 TERmNAL ERROR IN TRAPP--ATTEMPT TO EXIT WITHOUT 1

1 1 COMPLETE TRAPPING 1 ,1)

RETURN
END

c---
suBROUTINE BOUNCD(F,SUBPHI,NPHI,NEQN,T,Y,YP,PHIO,PHIPO,

1 TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,TL,TR , PHIB,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,ZAPP,
4 ITEST,INDEX,NFE,NEXTRA,KOUNTR,
5 EVALF,FIND)

c-- -----------------------------

c

c

c

IMPLICIT REAL*8 (A-H,O-Z)
DU1ENSION Y(NEQN), YP(NEQN), YF(NEQN), YPF(NEQN), Y2(NEQN), YP2(NEQN)
DIMENSION F1(NEQN),F2(NEQN),F3(NEQN),F4(NEQN)
DIMENSION F5(NEQN),F6(NEQN),F7(NEQN),F8(NEQN),F9(NEQN)
DIMENSION PHIO (NPHI), PHIF(NPHI), PHI2(NPHI), PHIB (NPHI)
DIMENSION PHIL(NPHI) , PHIR(NPHI)
DH1ENSION PHI PO (~PHI), PHIPF (NPHI) , PHIP2 (NPHI)
DHIENSION PHIPL (NPHI), PHI PR (NPHI)

DATA MODEOIOI,MODE3/3/
LOGICAL EVALF,FIND,UPDATE,IVAN,BOUNCE

EXTERNAL F,SUBPHI

C---
e BOUNCING FUNCTION ANALYSIS
C---
e CALL PANIC (IN SPECIAL MODE) TO SEE IF ANY COMPONENT OF PHI
C MAY HAVE "BOUNCED" ON A ZERO.
c

CALL PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T ,Y ,YP ,PHIO, PHIPO,
1 TF,YF,YPF,PHIF,PHIPF, T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
3 F1,F2,F3,F4,F5,F6,F7,F8,F9,ABSER,KOUNTR,
4 NEXTRA,EVALF,FIND,MODE3,MODEO,ZAPP)

c
!TEST = 0
DO 602 J = 1,NPHI
IF (PHIB(J) .LT. O.ODO) GO TO 602

c
C COMPONENT J "BOUNCED" ON A ZERO--CALL SUBPHI IN AN UPDATE MODE
C WITH CONDITIONS AT T IN GASE ANY CHANGES NEED TO BE ~1ADE .

c
C LOGICAL INDICATOR--BOUNCE=.TRUE.
c
C Dut-1MY COUNTER, KNT, IS SENT OVER INSTEAD OF KOUNTR
C KNT = -1. IF KNT IS RETURNED AS -2 FROM ANY UPDATE CALL,
C THE ANALYSIS WILL RETURN TO RKFST AND THE INTEGRATION
C STEP WILL BE REPEATED. (THIS ALLOWS THE USER TO CHANGE
C THE ODE SYSTEM AT TO IF THE BOUNCING FUNCTION HAS CAUSED

- 89 -

C DIFFICULTIES)

c

c

KNTR = -1
UPDATE = .TRUE.
BOUNCE = .TRUE.
IVAN = .FALSE.
TOLER = ABSER
INDX = J
CALL SUBPHI(NPHI, INDX,NEQN,T2,Y2,YP2,PHIO,PHIPO,KNTR ,UPDATE,

1 IVAN,BOUNCE,TOLER)
DO 601 L = 1,NPHI
IF (DABS(PHIO(L)) .LT. ZAPP) PHIO(L) = DSIGN(ZAPP,PHIO(L))
IF (DABS(PHIPO(L)) .LT. ZAPP) PHIPO(L) = DSIGN(ZAPP,PHIPO(L))
IF (PHIB(L) .GT. 0) PHIO(L) = DSIGN(PHIO(L),PHIR(L))

601 CONTINUE
IF (KNTR .EQ. -2) ITEST = 1

602 CONTINUE

IF (ITEST .EQ. 0) RETURN

C INTEGRATION IS TO BE CONTINUED FRON T--RETURN TO RKFST AND REPEAT
C THE INTEGRATION STEP
c

c

c

T = T2
DO 603 J = 1,NEQN
Y(J) = Y2(J)
YP(J) = YP2(J)

603 CONTINUE

DO 604 J = 1,NPHI
PHIO(J) = PHI2(J)
PHIPO(J) = PHIP2(J)

604 CONTINUE

RETURN
END

c--
SUBROUTINE SHIFTI(NPHI,T2,PHI2,PHIP2,PHIL ,PHIPL,PHIR,PHIPR,PHIF,

1 PHIB,ABSER,LSTART,
2 PHLAST,PHILL,PHIPLL,PHIRR,PHIPRR,INDEX,ISHIFT)

c-------------- ----------~----~----------- -----------------------------

c

c

c

INPLICIT REAL*B (A-H,O-Z)

COM~10N/CRKF45/IDUM1 (2), IOPT, IDUM2 (2)

DIMENSION PHI2(NPHI), PHIL(NPHI), PHIR(NPHI), PHIF(NPHI)
DIMENSION PHIP2(NPHI),PHIPL(NPHI),PHIPR(NPHI), PHIB(NPHI)
LOGICAL RSHIFT

C------------------------- -- ------------------------------ -- ----------
e--
C SEE IF INDEX SHOULD BE SHIFTED
c-- ------------ ---- ------------------------ ------------~--------------
c--------------------------------- -- -----------------------------------
c

ISHIFT = 0
c
C INDEX DESIGNATES THE COMPONENT OF PHI(J) CURRENTLY BEING
C TRAPPED.

- 90 -

C-- -- -- -- -- --- -
C SAFETY CHECK:
C HAS A NON-DETECTED ZERO BEEN FOUND ON THIS STEP?
C (BOUNCING CONPONENTS \VILL NOT BE ANALYZED)
c--

RSHIFT = .FALSE.
DO 156 J = 1,NPHI
IF (PHIB(J) .GT. O.ODO) GO TO 156
IF (DABS(PHI2(J)) .LT. ABSER) GO TO 156
IF (PHIL(J)~"'PHI2(J) . LT. O.ODO .AND. PHIL (J)~.,.PHIR (J) .GT . O.ODO)

1 RSHIFT = .TRUE.
156 CONTINUE

IF (.NOT. RSHIFT) GO TO 159
c
c- --- -- --~--- -~- - -- - ---- - ------
c A NON-DETECTED ZERO HAS BEEN FOUND. THE SIGN OF PHIR WILL BE
C CHANGED TO MATCH THAT OF PHI2 FOR THESE COMPONENTS.
c --- - - - ~--~~-- ---- - -~~---~ -
c

c

DO 158 J = 1,NPHI
IF (PHIL(J)i•PHIR(J) .GT. O.ODO .AND. PHI2(J)*PHIL(J) .LT . O.ODO)

1GO TO 157
GO TO 158

157 CONTINUE
IF (IOPT .EQ. 1). PRI NT 1531,J,PHI L(J),PHI2(J),PHIR(J) ,PHIF(J)
PHIR(J) =-PHIR(J)

158 CONTINUE
159 CONTINUE

IF (NPHI .EQ. 1) RETURN
c- - -- - ~-~ - -~~-- -- - --- -- - - -- - -
c----------------------------------- - -- - ---- - ----- - ~-~ --- - - - - -- -- ------ .
C CHECK TO SEE IF INDEX SHOULD BE RESET .
c - --- - - -- --- ---- - ----------~---
c-- -- -- -- ---~-~ ~ - - -- - - --- -- - -- ----

DO 160 J = 1,NPHI
I F (PHIB(J) .GT . O.ODO) GO TO 160
IF (PHI2(J)*PHIL(J) .GT. O.ODO) GO TO 160
GO TO 162

160 CONTINUE
c '
c - --- - --------- - ---- - ------------------ - ------ - --~~~ - ----- --- ---- - - ~ ---~
C NO CmfPONENT OF PHI IS ACROSS THE BORDER AT "2"
c--- - ---~-- -- ~ --- -- -------------c .

RETURN
c

162 CONTINUE
c
c----- - ---------------------------------------~ - --~- - - ------------------
c THE BORDER WAS CROSSED. SHOULD INDEX BE SHIFTED ?

c------------------------------------ - - - -------------- - ~ ---- - - --- - ~ -----
c

IND = INDEX
INDEX = J
IF (J .EQ. NPHI) GO TO 168
JP1 = J + 1
DO 165 J = JP1,NPHI

c

- 91 -

IF (PHI B(J) .GT. O. ODO) GO TO 165
IF (PHIL(J)*PHIR(J) . GT. O. ODO) GO TO 165
IF (PHI2 (J)•'(PHIR(J) . LT. 0 . ODO) GO TO 165

C----------------------------- -- --
C COMPONENT J WAS TRAPPD AND T2 IS ACROSS THE BOUNDARY.
c-------------7----- -- --
c

c

c

IF (DABS(PHI2(J)) . LT . DABS(PHI2(I NDEX))) GO TO 165
IF (J .NE. IND .AND. IOPT .EQ. 1)

1 PRINT 972 ,IND , J , IND,PHI2(IND),J,PHI2(J)
INDEX = J

165 CONTINUE
168 CONTINUE

I F (IND .EQ. INDEX) RETURN

c- -- - ------ - ------------------ - ------------ --- --- - -~- -- - --- - - -- - -- ------
c I NDEX HAS BEEN SHIFTED
c- ---- --
c

c

ISHIFT = 1
PHILL = PHIL(INDEX)
PHIPLL = PHIPL(INDEX)
PHIRR = PHIR(INDEX)
PHI PRR = PHIPR(INDEX)
IF (LSTART .EQ. 0) PHLAST = PHILL
IF (LSTART .EQ. 1) PHLAST = PHIRR

972 FORMAT(/,' INDEX IS BEING CHANGED IN TRAPPD: INDEX = ' , I3 , 2X,
1 I J = I • I3. I.
2 I PHI(' , I3, ') = ' , D15.7, 2X, ' PHI(' , I3,') = ',D15.7)

1531 FORMAT(' UNDETECTED ZERO-- I ,PHI (I)--L, 2,R , F' ,/,I3,4(1X,D13.6))
c

RETURN
END

c------------------------------------ -- ------- ----- ---------------------
SUBROUTINE TSTAR(Z,T,TL,TR,TF, TLSTAR ,TZERO , TMAG,PHLAST,

1 INDEX,NPHI ,PHI2,PHIV,PHILL, PHIPLL,PHIRR,PHIPRR,
2 ABSER,TBOUND,ZAPP ,LSTART, ITERAT,ISHIFT)

c-- -------- ------------------------------ -------------- -- ---------------

c

c

I HPLICIT REAL>'<8 (A-H,O-Z)
DIHENS I ON PHI2(NPHI), PHIV(NPHI)
COMMON/CRKF45/IDUH1(3),IOPT,IDUH2

DATA FRACT/0.50DO/
LOGICAL RATDIF

C---
C Z1 GIVES NEWTON-ESTIHATE. .
C ZCHORD GIVES FALSE-POSITION ESTIMATE .
C 1START DESIGNArES THE SIDE FROM WHICH THE NEWTON ESTIMATE IS
C EVALUATED .
c---

IF (LSTART .EQ. 0) Z1 = TL - PHILL/PHIPLL
IF (LSTART .EQ. 1) Z1 = TR - PHIRR/ PHIPRR
ZCHORD =TL - PHILL * (TR-TL)/(PHI RR -PHI LL)
Z = Z1

c

IF ((TR -Z)>'< (Z-TL) . LT . ZAPP)
IF (IOPT .EQ . 1)

- 92 -

Z = ZCHORD
PRINT 1~04,LSTART,Z1,ZCHORD,Z

C---
C SAFETY CHECKS: IS ~'< NEAR THE LAST LOCATED ZERO POINT (TZERO),
C OR IS CONVERGENCE SLOW ?
C---
C
c
c
c
c

c

c

c

IF THE DISTANGE BETifEEN Z AND THE LAST ZERO POINT IS 5% OF THE
ORIGINAL INTERATION INTERVAL, GIVE THE PROCDEURE A FRACTIONAL
INTERVAL KICK TO GET IT OUT OF THIS REGION .

RATDIF = .FALSE.
IF (PHIV(INDEX) .GT. O.ODO .AND .

1 DABS (Z-TZERO) . LT. 0 . 05•'<DABS (TF-TLSTAR)) GO TO 140

120 CONTINUE
IF (ITERAT .LE. 3)
IF (ISHIFT .EQ . 1)
IF (LSTART .EQ . 0)
IF (LSTART .EQ. 1)
IF (RATIO .LE . 0.20DO)
RATDIF = . TRUE .

140 CONTINUE
IF (IOPT . F.Q. 1)

1

GO TO 150
GO TO 150
RATIO = DABS(PHILL/PHLAST)
RATIO = DABS(PHIRR/PHLAST)
GO TO 150

PRINT 1500,Z,TLSTAR,TL,TR,PHILL,PHIRR,
PHLAST,RATIO

C---
C TROUBLE SHOOTING BLOCK :
C IF PHIO(INDEX) IS NEAR ZERO (I.E., IF IT VANISHED ON THE PRE-
C VIOUS STEP) CONVERGENCE DIFFICULTIES ARISE IF THE LEFT END
C END POINT IS USED. GIVE THE ITERATION PROCESS A "FRACTIONAL-
C INTERVAL" KICK TO GET PHI OUT OF THE "VANISHED" REGION.
c
c
c
c
c

IF CONVERGENCE IS SLOW AFTER 2 ITERATIONS (IF LESS THAN A
DIGIT OF AGCURACY HAS BEEN ACHIEVED DURING THE LATEST ITERA
TION) GIVE THE ITERATION PROCESS A "FRAGTIONAL-INTERVAL"
KICK.

