Dynamik der Flugsysteme

Institut fur Bl.:

IB.Nr.. 515-83/2

L

Freigabe: Die Bearbeiter:
Dr. M.K. Horn

Dr. K.H., Well
Der Abteilungsleiter

Der stellv_ Institutsdirektor :

Dr.Ing.J.Ackermann
Der Institutsdirektor :

Dieser Bericht enthalt:

A Numerical Solution of State/Control-Constraint
Optimal Control Problems with Piecewise Continuous

Derivatives Using RKF45T

=t

Unterschriften:

Lol
aun Hd'l G/d(: '

Uaun Ui (ald

(], p 1MWWMV
68 Blatt davon

45 pgitder Bl.Rechnerprotokoll

Diagramme

Ort-Oberpfaffenhofen l Datum: Dezember 1982 [Bearbeﬂer: Dr.Horn Zeichen rm

Constraint optimal control problems, numerical analysis, Runge-Kutta
algorithm, ordinary differential equatiomns, discontinuous systems

A Numerical Solution of State/Control-Constraint Optimal Control

Problems with Piecewise Continuous Derivatives Using RKF45T

Summary

The state/control-constraint optimal control problem is analyzed for a sy-
stem having discontinuities in the state equations. As an example, an in-
equality comnstraint is treated by construction an additional, discontinuous
differential equation. This differential equation is defined as a multi-
branched function. The integration package permits the switching between
branches as the points of discontinuity are isolated. Any function which
may be expressed in terms of the independent variable, dependent variables,
and/or hte first derivatives may be used to define the points of discon- -
tinuity, which will be located automatically within integration precision.
The procedure required to define the branching and the points of discon-
tinuity is presented, as well as an example showing the effect of the
method on the convergence rate and the accuracy.

Beschréinkte optimale Steuerungsprobleme, numerische Mathematik, Runge—Kutta
Verfahren, gewdhnliche Differentialgleichungen mit Unstetigkeiten

Numerische L&sung von zustands—/steuerungs—beschrinkten optimalen
Steuerungsproblemen mit stiickweise stetigen rechten Seiten

mittels RKF45T

Ubersicht

Das beschridnkte optimale Steuerungsproblem mit unstetigen Differential-
gleichungen wird analysiert. Als Beispiel wird eine Ungleichungsbe-
schrinkung durch Hinzufligen einer zusidtzlichen unstetigen Differential-
gleichung behandelt. Diese Differentialgleichung besteht aus mehreren
Zweigen. Das Integrationsverfahren erlaubt das Umschalten nach auto-
matischem Anhalten an den Unstetigkeitsstellen. Jede Funktion, die

von der unabhZngigen Variablen, den abhingigen Variablen, oder deren
Ableitungen abhingt, kann zur Definition der Unstetigkeitsstellen be-
nutzt werden. Diese Stellen werden mit Integrationsgenauigkeit gefunden.
Die Prozedur, die die Unstetigkeitsstellen isoliert, wird beschrieben;
ebenso werden Ergebnisse beziiglich Genauigkeit und Konvergenzgeschwin-
digkeit diskutiert.

CONTENTS

Preface

I 2 Introduction

. » . . . - 0 - s . . - ° . 0 -

2. Treatment of Constraint Equations

3. Handling Discontinuous Differential Equation Systems

. 'Trajectory Problem . « = & » & = » = o»

5. PHI Vector and its Relation to the ODE Branc

6. SUBPHI, the

Subroutine for Evaluation PHI .,

Calling Sequence for SUBPHI
Evaluation of the PHI and PHIP Vectors

Update
643l
6.3.2

T Subroutines

Tl
Ve

Portion of SUBPHI .,
PHI Functions in the "Vanished"

Logical Parameters at Update .

ZWEIGE and WARN

Subroutine ZWEIGE i om o dE Eoa

Subroutine WARN ¥ b oty Ml Lo b B TR

8. Subroutine TROMP - The Conversion from TOMP

9. Test Results

9.1
9.2

. . . - - ° L) . 0 0 ®

A Sample Integration . . .+ +« « « « + .

The Constrained Trajectory Optimization

10. Conclusions

11. References

Appendix
Appendix

Appendis

. . - - - -

A, TROMP Liskilog + ¢« + ¢ s s s ¢ 3

B. Program Listing for OCP Applicatio

C: Dutput from QCP Example . . + «

Problem

11
1.2
12
17

17

18
18

22

23

24
40

59

PREFACE

This report is one of a series of four volumes which are designed to treat
state/control-constraint optimal control problems involving piecewise con-
tinuous system equations including the extensive use of equation expressions
written in terms of linearly interpolated tabular data. The titles of the
volumes are listed below:

Volume 1 A FORTRAN Program for Solving State/Control-Constraint Optimal
Control Problems with System Equations Having Expressions
Involving Tabular Data

in which extensive use of linearly interpolated tabular data is made, treat-
ing the system truly as a piecewise continuous problem by halting the inte-
gration for equation updates as each table grid point is isolated. (See
reference [1].)

Volume 2 A Numerical Solution of State/Control-Constraint Optimal Control
Problems with Piecewise Continuous Derivatives Using RKF45T

in which constraint violation boundary crossings are isolated, and in which
discontinuities in the derivatives occur. (Current report)

Volume 3 RKF45T--a Runge-Kutta 4/5 Software Package with User-Supplied
Stops Involving the Dependent Variables and First Derivatives

in which the user may actually halt the integration at any point which may be
described as a function of the independent variable, the dependent variables,
and the first derivatives. (See reference [2].)

Volume 4 Subroutines for Handling Tabular Data Used in System Equatioms

in which a table structure is defined consistent with the example in Volume
1, and in which practical routines are provided for adjusting and analyzing
tabular functions. (See reference [3].)

1. INTRODUCTION

The solution of the state/control-constraint optimal control problem (OCP)
often involves the solution of piecewise continuous ordinary differential
equations (ODEs). Two difficulties arise in handling such problems. First,
the points of discontinuity are often defined by analytic expressions involv-
ing the dependent variables and the first derivatives. Locating the corre-
sponding value of the independent variable generally requires the use of an
iterative procedure. Secondly, the solution of the ODE system is generally
embedded in a more complicated software package for generating cost functions
or gradients, giving the user almost no control over the integration problem
during execution. The convergence properties of an optimization package,
however, may depend heavily upon the precise location of the points of dis-
continuity.

This report is one of a set of four volumes designed to treat the
state/control-constraint optimal control problem in which discontinuities
exist in the ODE system. The procedure involves stopping the integration at
the points of discontinuity and reevaluating the ODEs so that they describe
the problem correctly. This particular application, which concerns a system
of equations having relatively few discontinuities, contains constraint
boundaries whose points of violation are isolated in order to control the
extent of the boundary violatiom.

The core of the software package system is a fifth order Runge-Kutta integra-
tor, RKF45T, adapted to stop the integration whenever any component of a
user-supplied vector of stopping conditions vanishes, giving the user the
opportunity to redefine the ODE system before the integration continues. The
points of discontinuity, along with the constraint boundary conditions, are
supplied as the stopping conditions for the integration, with the ODEs
defined as multi-branched functions. At each user-defined stopping point,
the branch of the ODEs may be redefined. RKF45T is a modification of the
RKF45 program (RKF45 being written H.A. Watts and L.F. Shampine [6]) and
becomes the RKF45 package if no auxiliary functions are treated.

The TOMP software package due to D. Kraft [4] is designed to be used for tra-
jectory optimization in connection with nonlinear programming algorithms.
The subroutine TOMP solves the initial value problem of a given dynamic sys-
tem with control parameters expressed as cubic or exponential splines (either
continuous or discontinuous). In order to stop the integration at vanishing
points of an auxiliary vector function, PHI, TOMP (Trajectory Optimization by
Mathematical Programming) has been modified into TROMP (TOMP with
zero-TRapping capabilities). The modifications to TOMP are minimal, bas-
ically involving the labeling of operation flags. (A user, not wishing to
supply additional stopping conditions, may reference the TROMP package with
RKF45T as the ODE solver in the "non-trapping" mode and obtain the same sol-
ution that would have been generated by using RKF45.)

The main additional feature of the TROMP is the ability to reference the
RKF45T package to solve the ODE problem, giving the user the opportunity to
monitor the integration process after each step and to interact with the ODE
system as each point of discontinuity is isolated.

TROMP and RKF45T work together as a unit to provide the user with the cost
function and/or the gradients. Control functions are described as splines
(cubic or B-splines), with the defining constants to be adjusted by the opti-

2

mization package to locate the optimal conditions subject to constraints. The
choice of optimization procedure is not restricted by the TROMP/RKF45T
system. The SLLSQP package (Sequential Linear Least Squares Program) [5]
has been chosen for the application due to its rapid convergence rate,
although other packages may be used.

Before one can solve a trajectory optimization problem, one must first be
able to solve the differential equations involved. Thus, the first portion of
this report involves a detailed description of the treatment of a particular
ODE system, showing how the problem of discontinuities is handled and how the
updates are interpreted once the discontinuities are isolated. The TOMP soft-
ware package is described in [4]. This report assumes that the reader is
familiar with TOMP, and gives only the additional parameters needed to con-
vert TOMP into TROMP. TROMP is used to solve a particular constrained
trajectory optimization problem. Emphasis is given to the handling of con-
straint equations by discontinuous functions rather than by continuous
functions which have contributions even when the constraints are not
violated. A listing of TROMP is given in the Appendix A (with modifications
from TOMP clearly marked). The RKF45T package is documented in Volume 3 of
this series of reports [2] giving numerous applications. The user may be
referred to that report for further details in describing the integration
stopping conditions. A more extensive application of the RKF45T package for
the state/control-constraint OCP involving linearly interpolated tabular
data is given in Volume 1 [1] of this series. While [1] may be of interest to
the reader, it is not essential for understanding of the current application.