G--- --------------------------~------------------ -----------------------
c
C ZGHORD GIVES A SPECIFIED FRAGTION OF ITR-TLI AS ESTIHATE
C Z1 GIVES NEWTON-RHAPSON ESTIMATE STARTING FROM TR
G

IF (LSTART .EQ. 0) ZGHORD = TL + FRAGT * (TR - TL)
IF (LSTART .EQ. 1) ZGHORD = TR - FRAGT * (TR - TL)
Z1 = TR - PHIRR/PHIPRR
IF (RATDIF)
IF (DABS(Z1-TZERO) .LT. 0.05•'<DABS(TF-TLSTAR))
IF ((TR-Z1)*(Zl-TL) .LT . O.ODO)
Z = Z1
IF (IOPT .EQ . 1) PRINT 1501,TL,Z,TR,TLSTAR
RETURN

150 GONTINUE

Z1 = ZGHORD
Zl = ZGHORD
Zl = ZGHORD

IF (IOPT .EQ. 1) PRINT 1502 ,TL,Z,TR
c

1500 FORMAT(/,' DIFFIGULTIES IN ESTIMATING TSTAR: 1
,/,

1 I CURRENT EST. = I ,D23.16,2X, 1 PREVIOUS EST . =

c

- 93 -

2 D23.16,/, I TL= I ,D23.16,2X, 1 TR =I ,D23.16,/, I PHILL= 1
'

3 D15.7,2X, 1 PHIRR= 1 ,D15.7,2X, 1 PHLAST~ 1 ,D15.7,2X,
4 /,I RATIO= I ,D15.7)

1501 FORMAT(/ , 1 DIFFICULTIES WITH THE LEFT BOUND SEEM TO OCCUR: 1
,/,

1 1 (START FROM R.H.S. AND DO NOT USE FALSE-POSITION) 1
1/ 1

2 ' TL=' ID15.7,2XI 'Z=' ID23.161/I I TR=' ID15.712X, 'TLSTAR= 1 ID23.17)
15 0 2 FORMAT(/ I I T~'< E STH1ATE : I ' I I I TL= I 'D 15 . 7 ' 2X' ' Z= I 'D 15 . 7 ' 2X I ' TR= I I

1 D15 . 7)
1504 FOR~1AT(/,' TSTAR ESTIMATES: 1

1/ 1' LSTART= 1 ,I3,2X,' Z1=' 1D23.16 12X,
1 I ZCHORD=' ID23.161/I I SELECTED Z=' ,D23.16)

RETURN
END

c--- ------------
SUBROUTINE MULTOP(F,SUBPHI,NPHI 1NEQN 1T,Y,YP 1PHI0 1PHIP0 1

1 ~2 1 Y2,YP2,PHI2,PHIP2,TF 1YF,YPF 1 PHIF 1 PHIPF 1 PHIB 1
2 TL,TR1PHIL 1PHIPL 1PHIR,PHIPR 1
3 PHILL,PHIPLL1PHIRR1PHIPRR 1TLSTAR 1TZER0 1
4 ABSER,ZAPP,F1 1F2 ,F3 ,F4,F5 1F6,F7,F8 1F9,
5 INDEX,MPART,KOUNTR,NFE,NEXTRA ,ITERAT,
6 OUTPUT,PUTOUT 1ENDPT,SEARCH,FIND)

c-- -- ---
c

c

c

c

c

IMPLICIT REAU<8 (A-H ,O-Z)

DI~lliNSION Y(NEQN) 1 Y2(NEQN) 1YF(NEQN) 1YP(NEQN),YP2(NEQN) 1YPF(NEQN)
DH1ENSION PHIO(NPHI), PHI2(NPHI), PHIF(NPHI), PHIB(NPHI),

1 PHIL(NPHI), PHIR(NPHI) .
DIMENSION PHIPO(NPHI),PHIP2(NPHI),PHIPF(NPHI),

1 PHIPL(NPHI),PHIPR(NPHI) .
DIMENSION F1(NEQN),F2(NEQN) , F3(NEQN),F4(NEQN) ,FS (NEQN) 1

1 F6(NEQN) 1F7(NEQN),F8(NEQN),F9(NEQN)

COMMON/CRKF45/IDUM1(4) 1IOPT

LOGICAL OUTPUT1PUTOUT,ENDPT,SEARCH,BOUNCE,UPDATE1IVAN ,FIND ,EVALF
DATA EVALF/ . TRUE./ .

EXTERNAL F1SUBPHI

c------------ - ---------------~--
c MULTIPLE TRAP OPTION IS BEING USED . IF T2 = TR, GO TO 435.
C- -- --------------------------
C

C---
C CHECK TO SEE IF ANY COMPONENTS STILL NEED TO BE TRAPPD
C (OPTION IFLAG = 15, 25, (LFLAG=2), IS BEING USED)
C---
e REEVAULATE PHIF AND PHIPF SINGE THE USER MAY HAVE
C CHANGED THEM. CONDITIONS AT T2 WILL BECOME LEFT CONDITIONS
C (USER SHOULD HAVE ALREADY MADE ANY DESIRED CHANGES TO PHI2
C DURING TRAPFING UPDATES)
c- --

UPDATE = .FALSE .
BOUNCE = .FALSE.
IVAN = .FALSE .
SEARCH = .FALSE.
INDX = 0
TOLER = ABSER

- 94 -

CALL SUBPHI(NPHI, INDX,NEQN,TF,YF,YPF,PHIF,PHIPF,KOUNTR,UPDATE,
1 IVAN,BOUNCE,TOLER)

TOLER = ABSER
C----- -- --
e IF ANY COMPONENT OF PHIF IS ZERO--CHANGE TO UNIT ROUND-OFF
c---

no 410 J = 1,NPHI
IF (DABS(PHIF(J)) .LT. ZAPP) PHIF(J) = DSIGN(ZAPP,PHIF(J))
IF (DABS(PHIPF(J)) .LT. ZAPP) PHIPF(J) = DSIGN(ZAPP,PHIPF(J))

410 CONTINUE
IF (.NOT. ENDPT) GO TO 420

c------------- ---------------- ---------~------------- ---- ---------------
c IF T IS AT THE END POINT, RETURN.
c------ --------------- ---- --- -----------------------~-------------------

T = TF
DO 412 J = 1,NEQN
Y(J) = YF(J)

412 YP(J) = YPF(J)
DO 414 J=l,NPHI
PHIO(J) = PHIF(J)

414 PHIPF(J) = PHIPF(J)
RETURN

C----- ------------------- ---
C SET NEW INITIAL CONDITIONS: TZERO BECOMES TLSTAR
c---------------------~--~----

420 CONTINUE
C T = T2

TL = T2
TR = TF
TLSTAR.= T2
TZERO = T2
DO 424 J = 1,NPHI
PHIL(J) = PHI2(J)
PHIPL(J) = PHIP2(J)

C PHIO(J) = PHIO(J)
C PHIPO(J) = PHIPO(J)

PHIR(J) = PHIF(J)
PHIPR(J) = PHIPF(J)

424 CONTINUE
C DO 425 J = l,NEQN
C Y(J) = Y2(J)
C YP(J) = YP2(J)
C 425 CONTINUE
C---
C HAS ANY COMPONENT OF PHI CHANGED SIGN FROM T2 TO TF ?

c------------------ --- --
INDEX = 0
PHIMAX = 0. ODO
DO 448 J = 1,MPART
IF (DABS(PHIF(J)) .LT. TOLER) GO TO 427
IF (PHIL(J)~'~-PHIF(J) .GT. O.ODO) GO TO 428

427 CONTINUE
IF (DABS(PHIF(J)) . LT. PHIMAX) GO TO 428
INDEX = J
PHIMAX = PHIF(J)

428 CONTINUE
c

IF (INDEX .EQ . 0) GO TO 435

- 95 -

1515 FOR~1AT (/ /, ' TRAPPING CONTINUES WITH NEW COMPONENT-- INDEX = ' , !4,
1 /,' PHIL(INDEX) = ',D15.7,2X,' PHIR.(INDEX) = ',D15.7)

c
C---
C CALL BOUNCD TO SEE IF ANY COHPONENT OF PHI HAS BOUNCED ON A
C ZERO ON THE PREVIOUS STEP.
c---

c

CALL BOUNCD(F , SUBPHI,NPHI,NEQN,T,Y,YP,PHIO,PHIPO,
1 TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,PHI2,PHIP2,
2 PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
3 Fl,F2,F3,F4 ,F5,F6,F7,F8,F9,ABSER,ZAPP,
4 ITEST,INDEX,NFE,NEXTRA,KOUNTR,
5 EVALF,FIND)

IF (!TEST .EQ . 1) GO TO 455
IF (INDEX .EQ . 0) GO TO 435

c--~----------------------
c AT LEAST ONE CmtPONENT OF PHI HAS STILL CHANGED SIGNS
c---------------- ---

c

c

ITERAT = 0
PHILL = PHI2(INDEX)
PHIPLL = PHIP2(INDEX)
PHIRR = PHIF(INDEX)
PHIPRR = PHIPF(INDEX)
DO 434 J = l,NEQN
F2(J) = Y2(J)

434 F3(J) = YP2(J)
1START = 1
IF (IOPT .EQ. 1) PRINT 1515,INDEX,PHILL,PHIRR

SEARCH = .TRUE.
RETURN

435 CONTINUE
C---
e PREPARE FOR EXIT--SOLUTION RETURNED AT TF
c---

c

c

c

INDEX = 0
T = TF
DO 438 J = 1,NEQN
Y(J) = YF(J)

438 YP(J) = YPF(J)

DO 439 J = 1,NPHI
PHIO(J) = PHIF(J)

439 PHIPO(J) = PHIPF(J)

455 CONTINUE

C IF AN OUTPUT POINT OCCURRED IN RKFST AND THE TRAPPED POINT
C OCCURRS AT TF , OUTPUT WILL STILL BE .TRUE., OTHERWISE
C OUTPUT = .FALSE .
c

c

OUTPUT = .FALSE .
IF (PUTOUT) OUTPUT= .TRUE .

RETURN
END

- 96 -

c
c---

BLOCK DATA
c---

IMPLICIT REAU~'8 (A-H,O-Z)
c

COMMON/CRKF45/ITRAP,JTRAP,ISHFTI,ITSTAR,IMULTI
c
C !TRAP ==> PRINTING IN TRAPPD, INPUT AND OUTPUT
C JTRAP ==> PRINTING IN TRAPPD, CONDITIONS AFTER EACH PHI
C EVALUATION
C ISHFTI ==> PRINTING IN SHIFTI
C ITSTAR ==> PRINTING IN TSTAR
C IMULIT ==> PRINTING IN MULTIPLE TRAP FEATURE (AFTER EACH UDPATE)
c

DATA ITRAP/O/,JTRAP/O/,ISHFTI/0/,ITSTAR/O/,IMULTI/0/
c

END
C---
e

c

SUBROUTINE VANISH(F,SUBPHI,NPHI,NEQN,NFE,INDEX,T,Y,YP,
1 TLSTAR,T2,TF,PHIO,PHIPO,PHI2,PHIL,PHIPL,PHIR,PHIPR,PHIV,PHIPV,
3 Fl,F2,F3,F4,F5,F6,F7,F8,F9,
4 ABSER,KOUNTR,EVALF,IVAN,NEXTRA,ZAPP,IROUTE)

C--
C---
C SUBROUTINE FOR CHECKING TO SEE IF A COMPONENT OF PHI HAS
C VANISHED THROUGHOUT THE INTERVAL
c
C USED IN GONJUNGTION WITH TRAPPD--IROUTE = 1
C OR IN GONJUNGTION WITH RKFST --IROUTE = 2 IF PHI VANISHES AT
C INITIAL CONDITIONS
c--------------------------------------- -- ------------------------------
c

IMPLICIT REAL'"'8 (A-H,O-Z)

DIMENSION Y(NEQN),YP(NEQN)
DIMENSION Fl(NEQN),F2(NEQN),F3(NEQN),F4(NEQN) ,F5(NEQN)
DIMENSION F6(NEQN),F7(NEQN),F8(NEQN),F9(NEQN)
DIMENSION PHIO(NPHI),PHIPO(NPHI),PHI2(NPHI)
DIMENSION PHIL(NPHI),PHIPL(NPHI),PHIR(NPHI),PHIPR(NPHI)
DIMENSION PHIV(NPHI),PHIPV(NPHI)
DATA POINTS,NPOINT/4.0D0,4/

C---
C IF THE USER WISHES TO INCREASE THE NUMBER OF TEST POINTS
C THROUGHOUT THE INTERVAL, POINTS AND NPOINT NEED TO BE CHANGED.
C SUGGESTED VALUES ARE POINTS = 4.0DO, NPOINT = 4
C (NPOINT IS THE INTEGER VALUE OF POINTS.)
c---

c
c

c

DATA IPRINT/0/
DATA ISCALl,ISCAL2/1,2/
EXTERNAL F,SUBPHI
LOGICAL UPDATE,IVAN ,EVALF,BOUNCE

TOLER = ABSER
STEP = TF - T

- 97 -

IF (!ROUTE .EQ. 2) GO TO 23
c
C--- ----------------
C
C CHECK TO SEE IF ANY COHPONENT OF PHI HAS VANISHED INITIALLY
C AND FINALLY
c
C---- ---
e
C CHECK EACH COMPONENT OF PHI TO SEE IF ANY HAVE VANISHED
C INITIALLY AND FINALLY
c
C ITEST = 0 IF NO PHI(J) VANISHED INITIALLY AND FINALLY
C = 1 IF AT LEAST ONE PHI(J) VANISHED INITIALLY AND FINALLY
c
c

!TEST = 0
DO 22 J = 1,NPHI

c
IF (DABS(PHI2(J)) .GT. TOLER) GO TO 21

c
C PHI(J) VANISHED AT T2. DID PHIO(J) ALSO VANISH ?
c

IF (DABS(PHIO(J)) .GT. TOLER) GO TO 21
c
C PHI(J) VANISHED INITIALLY AND "FINALLY" FOR COHPONENT J
c

c
21

22
c

c
23

c

PHIPL(J) = 1.0DO
!TEST = 1
GO TO 22

CONTINUE
PHIPL(J) = -1. ODO
CONTINUE

IF (ITEST . EQ. 0)

CONTINUE

RETURN

c----------- - ---- - -------~- - --~-- - -------------------------------------
c---
c
C PHI NEEDS TO BE STUDIED THROUGHOUT THE INTERVAL
c
C A COMPONENT OF PHI HAS VANISHED INITIALLY AND FINALLY
c
C OR A COMPPONENT OF PHI HAS VANISHED AT THE INITIAL CONDITIONS
c
C--
e--•----------------------
c
c

c

DIST = T2 - TLSTAR
IPART = 1
IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,1 . 0DO,STEP,

1 F2,F3,F4,F5,F6,F7,F8,F9,F1,ISCAL1,NFE,NEXTRA,F2)
EVALF = . TRUE.

G

G

G

G

G

c

c

c
G
c
c
c

c

SIGING = 1. 0DO/POINTS
FRAGT = SIGING

24 GONTINUE

- 98 -

TSTAR = TLSTAR + FRAGT ~~ DIST
SIGMA = (TSTAR - T) / STEP

CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,
1 ISGAL2,NFE,NEXTRA,F2)

GALL F(TSTAR,F2,F3)

NFE = NFE + 1
NEXTRA = NEXTRA + 1

UPDATE = .FALSE.
BOUNCE = .FALSE .
IVAN = .FALSE.
INDX = INDEX
GALL SUBPHI(NPHI, INDX,NEQN,TSTAR,F2,F3,PHIV,PHIPV,KOUNTR,

1 UPDATE,IVAN,BOUNCE,TOLER)
TOLER = ABSER
DO 25 J = l,NPHI
IF (DABS(PHIV(J)) .LT. ZAPP) PHIV(J) = DSIGN(ZAPP,PHIV(J))

25 GONTINUE

IF (!ROUTE .EQ. 2) RETURN

A PHI FUNCTION HAS VANISHED AT TLSTAR AND T2
SEE IF THE SUBINTERVAL HAS ALTERED
THE END POINT "VANISHING" STATUS

ITEST = 0
DO 30 J = 1,NPHI
IF (PHIPL(J) .LT. O.ODO) GO TO 30

G PHI(J) HAS VANISHED THROUGHOUT THE INTERVAL UP TO T*
G

IF (DABS(PHIV(J)) .GT . TOLER) GO TO 28
IF (IPRINT .EQ. 1) PRINT 1503,J,PHIV(J)

1503 FORMAT(' COMPONENT J VANISHED--J,PHI = ',I3,2X,D15.7)
c

ITEST = 1
GO TO 30

G
28 CONTINUE

PHIPL(J) = -1. ODO
G

30 CONTINUE
c

IF (ITEST .EQ. 0) RETURN
c
G A COMPONENT OF PHI STILL APPEARS TO VANISH WITHIN THE INTERVAL
G CONTINUING ITERATING
G

48 · CONTINUE
c

- 99 -

c
C INCREHENT SIGHA AND CONTINUE INTERVAL STUDJ ' lF ·SIGMA < 1
c

c

c

c

IPART = IPART + 1
FRACT = FRACT + SIGINC

IF (IPART . LT. NPOINT) GO TO 24

50 CONTINUE

RETURN
END

·'

c-------------~----- -- --
c
c
c
c

SUBROUTINE FOR DETERMINING RK45 SOLUTION AT INTERMEDIATE
POINTS WITHIN-A GIVEN INTEGRATION STEr ·

c------ -- -- - - ---- ---------------------------~---------~-------------- - --
c

c

c

c

c

c

c

c

c

c

SUBROUTINE SCALED(F ,NEQN, Y, YP, T ,SIGMA, STEP ,F2 ,F3·,F4 ,F5 ,F6 ,F7 ,FB,
1 F9,F10,ISCALE,NFE,NEXTRA,Y2)

IMPLICIT REAL>""B (A-H,O-Z)
'·

DIMENSION Y(NEQ~),YP(NEQN),Y2(NEQN)
DIMENSION F2(NEQN),F3(NEQN),F4(NEQN),F5(NEQN),F6(NEQN),F7(NEQN)
DIMENSION F8(NEQN) ,F9(NEQN) ,F10(NEQN) . ·.