2. TREATMENT OF CONSTRAINT EQUATIONS

An example of particular importance in optimizatiom applications is the han-
dling of comstraint equations. One may treat a constraint, g £ g% by defining
an additional solution component of y, whose derivative is zero whenever the
constraint is not violated but which is positive whenever the constraint is
violated, e.g.,

dy_ . 0 ;» & S g%

(2.1)
dt k (g - g*)? , & > g

where g and g* may both depend upon t, y, and y'. If the values of t can be
located for which g=g¥, Yp+] can be evaluated quite accurately and will give
a good measure of the amount of the constraint violation. The user includes
the boundary condition that Yo+1= 0 at the initial conditions and that
|yq+1! < EPS at the final time as a criterion for adjusting the control
parameters. The amount of computing time required to isolate the discontinui-
ty points, g=g¥*, is the price one pays for using such a function.

Another means of expressing this additional ODE is by using a continuous
function, such as hyperbolic tangent, e.g.,

dyn+]

£2.2) = (g - g*)? (tanh(k(g - g¥)) + 1) ,

dt

where g and g* may both depend upon t, y, and y'. The right hand side is con-
tinuous, and so requires no integration stops to activate different branches
of the function. The function, however, also has a contribution when the con-
straint is not violated. Comparisons are made between the use of the two
types of equations.

3. HANDLING DISCONTINUOUS DIFFERENTIAL EQUATION SYSTEMS

If the discontinuities of an ODE system can be expressed as a function of t,
y, and y', the user, with the help of the RKF45T package, can halt the inte-
gration at these points and restart the integration using the new branch of
the function. The user must supply a subroutine SUBPHI which defines the dis-
continuity points as the zeros of a particular function, PHI. (A vector of
stopping conditions of any dimension can be supplied.) (See §5.)

To handle the isolation of the points of discontinuity efficiently, the right
hand sides (RHS) of the ODE system must be "smooth". Thus, if a part of an ODE
component has multiple algebraic expressions, (e.g., Eqn. 2.1), the integra-
tor must "see" only one expression until the discontinuity has been isolated.
Then an update will be made, and the integrator will again "see" only one
expression, this time a new omne. Thus, the integrator actually steps beyond
the discontinuity, the user-supplied PHI "detector" sees the error, and an
iterative procedure isolates the point of discontinuity. The user then
restarts the integration from that point. Updating the ODE system occurs in
the user-supplied subroutine SUBPHI, so that flags may be held in common with
the RHS evaluator, assuring that the correct "branch" of the functions is
being used. (See §5.)

As an example, consider Eqns. (4.9.1)-(4.9.3) which define the parameter a; .
Discontinuities in slope occur at V=150 and V=536.36. The branches of this
ODE expression are branch 1 for V<150, bramnch 2 for 150<V<536.36, and branch
3 for V>536.36. The initial conditions impose branch 1, Eqn.(4.9.1). The
integration is continued until the point V=150 is isolated, at which time the
branching is changed to branch 2, Eqn.(4.9.2). During the "isolation" of
V=150, points for which V>150 are studied with branch 1 still assigned. Only
when the value of T is isolated for which V=150, will the branch assignment
be changed. These changes take place within the RKF45T system (in the
user-supplied subroutine, SUBPHI, described in §6). The integration contin-
ues with the new branch assignment until V crosses the V=150 boundary again
or the V=536.36 boundary. When the new discontinuity is located, the branch
assignment is again changed. The subroutine evaluating the ODE makes no
Jjudgements concerning the current value of V, accepting the assigned branch-
ing value supplied through common statements.

4, TRAJECTORY PROBLEM

The equations of motion for the flight of a missile are given by

(&.1) v' = a, cos « + a, sina

(4.2) ¥ = (a sin a - a,cosa)/V

(4.3) x' = Vecos ¥

(4.4) z' = -V sin ¥

The equations

(4.5.1) ' 0 ; la| < a
Ly =

(4.5.2) (ap = la])?, le] > ay

may be used for handling the constraint, |¢| £ « , with
(4.6) ¥" =(a% sin & - a; cos a + (a' =¥HYV') /V

for specifying boundary constraints on ¥', but neither of these equations is
needed to solve (4.1)-(4.4). The control parameter, a,, is expressed as a
cubic spline, with coefficients changed by the optimization package until the
cost function is minimal subject to the given constraints. The remaining
parameters in (4.1) through (4.6) are:

(4.7) angle of attack: a=+a,/ (Cyu V)
where C, = -2.33D-03,
(4.8.1) forward acceleration: ay = (F(t) - W(a)) / m(t)

with thrust:

(4.8.2.1) F + FPd g t < £
F(t) =

(4:8:2.2) 0 . £t > t

where tb=2.7 S, F0=29.87D+03 N, FP=7.9D+03 N/s,

and with mass:

(4.8.3.1)] + % (F0+ 0.5%FP%E) £t , t = tb
m(t) =

§.8:3.2 t o

() m(b 5

where m0=137.2kg, X =-0.4133D-03kg/N/s

and
(4.8.4) Drag: W(a) = 0.5 C,p vZ s
= 2
where CW CW + CW o
0 oa
with C, =0.3, C. =0.7/rad?, p =1.22575kg/m*®, and S=0.0314m?
0 oo

In addition, a the constraint on the contrel function a,, is written:

z]

m
(4.9.1) 0.002 V2 v HOWE R,
(4.9.2) a, = 45.0 + 0.66 (V - 150) , if V, <V< V,
(4.9.3)) 300 y BE A EY

with V_ = 150 m/s, V2 = 536.3636363636364 m/s

Together, the velocity and a, define the constraint angle of attack:
m

(4.10) @, = -a, / (C, V)

m
m

The initial conditions for the example in §9 are:

= = Q
VO 58.6 m/s , 30 90
Xy = 8.7 # cos(¥) m , ImO = 0
z, = -8.7 * sin(¥) m , Xé = 0

Final boundary conditions are given in §9.2.

5. PHI VECTOR AND ITS RELATION TO THE ODE BRANCHES

The user-supplied subroutine SUBPHI, evaluates the vector PHI, whose zero
points are being sought. The PHI vector is perhaps best described by example.
Considering the problem in §4, one finds the following possible points of
discontinuity: (1) |e]| = ey, (2) TIME = 2.7, (3) V = 150, and (4) V = 536.36
. Suitable PHI expressions for locating these points would be:

(5.1) PHI(1) = (ALPHAM - ALPHA)*(ALPHA - (-ALPHAM))
{5.:2) PHI(2) = T * TFINAL - 2.70D0
(5:3) PHI(3) = (VUPPER - V)*(V - VLOWER)/VSCALE

where VLOWER and VUPPER are bounds on the velocity, and where VSCALE is a
scaling factor used to give a relative error convergence test. PHI(1l) and
PHI(2) remain moderate, and so no scaling of these parameters is imposed. In
(5.2) the T value is a normalized time value. (To compare the actual time
value with the burn-out time, 2.70, T must be scaled by the final time.
Parameters needed for generating the derivatives of the PHI components can be
held in common blocks with the derivative generating subroutines so that a
Newton-Rhapson estimate for the zero points will be used by the RKF45T pack-
age.

The choice of (5.2) is clear. The form of PHI(1) and PHI(3) has been selected
because the branch switching in the ODEs may be identified with pairs of
bounds, e.g.,

ALPHA = + ALPHAM or ALPHA = -ALPHAM .
The expression
PHI = (XHIGH - X) * (X - XLOW)

is always positive when XLOW < X < XHIGH and always negative when X < XLOW
or X > XHIGH. Thus, such a structure is useful in identifying the boundaries
sought. The PHI function is parabolic in X, and therefore the sign of the
derivative with respect to X (not with respect to the independent variable)
can be used to identify the upper or lower bound, which is useful in treating
the velocity branches since the lower and upper bounds are shifted at each
update to reflect conditions in the new region, i.e.,

for the first branch, VLOWER
for the second branch, VLOWER
for the third branch, VLOWER

0 and VUPPER = 150;
150 and VUPPER = 536.36363636364;
536.36363636364 and VUPPER = V¥,

where V¥ in an absurdly high value which will never be reached.

The user identifies the branch of the ODE to be used by the current values of
PHI. Changes in the branches are permitted only at the update of a PHI compo-
nent. Thus, the integrator steps over the discontinuity, the PHI analysis
detects the difficulty and traps the zero point. The user may then update the
branch being used, designated by the parameter IZWEIG(J), J=1,2,3, where
branches for (4.5) are defined by J=1, those for (4.8.2) and (4.8.3) for J=2,
and those for (4.9.1-3) by J=3. The sign of the PHI component being updated

reflects conditions in the new branch. Thus, at update, the new branches of
I, Eqn. (4.5) are defined by:

1, if PHI(1) > 0 , corresponding to Eqn. (4.5.1),
2, if PHI(1l) < 0 , corresponding to Eqn. (4.5.2),

IZWEIG(1)
and IZWEIG(1)

the branches of F(T) and MASSE(T) are both defined by:

IZWEIG(2)
and IZWEIG(2)

1, if PHI(2) < 0 , for Equs. (4.8.2.1) and (4.8.3.1)
2, if PHI(2) > 0 , for Eqns. (4.8.2.2) and (4.8.3.2).

Since the VLOWER and VUPPER bounds are shifted at each update, identification
of the branching in (4.9.1-3) is handled through the derivative of PHI with
respect to V, rather than by using the the sign of PHI. PHI(3) is parabolic in
V with nose up. Thus,

if D(PHI(3))/DT < 0, conditions are at the upper boundary, and
if D(PHI(3))/DT > 0, conditions are at the lower boundary,

giving the following criterion for update:

If D(PHI(3))/ DV < 0, IZWEIG(3) IZWEIG(3) i

new old

If D(PHI(3))/ DV > 0, IZWEIG(3) IZWEIG(3) = 1

new old

With the new branch identified, the user must then set the the VLOWER,
VUPPER, and VSCALE values corresponding to the region. (See Figure 1.)

$
\
V=0 ,V=150 V=536.36 v
/ \
0ld Branch=1 New Branch=2 \
\
Before update: Branch=IZWEIG(3)=1 VLOWER=0 VUPPER=150
Slope = d&/dV < 0O

After update: Branch=IZWEIG(3)=2 VLOWER=150 VUPPER=536.36

Figure 1. Branching assignment at a velocity discontinuity. The new
branching at the point V=150 is defined.