DIHENSION CC6(4),CC7(4),CC8(4),CC9(4),CCi0(4) .
. .

LOG I CAL FIFTH
DATA FIFTH/.FALSE. /

DATA A6,A7,A8,A9,A10/0.24D0,0 . 75D0,0.58D0,0.975DO,O.S8DO/

DATA B60,B63,B64,B65,B70,B73,B74,B75,B76/
1
2
3
4
5

.1447948800000000D+OO,

.1966694400000000D+OO,

.2223303125000000D-01,
- . 3255963750000000D+OO,

.SOOOOOOOOOOOOOOOD+OO/

DATA B80,B83,B84, B85,B86,B87/
1 .3882639666666667D-01,
2 .2153539066666667D+OO,
3 .SOOOOOOOOOOOOOOOD+OO,

DATA B90,B93,B94,B95,B96,B97,B98/
i .4462967382812500D-01,
2 . 2211626640625000D+OO,
3 .5000000000000000D+OO,
4 .SOOOOOOOOOOOOOOOD+OO/

-.2768699345454545D+OO,
. 1754056145454545D+OO,
.4967529346590909D+OO,
.5661040909090909D-01,

-.4846961481?181820+00,
-.18948415515l5152D+OO,

.SOOOOOOOOOOOOOOOD+OO/

- . 3201639884588068D+OO,
-.4706283494318182D+OO,

.SOOOOOOOOOOOOOOOD+OO,

DATA B100,B103,B104,B105,B106,B107,B108,B109/.
1 . 506464279 1666667D-01, -.1001758B49886363D+01,
2 .1096885316.666667D+OO, -. 5785761.09.6969697D+OO,
3 .S OOOOOOOOOOOOOOOD+OO, .SOOOOOOOOOOOOOOOD+OO,
4 . SOOOOOOOOOOOOOOOD+OO, . SOOOOOOO.OOOOOOOOD+OO/

c

c

c

c

c

- 100 -

DATA CC6/ . 6932920226914295D+01,
1 .1883923504042140D+02,

DATA CC7/ .4638216070742022D+01,
1 . 3067196377461660D+02,

DATA CC8/-.2293180126824485D+01,
1 -.4867906461976630D+01,

DATA CC9/- . 8195943096485590D+OO,
1 -.6162658362778917D+01,

DATA CC10/-.4333472382845521D+01,
1 -.32230019981047730+02,

EXTERNAL F

IF (ISCALE .EQ . 2) GO TO 50

IF (FIFTH) GO TO 22

-.188719f785610976D+02,
-.6538563137673370D+01/
-.2138664616173266D 02,
-.1366995599982912D 02/

.6848856763028249D+01,

.452375882~678437D+OO/

.3947241560261452D+01,

.3140208082944671D+01/
.2197991355681816D+02,
. 1465110562055352D+02/

C FOR THE FOURTH ORDER, SCALED SOLUTION COMPUTE F6 AND THEN
C STORE F2 AND F3 IN F7 AND F8 LOCATIONS
c

c

c

c
c

c

c

c

c
c

TIME = T + STEP

DO 16 J = 1,NEQN
F10(J) = Y(J) + STEP ~'((YP(J) + F4(J) + 4.0DO~'rF5~J))/6.0DO

16 CONTINUE

CALL F(TIME,F10,F6)

NFE = NFE + 1
NEXTRA = NEXTRA + 1

DO 20 J = 1,NEQN
F7(J) = F2(J)
FB(J) = F3(J)

20 CONTINUE

RETURN

22 CONTINUE

C FIFTH ORDER, SCALED SOLUTION
C COMPUTE F6,F7,F8,F9,F10 AND STORE F10 IN F1 LOCATION
c

TIME = T + A6 "'r STEP
c

DO 26 J = 1,NEQN
F10(J) = Y(J) + STEP * (B60 * YP(J) + B63 * F3(J) + B64 * F4(J)

1 + B65 * F5(J))
26 CONTINUE

c
CALL F(TIME,F10,F6)

c
TIME = T + A7 ~'(STEP

c
DO 27 J = 1,NEQN

- 101 -

F10(J) = Y(J) + STEP * (B70 * YP(J) + B73 * F3(J) + B74 * F4(J)
1 + B75 * FS(J) + B76 * F6(J))

27 CONTINUE
c

CALL F(TIME,F10,F7)
c

TIME = T + AB ~'< STEP
c

DO 28 J = 1, NEQN
F10(J) = Y(J) + STEP * (B80 ~'< YP(J) + B83 ~'< F3(J) + B84 ~~ F4(J)

1 + B85 * FS(J) + B86 * F6(J) + B87 * F7(J))
28 CONTINUE

c
CALL F(TIME,F10,F8)

c
TIME = T + A9 * STEP

c
DO 29 J = 1,NEQN
F10(J) = Y(J) + STEP '~r . (B90 ~-r YP(J) + B93 ~~r F3(J) + B94 ~'< F4(J)

1 + B95 * FS(J) + B96 * F6(J) + B97 * F7(J) + B98 * F8(J))
29 CONTINUE

c
CALL F(TIME,F10,F9)

c
TIME = T + A10 ~<r. STEP

c
DO 30 J = 1,NEQN
F3(J) = Y(J) + STEP * (B100 * YP(J) + B103 * F3(J) + B104 * F4(J)

1 + B105 * FS(J) + B106 * F6(J) + B107 * F7(J) + B108 * FB(J)
2 + B109 * F9(J))

30 CONTINUE
c

CALL F(TIME,F3,F10)
c
c

NFE = NFE + 5
NEXTRA = NEXTRA + 5
RETURN

c
50 CONTINUE

c
SST = SIGMA~'(STEP

c
IF (FIFTH) GO TO 55

c
C FORM C-COEFFICIENTS FOR GIVEN SIGMA, FOURTH ORDER SOLUTION
c
c

C2 = SIGMA~'<((7168.0D0/1425.0DO) + SIG~tA~'<((-4096.0D0/513.0DO)
1 + SIGMA~'r(14848.0D0/4275.0DO)))

c
C3 = SIGMA*((-28561.0D0/8360.0DO)+ SIGMA*((199927.0D0/22572.0DO)

1 + SIGMA*(-371293 . 0D0/75240.0DO)))
c

C4 = SIGMA*((57.0D0/50.0DO) + SimtA~'<(-3.0DO
1 + SIGMA~'<(42.0D0/25.0DO)))

c
CS = SIGMA*((-96.0D0/55.0DO) + SIGMA~""((40.0D0/1l.ODO)

c

c
c

c
c

- 102 -

1 + SIGMA*(-102 . 0D0/55.0DO)))

C6 = SIGMA•>r(l.SDO + SIGMA"<(-4.0DO + SIGMA•'~-2.5DO))

CO= l.ODO - (SIGMA•'r((30l.OD0/120.0DO) + SIGMA•>r((-269.0D0/108.0DO)
1 + SIGMA*(31l.OD0/360.0DO))))

C EVALUATE THE FOURTH ORDER, SCALED SOLUTION
c

c
c
c

c

c

DO 51 J = 1 , NEQN
Y2(J) = Y(J) + SST *

1
51 CONTINUE

RETURN

55 CONTINUE

(CO•'<YP(J) + C2•'rF7 (J) + C3•'~-F8 (J) + C4•'~-F4(J)
+ C5*F5(J) + C6*F6(J))

C FORM C-COEFFICIENTS FOR GIVEN SIGMA, FIFTH ORDER SOLUTION
c
c

C6 = SIGMA"<(CC6(1) + SIGHA•'<(CC6(2) + SIGMA•'r(CC6(3)
1 + SIGMA"<CC6(4))))

c
C7 = SIGMA*(CC7(1) + SIGMA*(CC7(2) + SIGMA*(CC7(3)

1 + SIGMA*CC7(4))))
c

CB = SIGMA•'~-(CCS(l) + SIGMA•'~-(CC8(2) + SIGMA•'r(CC8(3)
1 + SIGMA*CC8(4))))

c
C9 = SIGMA>'~-(CC9 (1) + SIGMA*(CC9 (2) + SIGMA•'~-(CC9 (3)

1 + SIGHA*CC9(4))))
c

ClO = SIGMA"<(CClO(l) + SIGMA•'r(CC10(2) + SIGMA"<(CC10(3)
1 + SIGMA*CC10(4))))

c
CO = l . ODO - (C6 + C7 + CB + C9 + ClO)

c
C EVALUATE THE SOLUTION
c

c
c

c

DO 7 3 J = 1 , NEQN
Y2(J) = Y(J) + SST * (CO*YP(J) + C6*F6(J) + C7*F7(J) + CB*FB(J)

1 + C9*F9(J) + ClO*FlO(J))
73 CONTINUE

RETURN
END

C CHANGES TO BOUNCING FUNCTION ANALYSIS--5.5.82
c
c---

suBROUTINE PANIC(F,SUBPHI,NPHI,NEQN,NFE,INDEX,
1 T,Y,YP,PHIO,PHIPO,TF,YF,YPF,PHIF,PHIPF,T2,Y2,YP2,

- 103 -

2 PHI2,PHIP2,PHIL,PHIPL,PHIR,PHIPR,TL,TR,PHIB,
3 Fl ,F2 ,F3 ,F4 ,FS,F6,F7,F8,F9, .
4 ABSER,KOUNTR,NEXTRA,EVALF,FIND,IROUTE,IWARN,U26)

c------ - - -- --------------------------- - -------------~---~---------------
c
C PANIC SHOULD BE USED ONLY IN CRISIS (OR NEAR CRISIS) SITUATIONS
c
C PANIC IS REFERENCED BY RKF45T (TRAPPD) WHEN THE TRAPFING PROCEDURE
C FAILS TO CONVERGE .
c
C THE USER MAY ACTIVATE THE USE OF PANIC IN TWO MüDES BY CHANGING
C THE PARAMETER NOTFAL IN EITHER SETRAP OR TRAPPD . IN BOTH ROUTINES
C NOTFAL IS .FALSE. FOR NORMAL (NON-CRISIS) SITUATIONS.
c
c
C AN ADDITIONAL MODE- OF PANICIS AVAILABLE TO CHECK FOR ERRORS
C CAUSED BY BOUNCING FUNCTIONS. THE USER. IS NOT CONCERNED WITH
C THIS MODE OF PANIC.
c
c----------- - ---- - - --- --- - --------------------------~-------------------
c PANIC--REFERENCED BY TRAPPD
c------------ -- -------- - - - ----- - --- - ------------------------------~-----
c PANIC PRINTS INFORMATION ABOUT PHI THROUGHOUT ANY STEP ON WHICH
C TRAPPD HAS BEEN ACTIVATED. INFORMATION ABOUT THE FIRST
C VALUE OF ~ FOR WHICH PHI HAS CHANGED SIGNS IS RETURNED TO
C TRAPPD FOR USE IN THE ITERATION PROCESS.
c
C PRINT OPTIONS : IPRINT = 1 T AND PHI ARE PRINTED AT EACH
C SUBSTEP
c
c
c
c
c

IPRINT = 2 T, Y, YP, PHI, PHIP ARE
PRINTED AT EACH SUBSTEP

IPRINT = -- ANY OTHER VALUE WILL BE RESET
TO IPRINT=1

C--------------- ------ -- --
C PANIC--REFERENCED BY RKF45T
C------------------------------- --
e PANIC CHECKS THE PHI FUNCTION THROUGHOUT THE INTERVAL FOR
C POSSIBLE MULTIPLE VANISHING POINTS WITHIN A GIVEN STEP.
C THE CHECK IS MADE' AFTER EACH INTEGRATION STEP WHETHER
C OR NOT THE ANALYSIS INDICATED THAT TRAPPD SHOULD BE
C REFERENCED. PRINTING IS OPTIONAL, ALTROUGH A WARNING
C ~ffiSSAGE IS PRINTED ON THE FIRST CALL TO PANIC.
c
c
c
c
c

PRINT OPTIONS: JPRINT = 0 PRINTING IS SUPPRESSED
JPRINT = 1 T AND PHI ARE PRINTED AT

EACH SUBSTEP
C JPRINT = 2 T, Y, YP, PHI, PHIP ARE
C PRINTED AT EACH SUBSTEP
C---
C PANIC--REFERENCED IN "BOUNCING MODE"
C----- ----------- ------- --- ---
C A ZERO HAS BEEN DETECTED, AND TRAPPED WILL BE REFERENCED.
C IF THE PREVIOUS ZERO WAS A "BOUNCING" ZERO, THE INCORRECT
C SIGN HlPOSED INDICATES A ZERO WHICH DOES NOT EXIST. PANIC
C WILL DETECT ANY BOUNCING COMPONENT SO THAT THE SIGN CAN
C BE CORRECTED .