6. SUBPHI, THE SUBROUTINE FOR EVALUATING PHI

The user is required to supply the subroutine SUBPHI for evaluating the PHI
vector and its derivatives. (If no derivatives or derivative estimates are
available, the user must set the PHIP values to 0.0D0 .) SUBPHI has two basic
sections: (1) the evaluation of PHI and PHIP, and (2) the updating portion
for vanished PHI components. The structure of SUBPHI is shown in Figure 2. In
each of the basic sections the user has particular identifying flags so that
a great deal of analysis can be carried on in SUBPHI if this is necessary. If
the integrator is embedded deep within another software package, SUBPHI gives
the user access to the integration at each step, so that he may monitor the
solution as it proceeds.

6.1 Calling Sequence for SUBPHI

The calling Sequence for SUBPHI is:

SUBROUTINE SUBPHI (NPHI, INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,
1 UPDATE , IVAN, BOUNCE , ABSER)

If SUBPHI is used only to evaluate the PHI components, most of the parameters
in the calling sequence will not be needed. For analysis of discontinuous
functions during the integration, however, most of the parameters are of
importance. These parameters are defined below, with their use better
described in the following two sections.

Parameters identifying the ODE are:

T the independent variable

¥ the dependent variable, dimensioned (NEQN)
YP tﬁe derivative of Y, dimensioned (NEQN), and
NEQN the dimension of the system.

where Y and YP always correspond to the given value of T. Parameters related
to the PHI vector are:

PHI the vector whose zeros are sought, dimensioned (NPHI),
PHIP the derivative of PHI, dimensioned (NPHI), and
ABSER the convergence tolerance or the '"vanishing" criteria for the PHI

components. ABSER may be set by the user when KOUNTR=0. If no val-
ue is set, the integration tolerance will be imposed.

with the indicators or counters:

INDEX designates the component of PHI being studied.

Figure 2.

SUBROUTINE SUBPHI(.....) |
Dimension and Logical statements |
-------------- e
|
Y
-------------- , S ————
IF (UPDATE) GO TO | => === +
-------------- TR R SRS | |
I I
X |
-------------- L LT T ——— |
IF (KOUNTR .GT. 0) GO TO [=>=+ |
-------------- FOSREeEEET————
I § |
Y v v
-------------- e n = S I
Initialization block before | | |
the integration begins. | | |
-------------- et T |
I I
fommmmmm—— Cmmmmmmm—————- +
| l
v l
-------------- P S 1
Evaluation of the PHI and PHIP | |
vectors. | |
-------------- S TR SN PR |
l |
v v
-------------- S B gy |
RETURN | |
---------------------------------- & |
|
I
---------------------------------- + |
Update of PHI component: | |
Shift branch identifiers; | ===<e=ast
Re-evaluate the derivative. |
-------------- L LT T —
|
\Y
-------------- R
RETURN |
.................................. +

The structure of the SUBPHI subroutine.

10

KOUNTR counts the number of updates of the PHI vector (KOUNTR=0, indicates
the initial call to SUBPHI before the first integration step is tak=-
en.) If KOUNTR < 0, the value is a dummy value indicating special
conditions at update and will be reset to its previous value after
the update. '

LOGICAL parameters are:

UPDATE = .FALSE. => The PHI and PHIP values are to be computed for RKF&5T

analysis.

UPDATE = .TRUE. ==> PHI(INDEX) is being updated.

IVAN = .FALSE. => PHI(INDEX), which is being updated, did mot vanish
throughout the integration step.

IVAN = .TRUE. => PHI(INDEX), which is being updated, did wvanish

throughout the integration step.

BOUNCE = .FALSE. => PHI(INDEX), which is being updated, did not "bounce"
on a zero on the previous integration step.

BOUNCE = .TRUE. ==> PHI(INDEX), which is being updated, did "bounce" on
a zero on the previous integration step.

6.2 Evaluation of the PHI and PHIP Vectors

If the RKF45T analysis needs the values of PHI and PHIP, SUBPHI is referenced
with UPDATE = .FALSE. . The user must return values of PHI(J) and PHIP(J),
J=1,...,NPHI corresponding to the given values of T, Y, and YP. If deriva-
tives of PHI(K) (or derivative estimates) are not available for any value of
K, the user must set PHI(K)=0.0D0. (This activates a false-position estimate
of the zeros of PHI(K) instead of a Newton-Rhapson estimate.)

The user may want to monitor the'progress of the integration which is possi-
ble by understanding certain "flags" given in the calling sequence. SUBPHI
is referenced after each integration step.

The following conditions hold when UPDATE = .FALSE., i.e., when the user is
expected to supply the PHI and PHIP vectors.

INDEX = 0 The integration is proceeding, no zeros have been detected by
RKF45T

INDEX > 0 The existence of a zero has been detected and the analysis has
been shifted into TRAPPD to locate the zero of PHI(INDEX).

KOUNTR = 0 The integrator is calling SUBPHI before the integration begins.
YP has already been evaluated.

The user should set ABSER if he wishes to use a tolerance differ-

ent than the integration tolerance as the convergence tolerance
for PHI.

11

Any initialization needed for PHI may be set. KOUNTR will be set
to unity upon return to RKF45T.

The user must supply PHI and PHIP.

The PHI components for the example in §4 are given in §5. For this problem,
derivatives are available, with needed parameters held in common blocks from
KRODE, the subroutine for evaluating the ODE expressions. (See Appendix B.)

6.3 Update Portion of SUBPHI

Once a zero of PHI has been isolated, an update call is made to SUBPHI, with
INDEX indicating the component of PHI which has vanished. If several compo-
nents of PHI vanish at the same value of T, a separate update call will be
made for each component that has vanished with INDEX corresponding to the
subscript of the PHI component being updated at each call. The user should
set a flag, "IF (UPDATE .EQ. .TRUE.) GO TO ...". In TROMP, updates are
important, because the integration is not returned to the driving program
after each step. Thus, the update calls are the user's only access to the ODE
system when discontinuities are isolated.

6.3.1 PHI Functions in the "Vanished" Region

The treatment of the PHI function near "zeros" is thoroughly described in
[2]. A brief description is provided here, so that the user may understand
the sign convention at update. An additional problem, the "bouncing" PHI
function is described, since ODE components such as (4.5) could involve a PHI
function which has the same sign on both sides of a zero.

6.3.1.1 The PHI Component near a Zero

The RKF45T system is designed to trap the zeros of a vector PHI. The "zero
detection" criterion is that the function change sign as it passes through
zero (or that, by chance, the integrator step on a zero). Also, since a van-
ishing point is located within a specified tolerance, a neighborhood exists
around each zero, in which any point is an acceptable "zero" of the PHI func-
tion. Any point within this neighborhood will be referred to as a "vanishing
point" of PHI. The user is generally seeking only one such "vanishing point"
within a neighborhood of a specific zero.

The RKF45T package assumes that a PHI component will change sign as it passes
through a zero point. When a "vanishing point" is located, the PHI component
may not yet have passed through the actual zero, and, therefore, would not
yet have changed sign. The sign of PHI at the "vanished" point will be
changed artificially if the zero point has not been crossed so that the sign
reflects conditions in the new region.

THE SIGN AT UPDATE INDICATES CONDITIONS ACROSS THE BOUNDARY .

(Any artificial sign change is made BEFORE the component is updated, giving
the user the chance to change the PHI value before the integration

12

continues.) If the integration step size is sufficiently small, several
points may be located all defining the same zero. If a PHI components van=-
ishes at both ends of an integration step and at the intermediate points stu-
died by the RKF45T package, the component is considered to have vanished
throughout the step. In such a case, the sign at the beginning of the step
will be retained, since this sign was chosen to reflect conditions in the new
region. A PHI component which has vanished throughout the step will be
updated with the parameter IVAN=.TRUE., indicating that the same zero has
been detected. Thus, in solving the example in 84 if IVAN = .TRUE., an imme-
diate return from SUBPHI (KRPHI) is activated (with no user changes). An
example of a PHI function with several "vanished points" representing the
same zero is given in §6.3.1.3).

6.3.1.2 The "Bouncing"” PHI Component

A "bouncing" PHI component is one which fails to change sign as it passes
"through" zero, i.e., the function bounces on the zero. (A function which
"bounces" on +EPS or -EPS, where |EPS| is less than the given tolerance, is
also considered to be a bouncing function.) The RKF45T analysis is not
designed to handle bouncing functions in general. One important example, how-
ever, which may occur in the constrained optimization problem, can be treated
by the RKF45T package. This example concerns the handling of inequality con-
straints. More specifically, a constrained optimization problem may study
solution estimates which violate the inequality constraints, with the amount
of the boundary violation measured through the use of expressions such as
(4.5). As the solution is driven back to the boundary, it enters a "vanished"
region. Operation near the inequality boundary is often essential in opti-
mization problems, which can lead to solution estimates that remain close to
the boundary for a while and then diverge in either direction (since the
optimization analysis does not guarantee that the inequality conditions are
satisfied until convergence is achieved). Thus, bouncing functions could
appear in such applications.

The RKF45T package will attach the incorrect sign to a PHI component that
bounces. (See §6.3.1.1.) (If several "vanished" points, corresponding to
this zero, are detected, the imposed sign will still be incorrect since the
sign is determined by the '"new region" which has been incorrectly
identified.) This sign error on the bouncing component is first detected
when that component leaves the '"vanished" region. (The conditions are that:
|PHI| at the beginning of the step is less than tolerance, |PHI| at the end of
the step is greater than tolerance, with the incorrectly imposed sign indi-
cating a sign change that does not actually exist.) The bouncing function is
detected by the RKF45T package, before the iterative process attempts to trap
the indicated =zero, and the sign of PHI at the beginning of the step is
changed. An wupdate call is made to SUBPHI with UPDATE=.TRUE. and
BOUNCE=.TRUE. for parameter PHI(INDEX). This call updates a previously
detected zero, informing the user that an incorrect sign has been given. The
value of KOUNTR is set equal to -1. If the user wants the step to be repeated
(with PHI now properly identified), he must change KOUNTR to -2 and update
the ODE system using the correct information. If KOUNTR=-2, an immediate
return to the integrator is activated and the step is repeated. (A step would
need to be repeated if an improper branch of the ODE had been identified
because of the sign error on PHI.)