- 104 -

c
C NO PRINTING OPTIONS ARE ASSOCIATED WITH THE BOUNCING
C ANALYSIS.
C---
C POINT SPACING IN PANIC:
C---
C
C THE STANDARD NmtBER OF OUTPUT POINTS IS 10. THE USER HAY
C INCREASE OR DECREASE THIS NUHBER BY CHANGING THE PARAM-
G ETERS POINTS AND NPOINT IN THE GIVEN DATA STATEMENT.
c
c---------------------------- ---- - -~------------------------------------
c

c

c

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION Y(NEQN),YP(NEQN),Y2(NEQN),YP2(NEQN)
DIMENSION YF(NEQN),YPF(NEQN),F1(NEQN),F2(NEQN)
DH1ENSION F3 (NEQN) ,F4(NEQN) ,FS (NEQN)
DIMENSION F6(NEQN),F7(NEQN),F8(NEQN),F9(NEQN)
DIMENSION PHIO(NPHI),PHIPO(NPHI),PHIF(NPHI),PHIPF (NPHI)
DIMENSION PHI2(NPHI) ,PHIP2(NPHI),PHIL(NPHI) ,PHIPL(NPHI)
DIMENSION PHIR(NPHI),PHIPR(NPHI),PHIB (NPHI)

LOGICAL UPDATE,IVAN,EVALF,FIND,BOUNCE
c---------------------~---

DATA POINTS,NPOINT/lO.ODO,lO/
DATA IPRINT,JPRINT/0,0/
DATA JOPT/1/

c--- ------------------
DATA ISCALE,JSCALE/1,2/

c
EXTERNAL F,SUBPHI

c
C---
e SET SUB-STEP LENGTH AND T2, THE FIRST POINT TO BE ANALYZED.
C (IF IROUTE=1, RETURN TO SETRAP--ONLY THE SUB-STEP LENGTH IS
C SOUGHT.)
C---
C

DSIG = l .ODO/POINTS .
STEP = TF - T
T2 = T + DSIG~"'STEP
IF (!ROUTE .EQ. 0) RETURN

C------------------------------- --
C PRINTING PARAMETER SAFETY CHECKS:
c---

c

IPR = IPRINT
IF (IPR .LT. 1 .OR. IPR .GT. 2) IPR = 1
JPR = JPRINT
IF (JPR .LT. 0 .OR. JPR .GT. 2) JPR = 1

IF (!ROUTE .EQ. 3) GO TO 600
C---
C A STANDARD PANIC OPTION IS BEING USED
C (FROM EITHER SETRAP OR TRAPPD)
c--- ------------
c INITIALIZATION AND SAFETY CHECKS:
c---

- 105 -

IF (!WARN .EQ. 1) PRINT 900
900 FORMAT(/, ' THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T'

1 ,/, ' TO CHECK FOR MULTIPLE ZEROSOFA PHI COMPONENT WITHI N'
2 , ' A GIVEN STEP ' ,// ,' THIS IS VERY INEFFICIENT.' , //)

C--------------------------- --------------- -----------------------------
C PRINTING BLOCK:
c- ---------------- -- -------- --

IF (!ROUTE .EQ. _2 . AND . JPR . EQ. 0) GO TO 10
PRINT 901
PRINT 902,INDEX
PRINT 903,T
PRINT 906,PHIO
IF (!ROUTE .EQ. 2 .AND. JPR .EQ. 1) GO TO 10
IF (!ROUTE .EQ. 1 .AND. IPR .EQ . 1) GO TO 10
PRINT 904,Y
PRINT 905,YP

c----------------------------- --
10 CONTINUE

I NDEX = 0
NEXT = 0

C------------ -- ---
C GENERATE THE ADDITIONAL F EVALUATIONS IF NOT ALREADY DETERMINED :
c----- -- --

IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2,
1 . F3 ,F4 ,FS ,F6 ,F7 ,F8 ,F9 ,F1, ISCALE ,Ni-'E ,NEXT , Y2)

EVALF = .TRUE .
c
C---
C SUB-STEP POINTS WILL BE LABELED "L" UNTIL A ZERO IS . TRAPPED
C I.E. , POINT "L" WILL BE HOVED TOWARDS "F" AS A ZERO IS SOUGHT.
c
C---
C PHIPL IS USED AS A TEMPORARY INDICATOR AND WILL BE RESET BEFORE
C RETURNING TO SETRAP OR TRAPPD
c
C STORE VANI SHING INFORMATION IN PHIPL:
C PHIPL > 0 , COMPONENT DID NOT VANISH OR CHANGE SIGN
C PHIPL < 0 , COMPONENT EITHER VANISHED OR CHANGED SIGN
c---~---------------------

c

no 12 J = 1,NPHI .
PHIL (J) = PHIO(J)
PHIPL(J) = +1.0DO

12 CONTINUE
TL = T

DO 36 JJ= 1,NPOINT
C---
C EVALUATE THE SOLUTI ON AND PHI FUNCTION AT THE JJTH SUBSTEP :
c---

c

SIGMA = DSIG>"'DFLOAT(JJ)
CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP ,F2,F3, F4,F5 ,F6,F7 ,F8,F9 ,F1 ,

1 JSCALE,NFE ,NEXT,F2)
T2 = T + SIGMA*STEP
IF (JJ .EQ. NPOINT) T2 = TF
CALL F(T2,F2,F3)
NFE = NFE + 1

UPDATE = .FALSE.

BOUNCE = .FALSE.
IVAN = .FALSE.
TOLER = ABSER
INDX = INDEX

- 106 -

CALL SUBPHI(NPHI,INDX,NEQN,T2,F2,F3 ,PHI2,PHIP2,KOUNTR,UPDATE,
1 IVAN,BOUNCE,TOLER)
TOLER = ABSER
DO 15 KK = 1,NPHI
IF (DABS(PHI2(KK)) .LT. U26) PHI2(KK) =DSIGN(U26,PHI2(KK))
IF (DABS(PHIP2(KK)) .LT . U26) PHIP2(KK)=DSIGN(U26,PHIP2(KK))

15 CONTINUE
UPDATE = .FALSE.

c----- -------------------------- - ---- - -----------~- ---------------------
IF (FIND) GO TO 29

C-- --------------- ---------------------- --------------------------------
C NO ZERO HAS BEEN IS.OLATED YET. CHECK THE CURRENT POINT:
c--- --- ---------

DO 18 I = l,NPHI
IF (.NOT. (DABS(PHI2(I)) .LT . TOLER .OR.

1 PHI2(I)~'<PHIL(I) . LT . O. ODO)) GO TO 18
c
C PHI2(I) HAS VANISHED OR CHANGED SIGN OVER THE SUBSTEP,
C SET FIND=.TRUE. AND SET PHIPL(I) INDICATOR
c

c

FIND= .TRUE.
PHIPL(I) = -l .ODO

18 CONTINUE

IF (FIND) GO TO 25
C------------ -------------------------------------- ---------------------
e NO ZERO HAS BEEN ISOLATED ON THI S STEP EITHER.
C CONTINUE ITERATING--THIS STEP WILL NOT SET TRAPFING BOUNDS .
c---

c

c

TL = T2
DO 23 J = l,NEQN
Y2(J) = F2(J)

23 YP2(J) = F3(J)
DO 24 J = l ,NPHI
PHIL(J) = PHI2(J)

24 CONTINUE
GO TO 29

25 CONTINUE

C----------- ----------------- ------------- ---- --------------------------
e A ZERO WAS TRAPPED ON THIS SUBSTEP . SET TRAPFING BOUNDS (CONDI-
C TIONS AT "R" . (IF IROUTE=2, THE ANALYSIS WILL BE RETURNED TO
C SETRAP WITH THE ZERO BRACKETED .)
c------ -- ---

c

TR = T2
IF (JJ .EQ. NPOINT) TR = TF
DO 26 J = 1 ,NPHI
PHIR(J) = PHI2(J)
PHIPR(J) = PHIP2(J)

26 CONTINUE

29 CONTINUE
c---

- 107 -

C STANDARD PRINTING BLOCK:
c---

c

IF (IROUTE .EQ. 2 .AND. JPR .EQ. 0) GO TO 33
PRINT 903,T2
PRINT 906,PHI2
PRINT 907,PHIP2
PRINT 1588,FIND

1588 FORHAT(' FIND = ',L2)
IF (IROUTE .EQ. 2 .AND. JPR .EQ. 1) GO TO 33
IF (IROUTE .EQ. 1 .AND. IPR .EQ . 1) GO TO 33
PRINT 904,Y
PRINT 905,YP

33 CONTINUE
C---
C IF IROUTE=2 AND A ZERO \vAS BRACKETED, EXIT DO LOOP (DO 36 .. .)
c----------------------------- -- --- --------------------- ----------------

IF (IROUTE .EQ. 2 .AND. FIND) GO TO 42
c

36 CONTINUE
C---
C END OF DO LOOP FOR CHECKING SUBSCRIPTS. (EARLY EXIT OCCURS
C IF IROUTE=2 AND A ZERO IS BRACKETED DURING A SUB -STEP.)
C-- ---- --- -- ----------------------- -- -----------------------------------
C STANDARD PRINTINQ BLOCK:
c---

IF (IROUTE .EQ. 2 .AND. JPR .EQ. 0) GO TO 40
PRINT 908
PRINT 903,TF
PRINT 906,PHIF
PRINT 907,PHIPF
IF (IROUTE .EQ. 2 .AND. JPR .EQ. 1) GO TO 40
IF (IROUTE .EQ. 1 .AND. IPR .EQ. 1) GO TO 40
PRINT 904,YF
PRINT 905,YPF

40 CONTINUE
C---
C PREPARE FOR EXIT:
c---

IF (FIND) GO TO 42
C---
C NO ZERO \vAS DETECTED. RESET CONDITIONS AT "0" WHICH HAVE BEEN
C ALTERED DURING THE PANIC ANALYSIS.
c--- ------------------------

c

Do 41 J = 1,NPHI
PHIL(J) = PHIO(J)
PHIPL(J) = PHIPO(J)
PHI2(J) = PHIO(J)
PHIP2(J) = PHIPO(J)
PHIR(J) = PHIF(J)
PHIPR (J) = PHIPF(J)

41 CONTINUE
TL= T
T2 = T
TR = TF
RETURN

42 CONTINUE

- 108 -

C---
C A ZERO WAS DETECTED. SET BRACKETING CONDITIONS "L", "2", AND
C "R" BEFORE RETURNING . .
C---
C DETERHINE INDEX--CONSIDER ONLY COMPONENTS WHO HAVE VANISHED
C AT CURRENT JJ VALUE OR HAVE CHANGED OVE~ THE LAST SUBSTEP
C (DESIGNATED BY PHIPL < 0)
c---

c

INDEX = 0
PHIMAX = O.ODO
DO 45 I = 1, NPHI
IF (PHIPL(I) . GT. O.ODO) GO TO 45
IF (DABS(PHIR(I)) .LT . TOLER) GO TO 43
IF (PHIR(I)*PHIL(I) .GT . O. ODO) GO TO 45

43 CONTINUE

C COMPONENT "I" HAS VANISHED OR CHANGED SIGNS AT TZ--CHECK TO SEE
C IF INDEX SHOULD BE SHIFTED TO "I"
c

c

IF (DABS(PHIR(I)) .LT. PHU!AX) GO TO 45
INDEX = I
PHIMAX = DABS(PHIR(I))

45 CONTINUE

IF (TL .EQ . T) GO TO 66
C---
e BRACKETING DID NOT OCCUR ON THE FIRST SUB-STEP. THE SOLUTION
C VECTOR AT TL HAS BEEN "LOST". GENERATE CONDITIONS AT "TL".
c---

c

c

c

TZ = TL
SIGMA= (TL - T)/(TF - T)
CALL SCALED(F,NEQN,Y,YP,TL,SIGMA,STEP,F2,F3,F4,F5,F6,F7,F8,F9,F1,

1 JSCALE,NFE,NEXT,Y2)
CALL F(TL,Y2,YP2)
NFE = NFE + 1

UPDATE = .FALSE.
BOUNCE = .FALSE.
IVAN = .FALSE.
CALL SUBPHI(NPHI,INDX,NEQN,TL,Y2,YP2,PHI2,PHIP2,KOUNTR,UPDATE,

1 IVAN,BOUNCE,TOLER)
TOLER = ABSER

DO 65 I = 1, NPHI
PHIL(I) = PHI2(I)
IF (DABS(PHIL(I)) .LT. U26) PHIL(I) = DSIGN(U26,PHIL(I))

65 PHIPL(I) = PHIP2(I)
RETURN

C---
C BRACKETING OCCURRED ON THE FIRST SUB-STEP. THE SOLUTION AT TL
C IS STILL KNOWN. ONLY PHIL, PHIPL, PHI 2,PHIP2 NEED TO BE SET.
c------------------------- -- --

66 CONTINUE
DO 67 I = 1,NPHI
PHIL(I) = PHIO(I)
PHIPL(I) = PHIPO(I)
PHI2(I) = PHIO(I)

c

c

c

67 PHIP2(I) = PHIPO(I)
T2 = T

RETURN

600 CONTINUE

- 109 -

C---------------- --
e--------------------~--
C SPECIAL LOOP FOR INVESTIGATING POSSIELE "BOUNCING FUNCTIONS"
C-- --
e---------- ------------ --------- -- --------------------------------------
C USE PHIPO(I) TO STORE "BOUNCING" INFORMATION--THEN
C RECOHPUTE IT BEFORE RETURNING TO TRAPPD
C PHIPO(I) < O, NO BOUNCING CANDIDATES EXIST
C PHIPO(I) > 0, . AT LEAST ONE BAOUNCING CANDIDATE EXISTS
c
c
c
c

(CRITERION FOR "BOUNCING", IPHIL(I)I<TOL, IPHIPR(I)I > TOL
AND PHIL(I)'"PHIR(I) < 0 (SIGN CHANGE)

C PHIB(I) CONTAINS INFORMATION ABOUT THE "BOUNCING" STATUS OF
C COMPONENT "I"
C PHIB(I) < 0, NO BOUNCING INDICATED YET
C PHIB(I) > 0, BOUNCING INDICATED
c-------- - ------------:-- - -----------------------------··---------~-----
c- -- ----------------------------

TOLER = ABSER
c---

no 602 I = 1,NPHI
PHIB(I) = -l.ODO
PHIPO(I) = -1.0DO
IF (PHIL(I)*PHIR(I) .GT . O. ODO) GO TO 602
IF (DABS(PHIL(I)) .LT. TOLER .AND .

1 DABS(PHIR(I)) . GT. TOLER) PHIPO(I) = 1.0DO
602 CONTINUE

C---
C DOES A BOUNCING CANDIDA TE EXIST ? (IS PHIP) (I) > 0, FOR ANY "I"?)
c--------- --

c

c

ITEST = 0
DO 603 I = 1,NPHI
IF (PHIPO(I) .GT. O.ODO) ITEST = 1

603 CONTINUE

IF (!TEST .EQ . 0) RETURN

C---
C AT LEAST ONE CONPONENT NUST BE STUDIED FOR "BOUNCING" DIFFICULTIES
C GENERATE ADDITIONAL F EVALUATIONS IF NOT YET DETERMINED
c------------ -- ----- --

IF (.NOT. EVALF) CALL SCALED(F,NEQN,Y,YP,T,SIGMA, STEP,F2,
1 F3,F4,F5,F6, F7,F8,F9,F1 , ISCALE,NFE,NEXTRA,Y2)

EVALF = .TRUE.
c---

no 620 JJ= 1,NPOINT
C-------------- -- ---- ----------------------- ------ -- --------------------
C SIGMA IS A FRAGTION OF THE INTEGRATION STEP. IF THE BRACKETING
C ·INDICES WERE DETERMINED BY "PANIC" ANALYSIS, SIGMA IS A FRAGTION

·c OF THE INTEGRATION "SUB-STEP" FROM STANDARD PANIC ANALYSIS.