In the example in 84, the problem of a "bouncing" function will not generally

occur. For PHI(3) to "bounce", the velocity would have to reach a local maxi-
mum or minimum at the values of 150 or 536.36. PHI(2), involving the burn-out

13

time, will never "bounce'. The problem of handling the inequality constraint,
|e| < oy, however, could encounter such difficulties, as explained above.
The user may want to ignore the bouncing possibility (and analysis of the
warnings message from RKF45T), but he should at least print a message if
BOUNCE=.TRUE. is encountered.

If a bouncing PHI component is identified in the problem stated in §4, the
user should approach the difficulty in the following manner. He should shift
the ODE branch indicator to reflect the proper conditions, and should set
KOUNTR=-2. He must then reevaluate the ODE since the expressions have been
changed. The step will then be repeated with the correct expression for the
ODE.

6.3.1.3 An Example of Zeros of a PHI Component

The identification of the zeros of the function depicted in Figure 3 and the
sign imposed on PHI will be discussed. Each "*" corresponds to the value of
the function at an integration step. The function depicted in Figure 3 is

£(t) = |glt,y(t),y' (£))]| - g*

where g* can vary with t, y, and y', but is presented as a constant to simpli-
fy the drawing. Figure 4 shows the associated PHI component as a function of
T. In the problem given in 84, « would be g, and ap would be g*¥ with g* no
longer a constant. If f < 0, branch 1 of Y(I) is to be used, if £ > 0, branch
2 of Y(I) is to be used. (For the problem in §4, Y(5)=I, has such
branching.) The PHI component related to the f function is

PHI(1) = (g* - g) (g + g*)

which is a parabola in g, nose up, centered at g=0, with zeros at g=-g* and
g=+g*. The zeros correspond to those of f . The sign of PHI(1l) is positive if
f < 0 and negative if £ > 0.

Each integration step is identified on the t axis by a letter (a through o,
with f and g deleted to avoid confusion). A "vanishing region" about f=0 is
depicted by a band ("- - - -"). Points falling within this region correspond
to |PHI| values less than tolerance and will activate an update in the RKF45T
package. The RKF45T analysis of the functions in Figure 3 would be as
follows:

Points a,b Integration proceeds normally

Point ¢ Zero is isolated; branch change from 1 to 2; the sign of PHI is
changed to "-" even though the integration has not crossed the
boundary

Point d The same '"vanished" point is isolated, IVAN=.T.; the sign of

PHI is not altered (now correct); no update changes (the same
zero was detected).

Points e,h,i Integration proceeds normally

Point j Zero 1is isolated; branch change from 2 to 1; the sign of PHI is
changed to "+" (point is already across the boundary)

14

* *
w
= e S~ P T =N T T e e - L o
l * *
f=0-—+ ———————————————————————— S S S e G SR e e
I * * *
o e s e e e W W e G e e e e e e . = = =
1 *
l
|
| e
~eteecamge-h-¢-d--g--h---i--==-j-=-c-ck-=]l--p-n-g-=--=---
I [1 t
Branch 1 | Branch 2 | Branch 1| Branch 2
| ! I
- - = - bounds the "vanished" region about f = 0, i.e.,
corresponding to "vanished" PHI values.
* designates results from an integration step

Figure 3 A "bouncing" function with additional standard zeros.

Point k The same '"vanished" point is isolated, IVAN=.T., the sign of
PHI is not altered (still correct); no update changes (the same
zero was detected).

Point 1 The function BOUNCES, but the bouncing goes goes undetected.
The same ''vanished" point is isolated, IVAN=.T., The sign of
PHI is not altered (remains + although it should be =-); no
update changes (the same zero was detected).

Point m PHI is negative, a sign change is detected, and RKF45T begins

Points n,o

zero search; ''bouncing' is detected before the zero iteration
process begins; update call, BOUNCE=.T., allows the user to
change branching from 1 to 2 and update the ODE; the inte-
gration step is repeated with correct branching

Integration proceeds normally.

A summary of conditions at each point is given in Figure 4, where the reader
should note that f and PHI have opposite signs if the analysis is proceeding
correctly. An * denotes an artificial sign change (See §6.3.1.1.)

15

from 1 to 2

l
l #
[
I
l it
l
EPS + = = = = = = = = = = = = = = = @ = = = == -
| it ## it
PHI=0= === == === === m oo oo e o m oo e e mm e
f # #
“EPS 4+ = = = = = = = = = = = @ @ @ = @ @ = @ ° = .= -~
| ## i
| i
] it #
l it
l
-e4=e=ecgm-b-c-d-=e==h===j=====j===m=ck==]--m-p-0=======-=
| i | t
Branch 1 | Branch 2 | Branch 1| Branch 2
i designates results from an integration step
fmemmmmmmmemmemmmeememeeee e emeeeemmeemeememeseemeeeeemeseemeee—=- +
| Point IVAN BOUNCE £ PHI Branch change
tmcacaccan T fommm————— dmmmmm fommm————— S +
| a,b . L [
| |
| c F F - - from 1 to 2 |
I |
| d T F + = none |
1 I
| e,h,d + a !
I i
L 3 F F + + from 2 to 1
l I
| ki T F - + none |
I |
| m T F + +* first none |
| then |
| |
| l
| n F F + - bouncing will
| be detected I
l in RKF45T |
| I
= e :
$onsccaaas P —— S omean- T —— S TS — +
| * denotes an artificial sign change |
e T +

Figure 4. PHI as a Function of T, corresponding to f in Figure 3, with
summary of conditions at integration points.