- 110 -

c---
SIGHA = DSIG * DFLOAT(JJ)
IF (FIND) Sim1A = (TL + SIGMA•'<(TR-TL) ~ T) / STEP
IF (FIND .OR . JJ .LT. NPOINT) GO TO 606

C------------------------- -- --
C "R" = "F" AND THE SOLUTION IS ALREADY KNOWN
c-- ----------------- -- --

DO 604 I = 1 ,NEQN
F2(I) = YF(I)

604 F3(I) = YPF(I)
DO 605 I = 1,NPHI
PHI2(I) = PHIR(I)
PHIP2(I) = PHIPR(I)

605 CONTINUE
TZ = TR
GO TO 607

c-------------------------------------- ---------------------------------
606 CONTINUE

C----- -- ---- ------
C "R" WAS DETERMINED BY THE PANIC ANALYSIS AND THE SOLUTION HAS
C BEEN LOST:
C CALL SCALED TO COMPUTE THE SOLUTION AT SUBSTEP JJ
c---

c

c

CALL SCALED(F,NEQN,Y,YP,T,SIGMA,STEP,F2 ,F3, F4,F5,F6,F7,F8,F9,Fl,
1 JSCALE,NFE,NEXTRA,F2)
T2 = T + SIGMA>'<'STEP
CALL F(T2,F2,F3)
NFE = NFE + 1

UPDATE = .FALSE .
BOUNCE = .FALSE.
IVAN = .FALSE.
I NDX = INDEX
CALL SUBPHI(NPHI,INDX,NEQN,T2,F2,F3,PHI 2, PHIP2,KOUNTR,UPDATE,

1 IVAN,BOUNCE,TOLER)
TOLER = ABSER

c-- ------------------------------------ -------------- -- ---- -------------
607 CONTINUE

c
C--- --
C CHECK PHI COHPONENTS FOR "BOUNCING" CORRECTIONS AT SUBSTEP JJ
c------------------------------- --. .
c

DO 608 I = 1,NPHI
IF (PHIPO(I) .LT. O.ODO) GO TO 608

c
IF (DABS(PHI2(I)) .LT . TOLER) GO TO 608

c
C PHI(I) IS OUT OF THE VANISHED REGION--DOES IT HAVE THE SAME
C SIGN AS PHIR(I) -- I .E., DOES IT "BOUNCE" ?
C IF PHI(I) BOUNCES, SET PHIB(I) = +1.0DO
c

c

PHIPO(I) = - 1. 0DO
PHIL(I) = DSIGN(PHIL(I),PHI2(I))
IF (PHI2(I)>'<PHIR(I) .GT . O.ODO) PHIB(I) = +l.ODO

· IF (FIND .AND. T .NE. TL) GO TO 608

- 111 -

C NO EMERGENCY FEATURE WAS USED IN SETRAP OR
C THE E~1ERGENCY FEATURE WAS USED IN SETRAP ~ND A ZERO WAS DETECTED
C ON THE FIRST SUB-STEP
c
C ADJUST THE SIGN OF PHIO(J)
c

PHIO(I) = DSIGN(PHIO(I),PHI2(I))
c

608 CONTINUE
C---
C

c

ITEST = 0
DO 610 I = 1,NPHI
IF (PHIPO(I) .GT. O.ODO) ITEST = 1

610 CONTINUE

C IF NO MORE "BOUNCING" CANDIDATES EXIST, EXIT DO LOOP--GO TO 622
c

c

IF (ITEST .EQ. 0) GO TO 622
620 CONTINUE

C NORMAL EXIT OF DO LOOP--BOUNCING CANDIDATE STILL EXITED ON THE
C FINAL SUBSTEP
c

c
c

622 CONTINUE

C--
C----- --
C INDEX ANALYSIS
C-- --
e---
c

c

INDOLD = INDEX
INDEX = 0
PHIMAX = O.ODO
DO 704 I = 1,NPHI
IF (PHIB(I) .GT . O.ODO)
IF (PHIR(I)*PHIL(I) .GT. O.ODO)
IF (DABS(PHIR(I)) .LT. PHIHAX)
PHIMAX = DABS(PHIR(I))
INDEX = I

704 CONTINUE

GO TO 704
GO TO 704
GO TO 704

IF (INDEX .NE. INDOLD .AND . JOPT .EQ. 1) PRINT 705,INDOLD,INDEX
705 FORMAT(1 INDEX = 1

, I3 ,' WAS INCORRECTLY IMPOSED- -NEW INDEX = 1
, I4)

c
C RESET CONDITIONS AT "2" EQUAL TO THOSE AT "L" (Y2 AND YP2
C HAVE NOT BEEN CHANGED)
c

c

DO 710 I = 1,NPHI
PHI2(I) = PHIL(I)
PHIP2(I) = PHIPL(I)

710 CONTINUE
T2 = TL

c----~-- - ---------- -- - --------
c

c

- 112 -

901 FOR~1AT(' ENTERING PANIC')
902 FOR~!AT(// , ' IN PANIC--Cm1PONENT OF PHI BEING ANALYZED = ' , I 3,/)
903 FORMAT(' T = ',D15.7)
904 FORMAT(' Y = ',4 (2X,D15.7),/,(8X,4(2X,D15 . 7)))
905 FOR~1AT(' YP = ',4(2X,D15.7),/,(8X,4(2X,D15.7)))
906 FORMAT(' PHI = ',4(2X,D15.7),/,(8X,4(2X , D15.7)))
907 FORMAT(' PHIP = ',4(2X,D15.7),/, (8X,4(2X,D l5.7)))
908 FORMAT(' LEAVING PANIC')

RETURN
END

APPENDIX B . SUBPHI SUBROUTINES AND RESUL TING OUTPUT FOR
EXAMPLES IN §10.

Example 1, dense output equal spacing in T

c

c

c

SUBROUTINE DENSE1(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHI P,KOUNTR ,UPDATE ,
1 IVAN,RELER,ABSER)

IMPLICIT REAL•'<'8 (A-H,0-2)
DIMENSION Y(4),YP(4),PHI(1),PHIP(1)
LOGICAL UPDATE,IVAN

COMMON/TIME1/TINCR

IF (UPDATE) GO TO 100
IF (KOUNTR .GT. 0) GO TO 12

C INITIALIZATION BLOCK:
TPR = TINCR

12 CONTINUE
c-- -----

PHI(1) = T - TPR
PHIP(1) = l.ODO

c-- -- --- --------
RETURN

100 CONTINUE
c
C UPDATE

c

PRINT 516,T,Y(1),Y(3),Y(2),Y(4)
TPR = TPR + TINCR

C IN ~LITPLE TRAP MODE, PHI WILL BE UPDATED BY TRAPPD.
C IN OTHER ~toDES, THE USER SHOULD REEVALUATE PHI SI NCE ITS VALUE
C CHANGES WITH THE CHANGE IN TPR.
c

516 FOR~1AT(/,' INTERHEDIATE OUTPUT--T = ' ,D15. 7,/ ,22X,
1 ' Y1= ' ,D15.7,2X, 'Y2= ' ,D15.7 , /,22X,
2 ' Y3= ' ,Dl5. 7 ,2X, 'Y4= ' ,D15. 7)

RETURN

- 113 -

END
c

TWO BODY PROBLEN--ELLIPTIC ORBIT, ECC=0. 1
DENSE OUTPUT, TINE INCRE~1ENT = 0 . 3141593D 00

(some output deleted)

OPERATION PARAMETERS AND BOUNDARY CONDITI ONS

RELERR = 0.1000000D-05 ABSERR = 0 .1000000D-05 IFLAG
T = O. OOOOOOOD 00 TF = 0.6283185D 01
Y(l) = 0.9000000D 00 Y(2) = O.OOOOOOOD 00
Y(3) = O.OOOOOOOD 00 Y(4) = 0 .1105542D 01

INTERMEDIATE OUTPUT--T = 0.3141593D 00
Y1= 0.8399578D 00 Y2= -0 . 3767007D 00
Y3= 0 . 3395789D 00 Y4= 0.1032275D 01

INTERNEDIA TE OUTPUT--T = 0.6283185D 00
Yl= 0.669RB2Ril 00 Y2= -0 .69141651} 00
Y3= 0 . 6349843D 00 Y4= 0.8299182D 00

INTERNEDIA TE OUTPUT--T = 0. 9424778D 00
Y1= 0.4164354D 00 Y2= -0 . 9029608D 00
Y3= 0 . 8520312D 00 Y4= 0 . 5418264D 00

I NTERNEDIA TE OUTPUT--T = 0 . 1256637D 01
Y1= 0. 1148030D 00 Y2= -0. 9980995D 00
Y3= 0.9717582D 00 Y4= 0.2184158D 00

INTERNEDIA TE OUTPUT--T = 0.1570796D 01
Y1= -0.1993454D 00 Y2= -0 . 9852670D 00
Y3= 0 . 9900608D 00 Y4= -0.9787924D-01

I NTERNEDIA TE OUTPUT--T = 0 . 1884956D 01
Yl= -0 . 4949687D 00 Y2= -0.8837882D 00
Y3= 0.9140837D 00 Y4= -0 . 3780634D 00

INTERMEDIATE OUTPUT--T = 0 . 2199115D 01
Y1= -0.7476645D 00 Y2= -0. 7155 781D 00
Y3= 0 . 7580980D 00 Y4= -0.6052274D 00

INTERNEDIA TE OUTPUT--T = 0 .2513274D 01
Yl= -0. 9397271D 00 Y2= -0 .5009346D 00
Y3= 0.5402737D 00 Y4= -0. 7708017D 00

INTERNEDIA TE OUTPUT--T = 0.2827433D 01
Yl= -0.1059391D 01 Y2= - 0.2573625D 00
Y3= 0.2806395D 00 Y4= -0. 8710278D 00

INTERNEDIA TE OUTPUT--T = 0.3141593D 01
Y1= -0 .1099992D 01 Y2= 0.2075454D- 04
Y3= -0.19684510-04 Y4= -0.9045380D 00

= 15

- 114 -

(Output for 3 .14159 < T < 6.2831 has been delete~.)

INTERMED IATE OUTPUT--T = 0.6283185D 01
Y1= 0.8999798D 00 Y2= - 0.1021791D-03
Y3= 0.86169 11D-04 Y4= 0.1105556D 01

Example 1, dense output unequal spacing in T

c

c

c

c

SUBROUTINE DENSE2(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER,ABSER)

IMPLICIT REAU<8 (A-H,O-Z)
DIMENSION Y(4),YP(4),PHI(1),PHIP(1)
LOGICAL UPDATE , IVAN
COMMON/TIME2/TPRINT(50)

IF (UPDATE) GO. TO 100

IF (KOUNTR .GT. 0) GO TO 12
TPR = TPRINT(1)

12 CONTINUE

c---
PHI (1) = T - TPR
PHIP(1) = 1.0DO

c---
RETURN

100 CONTINUE
c
C UPDATE

c

PRINT 516,T,Y(1),Y(3),Y(2),Y(4)
TPR = TPRINT(KOUNTR+1) ·

C IN HULITPLE TRAP MODE, PHI WILL BE UPDATED BY TRAPPD.
C IN OTHER MODES, THE USER SHOULD REEVALUATE PHI SINGE ITS VALUE
C CHANGES WITH THE CHANGE IN TPR .
c

516 FORMAT(/, I INTER~1EDIATE OUTPUT--T = I ,D15. 7 , I , 22X'
1 1 Y1=' ,D15 . 7,2X, 1 Y2= 1 , D15 .7,/,22X ,
2 'Y3= 1 ,D15. 7 ,2X, 'Y4.'= 1 ,D15. 7)

RETURN
END

TWO BODY PROBLEM--ELLIPTIC ORBI'f, ECC=0. 1
DENSE OUTPUT UNEVEN SPACING

(some output deleted)

- 115 -

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR =
T =
Y(l) =
Y(3) =

O.lOOOOOOD-05
O.OOOOOOOD 00
0.9000000D 00
O. OOOOOOOD 00

ABSERR =
TF =
Y(2) =
Y(4) =

O.lOOOOOOD-05
0.6283185D 01
O.OOOOOOOD 00
0.1105542D 01

IFLAG =

INTER~iEDIATE OUTPUT---T = 0 . 1000000D 00
Yl= 0 . 8938362D 00 Y2= -0.1230922D 00
Y3= 0.1103019D 00 Y4= 0 .1097975D 01

INTERMEDIATE OUTPUT- -T = 0.2200000D 00
Y1= 0.8703366D 00 Y2= -0.2677368D 00
Y3= 0.2405447D 00 Y4= 0 .1069224D 01

INTERHEDIATE OUTPUT--T = 0 .4900000D 00
Y1= 0.7569118D 00 Y2= -0.5637749D 00
Y3= 0 . 5128778D 00 Y4= 0.9325251D 00

INTERMEDIATE OUTPUT--T = 0.6000000D 00
Y1= 0.6891170D 00 Y2= -0.6668679D 00
Y3= 0.6111621D 00 Y4= 0.8524277D 00

INTER~iEDIATE OUTPUT-~T = 0 . 6600000D 00
Y1= 0.6475560D 00 Y2= -0 . 7178635D 00
Y3= 0.6608675D 00 Y4= 0.8039059D 00

INTERMEDIATE OUTPUT--T = 0.7500000D 00
Y1= 0.579771 7D 00 Y2= -0.7869198D 00
Y3= 0.7297455D 00 Y4= 0.7256920D 00

INTER~iEDIATE OUTPUT--T = 0.8000000D 00
Y1= 0.5395550D 00 ~2= -0.8212732D 00
Y3= 0.7648897D 00 Yl= 0 . 6798258D 00

INTERt-lEDIATE OUTPUT--T = 0 . 9000000D 00
Y1= 0.4543357D 00 Y2~ -0.8811394D 00
Y3= 0.8281186D 00 Y4= 0.5839259D 00

INTERMEDIATE OUTPUT--T = 0.9800000D 00
Y1= 0.3822211D 00 Y2= -0 . 9204380D 00
Y3= 0.8716557D 00 Y4= 0.5041103D 00

INTERMEDIATE OUTPUT--T = O.lOOOOOOD 01
Yl= 0.3637254D 00 Y2~ -0.9290651D 00
Y3= 0.8815353D 00 Y4= 0.4838348D 00

INTERMEDIATE OUTPUT--T = 0.3100000D 01
Y1= -0 .1099278D 01 Y2== -0. 3434921D-Ol
Y3= 0. 3759444D-01 Y4= -0 . 9039508D 00

INTERMEDIATE OUTPUT--T = 0.3220000D 01
Y1= -0.1097450D 01 Y2= 0.6478456D-Ol
Y3= -0.7088700D-01 YL= -0.9024476D 00

15

- 116 -

INTERHEDIATE OUTPUT- -T = 0. 3490000D 01
Y1= - 0.1050092D 01 Y2= p.2848796D 00
Y3= -0.3103776D 00 Y4= -0.8633178D 00

(Output for 3.4900 < T < 3.9800 has been deleted.)

INTERHEDIATE OUTPUT--T = 0.3980000D 01
Y1= - 0.8186657D 00 Y2= 0.6487301D 00
Y3= -0 .6918563D 00 Y4= -0.6671274D 00

Example 2, two body problem, tronsfer orbit

c

c

SUBROUTINE TRANSF(NPHI,INDEX,NEQN,T,Y,YP , PHI,PHIP , KOUNTR,UPDATE,
1 IVAN ,RELER,ABSER)

IMPLICIT REAUr8 (A-H,O-Z)
DIHENSION Y(6),YP(6) ,PHI (NPHI),PHIP(NPHI) , HEAD(5)
COMMON/TIME/TINCR
DATA HEAD/8HT-TPR = , BHR" = , BHV . R = , 8HAPOGEE , 8HPERIGEE /
LOGICAL UPDATE,IVAN

IF (UPDATE) GO TO 100

IF (KOUNTR .GT. 0) GO TO 12
c- - ----- -----------~-------------------- -- ------ - - - -- -------------------
c INITIALIZATION BLOCK
C---- ---- -- -- --------- ---------- -- -------- ----- -------------------------
C
c
c
c
c

COHBINATION TRAPPING MODE I S BEING USED
INDEX=1 AND 2 ARE TRAPPED IN MULTIPLE TRAPPING MODE
INDEX=3 IS TRAPPED IN SINGLE TRAPPING MODE

C >>>>>>>>>>>> SET INDEX=2 IN INITIAL. BLOCK <<<<<<<<<<<<<

c---
IPER = 0
IPRINT = 0
INDEX = 2
TPR = TINCR

C PARAHETERS FOR SECANT APPROXIMATION FOR R1 11

TSAVE = T
RPP =O.ODO
RPPP =O. ODO

12 CONTINUE
C- -- --------------------------------- ----------------------------- -----
e- --
c DETERMINE R' R*~""2' AND R I TO FORM R II (THEN FORM R I 1

I)

c----------------------- ---- --
R2 = (Y (l)i(~""2+Y (2)'""'""2+Y (3)'h""2)
R = DSQRT(R2)
RP = (Y (1)'""YP (l)+Y (2)•""YP (2)+Y (3)'"·yp (3)) /R

- 117 -

RPPSV = RPP
RPP = (YP(l)~'"*2+YP(2)~h'<-2+YP(3)~'d:2 + Y(l)*Y_P(4)+Y(2)~'<-YP (5)

1 + YP(3)~'<-YP(6))/R - RP~t:RP/R

c
c SECANT APPROXU1ATION FOR R I I I

DELTT = T - TSAVE
RPPP = O.ODO
IF (KOUNTR .GT. _0 .AND . DELTT .GT. 1. D-12)

1 RPPP = (RPP - RPPSV)/DELTT
c
c- -- -- ----------------------------

20 CONTINUE
c----------------------------------- -- ----------------------- -- ---------

PHI(1) = T - TPR
PHI(2) = RPP
PHI(3) = Y(1)*Y(4) + Y(2)*Y(5) + Y(3)*Y(6)

c------------------ --------- -- -------------------------- -- --------------
PHIP(1) = 1.0DO
PHIP(2) = RPPP
PHIP(3) = Y(1)*YP(4) + Y(4)*Y(4) + Y(2)*YP(S) + Y(S)*Y(S)

1 + Y(3)*YP(6) + Y(6)*Y(6)
c---

c

TSAVE = T
RETURN

100 CONTINUE

C---
C UPDATE BLOCK
C---
e

110 CONTINUE
C-- -----
C IF THE PHI COMPONENT HAS VANISHED THROUGHOUT THE STEP--RETURN
C (NO PRINTS OR UPDATES--INTEGRATION STEP SIZE IS SMALL AFTER
C TRAPFING ON PREVIOUS STEP
c---

IF (IVAN) PRINT 506
IF (IVAN) RETURN _

C---
e PRINT STATEMENTS FOR ALL UPDATES
c---

IF (INDEX .EQ. 3) GO TO 120
PRINT 515,HEAD(INDEX),PHI(INDEX),T
PRINT 516,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)
IF (INDEX .EQ . 2) RETURN

c------ -- -------- -------------------- - -----------------------~----------
c TIME STOP- -MULTIPLE TRAP tfODE (PHI UPDATED NOT NECESSARY)
c------------------- -------- --

TPR = TPR + TINCR
RETURN

120 CONTINUE
C---
C PERIGEE OR APOGEE STOP--S INGLE TRAP MODE
C---
C

IF (RPP .GT. O. ODO) GO TO 50
C ·coNDITIONS AT APOGEE
-c

c

- 118 -

PRINT 515,HEAD(INDEX),PHI(INDEX),T
PRINT 516,Y(1),Y(2),Y(3),Y(4),Y(S),Y(6)
PRINT 525,HEAD(4),R

RETURN
50 CONTINUE

C----- --
C PERIGEE STOP--SINGLE TRAP NODE (PHI UPDATE NECESSARY IF SYSTEN
C IS ALTERED) .
c--- ----------------------------

PRINT 515,HEAD(INDEX),PHI(INDEX),T
PRINT 516,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)
PRINT 525,HEAD(5),R
IPER = IPER + 1
IF (IPER .NE. 2) RETURN

c--- --------------------~-------- ---------------------------------------
c TRANSFER ORBIT--"STRETCH" VELOCITY VECTOR, EVALUATE F, EVALUATE
C PHI(3) AND PHIP(3)
c--- --- -- --------- --------------
c

c

c

PRINT 1523

CONST = 1.0500DO
Y(4) = Y(4)*CONST
Y(5) = Y(5)*CONST
Y(6) = Y(6)*CONST
PRINT 516,Y (l),Y(2),Y(3),Y(4),Y(5) ,Y(6)
CALL F(T,Y ,YP)
PHI(3) = Y(1)*Y(4) + Y(2)*Y(5) + Y(3)*Y(6)
PHIP(3) = Y(1)*YP(4) + Y(4)*Y(4) + Y(2)*YP(5) + Y(5)*Y(5)

1 + Y(3)*YP(6) + Y(6)*Y(6)
I PRINT = 1

506 FORMAT(' PHI(INDEX) HAS VANISHED OVER THE ENTIRE STEP' ,/)
515 FORMAT(/, I UPDATE I ,3X, 1A8,2X,D15.7,3X, I AT T = I ,D15 . 7)
516 FORMAT(' POSITION=' , 3(1X,D15 .7) ,/,' VELOCITY= ' ,3(1X,D15 . 7))

518 FORMAT(//,' TWO REVOLUTIONS HAVE OCCURRED--INCREMENT VELOCITY')
519 FORMAT(' NEW EGGENTRICITY = I ,D15 . 7, /, I Y-CONP = I ,4(2X,D15 . 7),//)
525 FORMAT(' MAGNITUDE OF RADIUS AT I ,1A8, I = I ,D15 . 7)

1523 FORMAT(/,' TINE TO UPDATE THE VELOCITY FOR TRANSFER ORBIT ')
RETURN
END

TWO BODY PROBLEM: EARTH-SATELLITE--TRANSFER ORBIT
(TRANSFER AFTER 2 REVOLUTIONS)

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR =
T =
POSITION
VELOCITY

0. 1000000D-05 ABSERR =
O.OOOOOOOD 00 TF =

-0.7 195613D 04 0.1546026D
- 0.4201003D 01 -0 . 8358974D

0.1000000D-05 IFLAG =
0.8000000D 06

04 -0.9839836D 03
01 -0.2073556D 01

15

- 119 -

UPDATE : R" = -0.3612253D-07 AT T = 0 . 1284196D 04
POSITION= -0.8501289D 04 -0.8587487D 04 -0.2848147D 04
VELOCITY= 0.9868303D 00 -0 .6842308D 01 -0.9382287D 00

UPDATE: V . R = -0.1162170D-04 AT T = 0 . 1997027D 05
POSITION= 0 . 2931916D 05 -0.3349531D 05 -0 . 3925918D 03
VELOCITY= 0 . 1128553D 01 0.9837115D 00 0 .3527977D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.4424773D 05

UPDATE: R" = 0.2128608D-07 AT T = 0.3865792D 05
POSITION= 0.9659848D 04 0.7254891D 04 0.2831174D 04
VELOCITY= -0.6664918D 01 0.1893360D 01 -0.8367371D 00

UPDATE: V . R = 0.1786375D-06 AT T = 0.4040718D 05
POSITION= -0.4462832D 04 0.5098527D 04 0 .5976175D 02
VELOCITY= -0 .7414175D 01 -0.6462593D 01 -0.2317745D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6776396D 04

UPDATE : R" = -0.7203513D-06 AT T = 0.4215722D 05
POSITION= -0.8502086D 04 -0.8581981D 04 - 0.2847392D 04
VELOCITY= 0.9854028D 00 -0.6843751D 01 -0.9387070D 00

UPDATE: V . R = -0.4580103D-04 AT T = 0.6084421D 05
POSITION= 0.2931931D 05 -0.3349543D 05 -0 . 3925838D 03
VELOCITY= 0.11285~8D 01 0.9837090D 00 0 . 3527964D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.4430634D 05

UPDATE: R" = 0. 1246685D-07 AT T = 0. 7953198D 05
POSITION= 0.9659784D 04 0.7254930D 04 0.2831169D 04
VELOCITY= -0. 6664940D 01 0.1893334D 01 -0.8367451D 00

UPDATE: V . R = 0.3124829D-06 AT T = 0.8128124D 05
POSITION= -0.4462840D 04 0.5098527D 04 0.5976027D 02
VELOCITY= -0.7414167D 01 -0 .6462599D 01 -0.2317745D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6776503D 04

TIME TO UPDATE: THE VELOCITY FOR TRANSFER ORB I T
POSITION= -0.4462840D 04 · 0 . 5098527D 04 0 .5976027D 02
VELOCITY= -0.7784876D 01 -0.6785729D 01 -0.2433632D 01

UPDATE: R" = -0.1880129D-06 AT T = 0.8306752D 05
POSITION= -0.9507222D 04 -0.9331483D 04 -0.3141112D 04
VELOCITY= 0.1625789D 00 -0.7200626D 01 -0.1137605D 01

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0.1000000D 06
POSITION= 0.1745937D 05 -0.6672033D 05 -0.7804626D 04
VELOCITY= 0.1568620D 01 -0.1986538D 01 -0.5248399D-01

UPDATE: V . R = -0.1769465D-06 AT T = 0.1907712D 06
POSITION= 0.9897001D 05 -0.1130668D 06 -0 . 1325196D 04
VELOCITY= 0.3510427D 00 0.3059896D 00 0.1097398D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.1502666D 06

- 120 -

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0.2000000D 06
POSITION= 0.1017085D 06 -0.1096812D 06 -0.3074815D 03
VELOCITY= 0.2416685D 00 0.4273841D 00 0.1106283D 00

UPDATE: R" = 0.4227668D-07 AT T = 0.2984758D 06
POSITION= 0.1053792D 05 0.8147668D 04 0.3126289D 04
VELOCITY= -0.7129841D 01 0.1127692D 01 -0.1040414D 01

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0.3000000D 06
POSITION= -0.2268374D 04 0.6628906D 04 0.6838715D 03
VELOCITY= -0.8883153D 01 -0.4888772D 01 -0.2314973D 01

UPDATE: V . R = 0.1618111D-05 AT T = 0.3002612D 06
POSITION= -0.4462861D 04 0.5098542D 04 0.5975927D 02
VELOCITY= -0.7784855D 01 -0 .6785722D 01 - 0.2433628D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6777237D 04

UPDATE: R" = -0.2216406D-06 AT T = 0.3020474D 06
POSITION= -0.9507256D 04 -0.9331200D 04 -0.3141072D 04
VELOCITY= 0.1625186D 00 -0.7200677D 01 -0 . 1137624D 01

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0.4000000D 06
POSITION= 0.9499987D 05 -0.1154126D 06 -0. 2385862D 04
VELOCITY= 0.4628059D 00 0.1743329D 00 0.1076000D 00

UPDATE: V . R = -0.3895867D-06 AT T = 0.4097513D 06
POSITION= 0.9897021D 05 -0.1130669D 06 -0.1325171D 04
VELOCITY= 0.3510427D 00 0.3059901D 00 0.1097399D 00
MAGNITUDE OF RADIUS AT APOGEE = 0.1502652D 06

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0 . 5000000D 06
POSITION= 0 . 6481676D 05 -0.2718058D 05 0 . 6718212D 04
VELOCITY= -0.1722661D 01 0.1801974D 01 - 0.3811446D-02

UPDATE: R" = 0.4248428D-07 AT T = 0 . 5174561D 06
POSITION= 0.105 3795D 05 0.8147705D 04 0 . 3126300D 04
VELOCITY= -0.7129828D 01 0.1127685D 01 -0.1040412D 01

UPDATE: V. R = 0 . 1625319D - 05 AT T = 0.5192415D 06
POSITION= -0.4462881D' 04 · 0.5098558D 04 0 .5 975828D 02
VELOCITY= -0.7784835D 01 -0 . 6785716D 01 -0.2433623D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6777265D 04

UPDATE: R" = -0.2216161D-06 AT T = 0.5210277D 06
POSITION= - 0.9507282D 04 -0.9331242D 04 -0.3141083D 04
VELOCITY= 0.1625249D 00 -0.7200664D 01 -0 . 1137620D 01

UPDATE:
POSITION=
VELOCITY=

T-TPR = O. OOOOOOOD 00 AT T = 0.5500000D 06
0 . 3492053D 05 -0.8605259D 05 -0 .7938726D 04
0 . 1339494D 01 -0.1296990D 01 0 .1982543D-01

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0 . 6000000D 06
POSITION= 0 . 8418488D 05 -0.1161495D 06 -0 .4360165D 04
VELOCITY= 0.6768570D 00 -0 .1026458D 00 0.9948326D-01

UPDATE: V . R = -0. 3888030D-06 AT T = 0 . 6287318D 06
POSITION= 0.9897041D 05 -0.1130669D 06 -0.1325146D 04

- 121 -

VELOCITY= 0.3510427D 00 0.3059906D 00 0.1097399D 00
HAGNITUDE OF RADIUS AT APOGEE = 0.1502654D 06

UPDATE: T-TPR = O.OOOOOOOD 00 AT T = 0 . 7000000D 06
POSITION= 0.8801541D 05 -0.5668672D OS 0 . 5921491D 04
VELOCITY= -0 .8490028D 00 0 . 1341839D 01 0.7156505D-01

UPDATE : R" = 0.42472SOD-07 AT T = 0.7364368D 06
POSITION= 0. 1053198D 05 0 . 8147742D 04 0 . 3126312D 04
VELOCITY= -0.7129815D 01 0.1127678D 01 -0 .104041 1D 01

UPDATE : V . R = 0.1625384D-05 AT T = 0.7382222D 06
POSITION= -0.4462901D 04 0.5098573D 04 0 . 5975729D 02
VELOCITY= -0.7784815D 01 -0.6785709D 01 -0.2433618D 01
MAGNITUDE OF RADIUS AT PERIGEE = 0.6777290D 04

Examp1e 3, restricted problern of three bodies

c

c

SUBROUTINE RP3Bl(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN ,RELER,ABSER)

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(4),YP(4),PHI(NPHI),PHIP(NPHI),YYP(4)
DOUBLE PRECISION MU,HUSTAR,JAKOBO,JAKOB
DIMENSION HEAD1(8)
COMMON/CONST/MU,MUSTAR,JAKOBO
DATA ZAPP1/0.60D-04/
LOGICAL UPDATE,IVAN,ACROSS
DATA HEAD1/8H V . R =,8H X = ,8H Y = ,8H VX = ,

1 8H VY = ,8H X-0.5 =,8H Y+0.6 =,8H VX-1 . 0=/

IF (UPDATE) GO TO 100
C- ---- -- --
C PHI COMPONENTS AND DERIVATIVES
c---

PHI (1) = Y(1)*Y(3) + Y(2)*Y(4) - O.ODO
PHI(2) = Y(l) - 0. ODO
PHI(3) = Y(2) O. ODO
PHI(4) = Y(3) O.ODO
PHI (5) = Y(4) - O.ODO
PHI(6) = Y(1) - 0 . 5DO
PHI (7) = Y(2) + 0.6DO
PHI(8) = Y(3) - l.ODO
PHIP(l) = Y(l)~'~'YP(3) + YP(1)~'~"Y(3) + Y(2)*YP(4) + YP(2)*Y(4)
PHIP(2) = Y(3)
PHIP(3) = Y(4)

'PHIP(4) = YP(3)
PHIP(5) = YP(4)
PHIP(6) = YP(1)

- 122 -

PHIP(7) = YP(2)
PHI P (8) = YP (3) .

c---
IF (INDEX .GT. 0) RETURN

C---
C EVALUATE JACOBIAN INTEGRAL--IF NOT IN TRAPFI NG ITERATION
c------------------------------------- ----------------------------------

R1 = ((Y(1)+MU)**2 + Y(2)**2)**0.5
R2 = ((Y(l) -~1USTAR)'""._.2 + Y(2)'""''~2)'"'""0. 5
JAKOB = 0.50D0''<(Y(3)''.-Y(3) + Y(4)''.-Y(4) - Y(l)''<Y(1) -Y(2)''.-Y(2))

1 - MUSTAR/R1 - ~1U/R2
ERR = DABS(JAKOB - JAKOBO)

. IF (ERR . GT . ZAPP1) PRINT 1500,T,ERR
1500 FORMAT(' AT T=' ,D15 .7,/, ' DEVIATION FROM INITIAL JACOB. INTEGRAL='

1 ,D15.7)
RETURN

c-- -----
100 CONTINUE

C---
C UPDATE PORTION
c--- ---------------- ------ ------------- -------------------------- -------

PRINT 515,HEAD1 (INDEX),PHI(INDEX),T
IF (IVAN) PRINT 506,INDEX

C--- --
C •

506 FORMAT(' ?HI(' ,12, 1
) HAS VANISHED OVER THE ENTIRE STEP' , /)

515 FORMAT(/,' UPDATE:',3X,1A8,2X,D15.7,3X,' AT T = ',D23 .16)
516 FORMAT(/,' UPDATE:' ,3X,

1 ' JACOBIAN INTEGRAL DEVIATES FROM INITIAL VALUE' ,/,
2 I ERROR = I ,D23.16,3X, ' AT T =I , D23 .16)

c
RETURN
END

RESTRICTED PROBLEM OF THREE BODIES

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 .
T = O. OOOOOOOD 00
Y(1) = 0.1200000D 01
Y(3) = O.OOOOOOOD 00
JACOBIAN INTEGRAL (AT T=O)

ABSERR = 0.1000000D-05
TF = 0.6192169D 01
Y(2) = O.OOOOOOOD 00
Y(4) = -0.1049358D 01
= -0.1041589D 01

IFLAG = 15

UPDATE: V . R = -0.5720000D-14 AT T = O.OOOOOOOOOOOOOOOOD 00

UPDATE: Y = -0.5720000D-14 AT T = O.O OOOOOOOOOOOOOOOD 00

UPDATE: VX = -0.5720000D- 14 AT T = O.OOOOOOOOOOOOOOOOD 00

UPDATE: VY = 0.2863387D- 10 AT T = 0 . 8613208344927214D 00

UPDATE: X-0.5 = -0.2070436D-09 AT T = 0.1046283795762994D 01

UPDATE : Y = 0.2214422D-06 AT T = 0.1448084325660553D 01

UPDATE: V . R = 0.2089552D- 06 AT T = 0.1458571434491113D 01

- 123 -

UPDATE: X = -0.3681892D-05 AT T = 9 . 1459781007315835D 01

UPDATE: VY = -0.4598140D-07 AT T = 0.1461133846568575D 01

UPDATE: y = -0.2195288D-05 AT T = 0. 1472952988035424D 01

UPDATE: Y+0.6 = -0.1556487D-06 AT T = 0.1878139441039302D 01

UPDATE: VY= 0.2477135D-10 AT T = 0.2126492806452552D 01

UPDATE : Y+0.6 = 0.1346683D -07 AT T = 0.2396228631771846D 01

UPDATE: y = 0.7046048D-09 AT T = 0.3096069058097068D 01

UPDATE : VX= 0 ·.4738180D-06 AT T = 0.30961069 17047610D 01

UPDATE: V . R = -0.8186590D-07 AT T = 0.3096161443936035D 01

UPDATE : VY = -0 . 8476735D-10 AT T = 0 .4065756069599825D 01

UPDATE : VX-1. 0= 0. 1300828D-06 AT T = 0.4670806136154190D 01

UPDATE: y = -0.9581854D-07 AT T = 0.4719374046932356D 01

UPDATE: VY = 0. 2R4292JD-03 AT T = 0.4731191718141558D 01

UPDATE: X= 0.1546022D-09 AT T = 0.4732544685928599D 01

UPDATE: V . R = 0 . 2026057D-06 AT T = 0.4733753099474543D 01

AT T= 0 . 4743581D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0 . 6069291D-04

AT T= 0 . 4746211D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6172761D-04

UPDATE: y = 0.6909008D-06 AT T = 0 . 4744244036815875D 01

AT T= 0 . 4744244D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.7270484D-04

AT T= 0.4746211D 01
DEVIATION FROM INITIAL JACOB. INTEGRAL= 0.6172761D - 04

AT T= 0.4749214D 01
DEVIATION FRm1 INITIAL JACOB. INTEGRAL= 0. 6186404D-04

AT T= 0 . 475 2682D 01
DEVIATION FROM INITIAL JACOB . I NTEGRAL= 0.6150855D-04

AT T= 0.4756721D 01
DEVIATION FROM INI TIAL JACOB. INTEGRAL= 0 . 6088231D-04

AT T= 0.47 61458D 01
DEVIATION FROM I NITIAL JACOB. INTEGRAL= 0.6011234D-04

UPDATE: vx -1 . o= -o·. 2864002D-09 AT T = 0.4847312724886170D 01

c

- 124 -

UPDATE : X-0 .5 = 0.2669629D- 08 AT T =

UPDATE: VY = -0.6669679D-11 AT T =

UPDATE: y = -0 . 4183865D-11 AT T =

T = 0.6192169331319640D 01

SOLUTION:
0 . 1200064D 01

ERRORS :
0.6353576D-04

-0.7016685D-04

0 . 7016685D-04

JACOBIAN INTEGRAL:

INITIAL VALUE
CURRENT VALUE
DIFFERENCE

NFE = 1206

= -0.1041589D 01
= -0 . 1041543D 01
= 0 .4571855D-04

NEXT~A = 67

0. 1322904D-03

0. 1322904D-03

0 . 5145936167581279D 01

0 . 5330930517574152D 01

0.6192102468600831D 01

-0 . 1049417D 01

0 .5919274D-04

SUBROUTINE RP3B2(NPHI,INDEX,NEQN,T ,Y,YP,PHI, PHIP ,KOUNTR,UPDATE ,

c

1 IVAN,RELER,ABSER)
IMPLICIT REAU•B (A-H,O-Z)
DIMENSION Y(4),YP(4),PHI(NPHI),PHIP(NPHI),YYP(4)
DOUBLE PRECISION MU,NUSTAR,JAKOBO,JAKOB
DIMENSION HEAD1(8)
COMNON/CONST/MU,NUSTAR,JAKOBO
DATA ZAPP1/0.60D-04/
LOGICAL UPDATE,IVAN,ACROSS
DATA HEAD1/8H V . R =,8H X = ,8H Y = ,8H VX = ,

1 8H VY = . ,8H X-0 . 5 =,8H Y+0.6 =,8H VX- 1. 0=/

IF (UPDATE) GO TO 100
C---
C INITIALIZATION OF JACOBI INTEGRAL ANALYSIS
c---

IF (KOUNTR . GT. 0) GO TO 22
ERRO = O.ODO
ACROSS = .FALSE.

22 CONTINUE
C---
C PHI CONPONENTS AND DERIVATIVES
c---

PHI(1) = Y(1)*Y(3) + Y(2)*Y(4) - O.ODO
PHI(2) = Y(1) - O. ODO
PHI(3) = Y(2) - O.ODO
PHI(4) = Y(3) - O.ODO
PHI(S) = Y(4) - O. ODO
PHI(6) = Y(1) - O.SDO

PHI(7) =
PHI(8) =
PHIP(l) =
PHIP(2) =
PHIP (3) =
PHIP(4) =
PHIP(5) =
PHIP(6) =
PHIP (7) =
PHIP(8) =

Y(2) + 0.6DO
Y(3) - LODO

- 125 -

Y(1)*YP(3) + YP(1)*Y(3) + Y(2)*YP(4) + YP(2)*Y(4)
Y(3)
Y(4)
YP(3)
YP(4)
YP(1)
YP(2)
YP(3)

c-- ---------
IF (INDEX .GT. 0) RETURN

C---
C EVALUATE JACOBIAN INTEGRAL--IF NOT IN TRAPPING ITERATION
c-------------------- ---

c

R1 = ((Y(1)+MU)*•""2 + Y(2)>'<>'<'2)•'<>'<0.5
R2 = ((Y(l) -MUSTAR)*•'<2 + Y(2)•'~'>'<2)>h'<O. 5
JAKOB = 0 .50DO•'r(Y(3)•'<Y(3) + Y(4)•"'Y(4) - Y(l)•\'Y(l) -Y(2)•'<Y(2))

1 - MUSTAR/R1 - HU/R2
ERR = DABS(JAKOB - JAKOBO)
IF (ERR .GT . ZAPP1) GO TO 35
IF (ACROSS) • PRINT 1501,T,ERR,ZAPP1,CRJD,TCR
ACROSS = .FALSE .
ERRO = ERR
RETURN

35 CONTINUE

C JACOBI INTEGRAL PROBLEMS--FURTHER ANALYSIS
c

c

c

IF (.NOT. ACROSS) PRINT 1503 ,T,ERR ,ZAPP1
ACROSS = .TRUE.
IF (ERR . LT. ERRO) GO TO 38
TCR = T
CRJD = ERR

38 CONTINUE
ERRO = ERR

1501 FOR~1AT(/, 1 AT T= 1 ,D15. 7, 1 THE J. I . DEVIATION = 1 ,D15. 7,
1 /,I WHI CH IS AGAIN LESS THAN I ,D15.7,/,
2 'MAX DEVIATION=' ,D15.7,' OCCURRED AT T= ' ,D15.7,/)

1503 FORMAT(/,' AT T=',D15 .7, .r THE J . I. DEVIATION= ',Dl5.7,
1 I' I \VHICH IS GREATER THAN I 'D15. 7 '/)

RETURN
100 CONTINUE

C--------- ----------------------- --------------- -- ------------- ---------
C UPDATE PORTION
c----------------------------- ------ -- --- -------------------------------

PRINT 515,HEAD1(INDEX) ,PHI(INDEX),T
IF (IVAN) PRINT 506,INDEX

C--------------------- -- -------- -- -------------- -- ---------------------
e----------- ---------- ------------------- --- ---- ------------------------
c

506 FORMAT(' PHI(' ,I2, ') HAS VANISHED OVER THE ENTIRE STEP' ,/)
515 FORMAT(/,' UPDATE:',3X,1A8 ,2X,D15.7,3X,' AT T = ',D23.16)
516 FORMAT(/, I UPDATE : I ,3X,

1 ' JACOBIAN INTEGRAL DEVIATES FROM INITIAL VALUE' ,/,
2 I ERROR = I , D23.16,3X, 'AT T = I ,D23.16)

c
RETURN
END

- 126 -

RESTRICTED PROBLE~1 OF THREE BODIES

OPERATION PARMIETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = 0.1000000D-05
T = O.OOOOOOOD 00 TF = 0.6192169D 01
Y(l) = 0 . 1200000D 01 Y(2) = O.OOOOOOOD 00
Y(3) = O.OOOOOOOD 00 Y(4) = -0.1049358D 01
JACOBIAN INTEGRAL (AT T=O) = -0.1041589D 01

IFLAG = 15

UPDATE: V . R = -0 .5720000D-14 AT T = O.OOOOOOOOOOOOOOOOD

UPDATE: y = -0.5720000D-14 AT T = O.OOOOOOOOOOOOOOOOD

UPDATE: vx = - 0. 5720000D-14 AT T = O.OOOOOOOOOOOOOOOOD

(Output deleted . See output from RP3B1)

UPDATE: X = ' 0.1546022D-09 AT T = 0.4732544685928599D

UPDATE: V . R = 0.2026057D-06 AT T = 0 . 4733753099474543D

AT T= 0.4743581D 01 THE J.I. DEVIATION = 0.6069291D-04
WH ICH IS GREATER THAN 0 .6000000D-04

UPDATE: y = 0.6909008D-06 AT T = 0.4744244036815875D

AT T= 0.4767043D 01 THE J.I . DEVIATION= 0.5927332D- 04
WHICH IS AGAIN LESS THAN 0.6000000D-04
MAX DEVIATION= 0.6186404D-04 OCCURRED AT T= 0.4749214D 01

00

00

00

01

01

01

UPDATE: VX-1.0= -0.2864002D -09 AT T = 0.4847312724886170D 01

UPDATE : X-0.5 = o:2669629D-08 AT T = 0.5145936167581279D 01

UPDATE: VY = -0.6669679D-11 AT T = 0 . 5330930517574152D 01

UPDATE: Y = -0.4183865D-11 AT T = 0.6192102468600831D 01

Final conditions, accuracy, and Jacobian integral information
given in SUBPHI=RP3B2 results.

Example 4, derivative evaluation dependent upon tabular data

c

- 127 -

SUBROUTINE TABLE(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER,ABSER) .

IMPLICIT REAL~'"B (A-H,O-Z)
DIMENSION Y(2),YP(2),PHI(NPHI),PHIP(NPHI)
COHMON/GRID/ AA(10, 10) ,XX(lO), YY (10), IX, IY
COMMON/FVAL/AA1
LOGICAL UPDATE,IVAN

IF (UPDATE) GO TO 100
IF (KOUNTR .GT. 0) GO TO 20

C---
C INITIALIZATION BLOCK
c---

AA1 = AA(IX, IY)
X1 = XX(IX+1)
Y1 = YY(IY+1)
XO = XX(IX)
YO = YY(IX)

20 CONTINUE
C---
C PHI AND PHIP
c---

PHI(1) = (X1-Y(1))*(Y(1)-XO)
PHI(2) = (Y1-Y(2))*(Y(2)-YO)
PHTP(l) = ((XO+Xl) -2.0DO~'"Y(l))>'<YP(1)

PHIP(2) = ((YO+Y1) -2. ODO>'<Y(2))*YP(2)
c---

RETURN
100 CONTINUE

C---
C UPDATE:
c---

c

c

c

c

c

c

IF (IVAN) RETURN
PRINT 1500,T,Y(1),Y(2)

1500 FORMAT(' T = ',D15. 7 ,2X, 'Y(l) = ',D15. 7, 2X, 'Y (2) = ',D15. 7)
GO TO (110,120),INDEX

llO CONTINUE
IF (PHIP(l) .GT. 0. ODO) · GO TO 115
X1 CROSSING
IX = IX + 1
XO = Y(l)
X1 = XX(IX+1)
GO TO 130

115 CONTINUE
XO CROSSING
IX = IX -1
XO = XX(IX)
X1 = Y(l)
GO TO 130

120 CONTINUE
I F (PHIP(2) .GT. O.ODO) GO TO 125
Y1 CROSSI NG
IY = IY + 1
YO = Y(2)

c

Y1 = YY(IY+1)
GO TO 130

125 CONTINUE
C YO CROSSING

IY = IY - 1
YO = YY(IY)
Yl = Y(2)

c
130 CONTINUE

AAl = AA(IX, IY)
CALL F(T,Y,YP)

- 128 -

C------ ----- -- ----------------------------------- -----------------------
C UPDATE PHI FUNCTIONS
c-------- ---------------------------------- -----------------------------

c

c

c

IF (INDEX .EQ. 2) _ GO TO 150
PHI(l) = +O.ODO
PHIP(l) = ((XO+Xl) -2. ODO•'<Y(l))•'<YP(l)
RETURN

150 CONTINUE
PHI(2) = +O.ODO
PHIP(2) = ((YO+Yl) -2.0DO•'<Y(2))>'<YP(2)
RETURN
END

SUBROUTINE F(T,Y,YP)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(2) ,YP(2)
COMMON/FVAL/AAl

YP (1) = AA 1 •'<T
YP(2) = AAl
RETURN
END

F EVALUATIONS DEPEND UPON TABULAR DATA

OPERATION PARMIETERS AND BOUNDARY CONDITIONS
RELERR = O.lOOOOOOD-05 ABSERR = O.lOOOOOOD-05
T = O.OOOOOOOD 00 TF = O.lOOOOOOD 01
Y(l) = 0.5000000D 00 Y(2) = 0.5000000D 00

T = 0.1250002D 00 Y(l) = 0. 5312501D 00 Y(2) =
T = 0 . 3250000D 00 Y(l) = 0. 7562501D 00 Y(2) =
T = 0 . 4322904D 00 Y(l) = O.lOOOOOOD 01 Y(2) =
T = 0 . 4768227D 00 Y(1) = 0 . 1161940D 01 Y(2) =
T = 0 . 5879338D 00 Y(l) = 0.1694318D 01 Y(2) =
T = 0 . 6378108D 00 Y(l) = 0.2000000D 01 Y(2) =
T = 0.67 95 800D 00 Y(l) = 0. 2330158D 01 Y(2) =
T = 0.7515860D 00 Y(1) = 0 . 3000000D 01 Y(2) =
T = 0 . 7558474D 00 Y(l) = 0. 3048178D 01 Y(2) =
T = 0.81 83474D 00 Y(l) = 0.3835276D 01 Y(2) =
T = . 0 . 8301035D 00 Y(l) = 0.4000000D 01 Y(2) =
T = 0 . 8912547D 00 Y(l) = 0 .5000000D 01 Y(2) =

IFLAG = 10

O. lOOOOOlD 01
0 . 2000000D 01
0.2643742D 01
0. 3000001D 01
0.4000000D 01
0.4498771D 01
0 . 5000001D 01
0.5936079D 01
0.6000000D 01
0.7000000D 01
0 . 7199854D 01
0.8361727D 01

T =
T =

0 .9431718D 00 Y(1) =
0.9881951D 00 Y(1) =

T = 0.1000000000000000D 01

- 129 -

0.6000000b 01 Y(2) = 0.9451986D 01
0 .7000000D 01 ~(2) = 0.1048752D 02

Y1 = 0.7293379684390654D 01 Y2 = 0.1078264334598878D 02

NFE= 192 NEXTRA = 95

Exact stopping conditions:

T = 0.1000000000000000D 01
Y1 = 0.7293380335138080D 01 Y2 = 0.1078264444194078D 02

NFE = 103 NEXTRA = 0

"Natural" stopping iteration with RKF45:

T = 0.1000000000000000D 01
Y1 = 0.7295142710565982D 01 Y2 = 0. 1078492347330573D 02
NFE = 1206 NEXTRA = 0

Example 5, highly oscillatory problern

c

c

SUBROUTINE OSCILB(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,
1 IVAN,RELER,ABSER)

IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION Y(1),YP(1),PHI(l),PHIP(1)
DATA PI/3.141592653589793DO/
GOMMON/NOSC/OSG
LOGICAL UPDATE,IVAN

IF (UPDATE) GO TO 100
c-----------------------------~---

oscPIT = OSC*PI*T
PHI(1) = DSIN(OSCPIT)
PHIP(1) = OSC*PI*DCOS(CSCPIT)

c-- -- -------------------------
RETURN

100 GONTINUE
c-------- --------------------- ··---------------------------------- -------
c UPDATE PORTION:
c-----------------------------·---

PRINT 528,T,PHI(1),Y(1)
IF (IVAN) PRINT 506

c

- 130 -

5 06 FORNAT (' PHI HAS VANI SHED OVER THE ENTIRE STEP' , /)
528 FORMAT(' T = ',D15.7,3X,' PHI= ' ,D15.7,3~,' Y = ',D15.7)

RETURN
END

HIGHLY OSCILLATORY PHI FUNCTION

OPERATION PARAMETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = 0. 1000000D-05 IFLAG = 10
T = O.OOOOOOOD 00 TF = 0.1000000D 01
Y(1) = 0.1000000D 01

T = 0. OOOOOOOD 00 . PHI = 0. 5 720000D-14 Y = 0.1000000D 01

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T
TO CHECK FOR MULTIPLE ZEROS OF A PHI COHPONENT \YITHIN A GIVEN STEP
THIS IS VERY INEFFICIENT.

T = 0.2000000D 00 PHI = -0.87196 71D-15 y = 0 . 1049600D 01
T = 0.4000000D 00 PHI = 0.1062963D-10 y = 0.1249600D 01
T = 0.6000000D 00. PHI = -0.4153248D-06 y = 0 .1705600D 01
T = 0.8000000D 00 PHI = 0.2076624D-06 y = 0 . 2561600D 01
T = 0.1000000D 01 PHI = -0.2790295D-14 y = 0.4000000D 01

NFE = 104 NEXTRA = 14

Example 6, a large convergence region (a flat PHI component)

c
c

c

SUBROUTINE FLAT(NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP , KNTR,UPDATE,
1 IVAN,RELER,ABSER)

IHPLICIT REAL*8 (A-H,O-Z)
DI~ffiNSION Y(NEQN),YP(NEQN),PHI(NPHI),PHIP(NPHI)
LOGICAL UPDATE,IVAN
COMMON/EXPO/POWER,IPOW,IPOWM1

IF (UPDATE) GO TO 100
c-- -------------------------

PHI (1) = (T-2. ODO)>'d:IPOW
PHIP(l) = POWER>'<'(T-2. ODO)>'<'>'<'IPO\VMl

c--- ------------------------------
RETURN

c

- 131 -

100 CONTINUE
C---
e UPDATE:
c---

PRINT 1500,T,PHI(INDEX),PHIP(INDEX)
1500 FORMAT(' T = ',D15.7,2X,' PHI= ',D15 . 7,2X, ' PHIP = ',D15.7)

c
RETURN
END

LARGE CONVERGENCE REGION (IPOW=3):

OPERATION PARMIETERS AND BOUNDARY CONDITIONS

RELERR =
T =
Y(l) =
Y(3) =

0.1000000D-05
O.OOOOOOOD 00
0.1000000D 01
O.OOOO OOOD 00

ABSERR =
TF =
Y(2) =
Y(4) =

0.1000000D-05
0.6283185D 01
O.OOOOOOOD 00
0.1000000D 01

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T

IFLAG = 10

TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN A GIVEN STEP
THIS IS VERY INEFFICIENT.

T = 0.1999863D 01 PHI = 0.2548717D-11 PHIP = 0.5597606D-07

RESULTS WITHOUT PANIC:
OPERATION PARMIETERS AND BOUNDARY CONDITIONS (UNCHANGED)

T = 0.1991936D 01 PHI= 0.5242923D-06 PHIP = 0.1950609D-03

LARGE CONVERGENCE REGION (IPOW=5):

OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T
TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT \YITHIN A GIVEN STEP
THIS IS VERY INEFFICIENT.

T =
T =
T =

0.1976935D 01
0.1999863D 01
0.20227910 01

RESULTS WITHOUT PANIC:

PHI =
PHI =
PHI =

0.6527201D-08
0 .475557 1D-19
0.6149686D-08

PHIP =
PHIP =
PHIP =

OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

0.1414984D-05
0. 1740733D-14
0.1349126D-05

T = 0.1941217D 01 PHI= 0.7018756D-06 PHIP = 0.5970052D-04

LARGE CONVERGENCE REGION (IPOW=9):

- 132 -

OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

THE PANIC OPTION IS BEING USED AT EACH STEP IN RKF45T
TO CHECK FOR MULTIPLE ZEROS OF A PHI COMPONENT WITHIN A GIVEN STEP
THIS IS VERY INEFFICIENT.

T = 0 . 1841841D 01 PHI = 0.6192059D-07 PHIP = 0.3523585D-05
T = 0.1863945D 01 PHI = 0.1597486D-07 PHIP = 0 .1056731D-05
T = 0.1886048D 01 PHI = 0 . 3239611D-08 PHIP = 0 .2558668D-06
T = 0.1908152D 01 PHI = 0 . 4652094D-09 PHIP = 0.4558469D-07
T = 0.1930255D 01 PHI = 0.3905037D-10 PHIP = 0. 5039110D-08
T = 0.1952358D 01 PHI = 0. 1264419D- ll PHIP = 0 . 2388612D-09
T = 0 . 1974462D 01 PHI = 0 .4621086D-14 PHIP = 0. 1628519D-ll
T = 0 . 1996565D 01 PHI = 0.6658683D-22 PHIP = 0.1744612D-18
T = 0. 2018668D 01 PHI = 0.2753896D-15 PHIP = 0.1327654D-12
T = 0. 2040772D 01 PHI = 0.3113351D-12 PHIP = 0 .6872455D-10
T = 0.2062875D 01 PHI = 0.1535695D- 10 PHIP = 0.2198210D-08
T = 0. 2084978D 01 PHI = 0.2310881D-09 PHIP = 0.2447437D-07
T = 0.2107082D 01 PHI = 0. 1851144D- 08 PHIP = 0.1555848D-06
T = 0.2129185D 01 PHI = 0.1002105D-07 PHIP = 0 .6981408D-06
T = 0.2151289D 01 PHI = 0.4151962D-07 PHIP = 0.2469960D-05

RESULTS WITHOUT PANIC;
OPERATION PARAMETERS AND BOUNDARY CONDITIONS (UNCHANGED)

T = 0.1908152D 01 PHI = 0.4652094D-09 PHIP = 0 .4558469D- 07
T = 0. 2137431D 01 PHI = 0. 1748919D-07 PHIP = 0 .1145319D-05

Examp l e 7, a bouncing PHI function

c

c

SUBROUTI NE BOUNCE(NPHI,INDEX,NEQN,T,Y,YP,PHI, PHIP,KOUNTR,UPDATE,
1 IVAN ,RELER,ABSER)

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(NEQN),YP(NEQN),PHI(NPHI),PHIP(NPHI)
DATA AO ,A1/3.0D0,6.0DO/
LOGICAL UPDATE,IVAN

IF (UPDATE) GO TO 100
c---

TMAO = T - AO
TMA1 = T - Al
PHI(l)= (TMAO)~h'(4 ,'((TMA1)~h'r 2

PHI(2)= 4 . ODO*TMA0~'<'>'(3 ,'(U1A1*~'(2 + 2. ODO,'(TMA0*~'(4 ~'(TMAl
PHI(3) = (T-10.0D0)**6
PHI(4) = 6 .0DO*(T- 10 .D0)**5
PHI(S) = (T-12 . 0D0)**8

- 133 -

PHI(6) = 8.0DO*(T-12.D0)**7
c---

PHIP(1) = PHI(2)
PHIP(2) = 12.0DO*THA0'""*2 '"" TMA1'""'""2 + 8.0D0'""TMA0'""'""3 * TMA1

1 + 8. ODO,'<TMA0'""'""3 '"" TMA1 + 2. OD0'""THAO,h'<4
PHIP(3) = PHI(4)
PHIP(4) = 30.0DO*(T-10.0D0)**4
PHIP(5) = PHI(6)
PHIP(6) = 56.0DO*(T-12 . 0D0)**6

C----- --
C

RETURN
c

100 CONTINUE
C---
C UPDATE: IF INDEX=2,4,6) RETURN. THESE ARE THE DERIVATIVE UPDATES.
C----- --------- ---
e

c

c

c

IF (INDEX/ 2''l'2 . EQ . INDEX) RETURN
PRINT 527

527 FORMAT(/,' UPDATE:')
IF (IVAN) PRINT 529,INDEX,T

PRINT 528, T, INDEX,PHI(INDEX)
'

528 FORMAT(' T = ',D15.7,3X, 'PHI(' ,I2, ') = ',D15.7)
529 FOR~1AT(' PHI (', I3, ') VANISHED THROUGHOUT THE STEP AT T = ',D15. 7)
530 FORMAT(' T=' ,D23.16)

RETURN
END

BOUNCING PHI COMPONENTS:

OPERATION PARMIETERS AND BOUNDARY CONDITIONS

RELERR = 0.1000000D-05 ABSERR = 0.1000000D-05 IFLAG = 10
T = O.OOOOOOOD 00 TF = 0.1884956D 02
Y(1) = 0. 1000000D 01

UPDATE :
T = 0.3002370D 01 PHI(1) = -0.2836618D-09

UPDATE:
T = 0.6000000D 01 PHI(1) = -0.49694980-15

UPDATE:
T = 0. 9924322D 01 PHI(3) = -0.18785040-06

UPDATE:
PHI (3) VANISHED THROUGHOUT THE STEP AT T = 0.9961253D 01
T = 0.996 1253D 01 PHI(3) = 0.3384011D-08

UPDATE :
T = · 0.11841980 02 PHI(5) = -0 .3888253D-06

- 134 -

UPDATE :
PHI(5) VANISHED THROUGHOUT THE STEP AT T = _0. 1209020D 02
T = 0. 1209020D 02 PHI(5) = -0 .4380999D-08