16

6.3.2 Logical Parameters at Update

The logical parameters at update are summarized below. For each example
UPDATE=.TRUE.

IVAN=BOUNCE=.FALSE. Normal update. INDEX informs the user of the component
of PHI which has vanished.

IVAN = .TRUE. (BOUNCE=.FALSE.) The solution vanished throughout the
entire integration step. The user has discovered the
same zero. (The sign will be kept the same as at the
beginning of the step.)

The user may want to activate a return without chang-
ing conditions.

BOUNCE = .TRUE. KOUNTR=-1, IVAN=.FALSE.

A component of PHI has bounced on a zero rather than
passing through zero. An incorrect. sign may have been
imposed.

This 2zero has already been updated. KOUNTR has been
given a dummy value to indicate that this is a second
"update" to inform the user of a possible problem.

If the PHI component indicates that an error existed
in the ODE system, because of this bouncing error, the
user may force the STEP TO BE REPEATED, by setting
KOUNTR=-2. In this case, the user should make cor-
rections to the ODE system.

For the problem in 84, the standard update (UPDATE=.TRUE., IVAN=.FALSE.,
BOUNCE=.FALSE.), requires a change in branches of the appropriate ODE compo-
nent. These branches are identified by IZWEIG(J) descibed in §85. If
IVAN=.TRUE., no update is permitted, since the zero from the previous step
has again been detected. If BOUNCE=.TRUE., the branches are reset, the deriv-
atives are recomputed, and the integration step is repeated.

7. SUBROUTINES ZWEIGE AND WARN

The user is required to provide subroutine ZWEIGE which defines the branches
of the ODEs to be used at the initial time. The ZWEIGE call is an insertion
in the original TOMP package which gives the user access to the problem
before the integration package is called. (When ZWEIGE is referenced, y' is
not yet available at t.) An optional subroutine WARN is also included to
print warning messages if the wrong branch of a function is being used. The
user defines the structure of both subroutines.

T

7.1 Subroutine ZWEIGE

The calling sequence of ZWEIGE is: ZWEIGE(NEQN,T,Y) with any other required
parameters supplied through common blocks. In the example given, branch
information, denoted IZWEIG(J), J=1,2,3, is held in common block BRANCH in
subroutines F, SUBPHI, and ZWEIGE, (named KRODE, KRPHI, and ZWEIGE, respec-
tively). (See Appendix B.)

TROMP (or TOMP) may be used in either a forward or a backward differencing
mode. In the forward differencing mode, the integration always occurs in the
forward direction. In this case, ZWEIGE may be simple in structure, if the
user can recognize the branch assignments. In the backward differencing mode,
the integration occurs in either the forward direction (T=0 to T=1) or in
the backward direction (T = 1 to T = 0). The initial conditions for the back-
ward integration are the final conditions from the forward integration. The
user must provide the branch information at TF for the backward integration.
In general, the final step of the forward integration will give the correct
branching information for the start of the backward integration. If, however,
RKF45T isolates a zero at T=1, the branch update could give the wrong infor-
mation, i.e., a point of discontinuity update at TF would change the branch
information for continued integration in the forward direction. The user
should print warnings if incorrect branches are given in ZWEIGE.

For the example presented, IZWEIG(1l) must be computed for each integration
since the choice of branching depends upon the control function, a,, which
changes at each integration. IZWEIG(2) and IZWEIG(3) are known and are
defined for all integrations. ZWEIGE is listed in Appendix B for the example
(and initial conditions) in §4.

7.2 Subroutine WARN

Subroutine WARN is supplied to print warning messages if conditions are out-
side the current bounds. Since the trapping procedure is identified (through
non-zero values of INDEX) only after one step across the boundary has been
made, a "time-lag" has been inserted, stating that two steps over the bounda-
ry must be made before the warning is activated. WARN has an additional mode
(MODE=4) which checks branching at the initial conditions or at update, where
the time lag is not to be imposed. Sufficient comment cards are present in
the subroutine 1listing (Appendix B) so that the user can understand the
structure of the program. This subprogram is not essential to the TROMP anal-
ysis but is a good safety feature to include.

8. SUBROUTINE TROMP--THE CONVERSION FROM TOMP

The user is required to supply specified information for the TOMP software
package. (See [4].) The user must also provide the following information for
the TROMP package:

18

. subroutine SUBPHI, given in an external reference statement, the subrou-
tine which evaluates the PHI components whose zeros are being sought,

' subroutine ZWEIGE, given in an external reference statement, the subrou-
tine for evaluating the "branch" identifiers for the ODE expressions at
the initial conditions,

o the values of NPHI, the dimension of the PHI vector, and the logical
parameter, TRAP to identify the use of the zero trapping optiom.

If the user wishes to reference TROMP as TOMP, i.e., without the
zero-trapping option, he must supply dummy subroutines for SUBPHI and ZWEIGE
(which will not be referenced) and set NPHI equal to a positive value (pref-
erably unity for less wasted storage). The only integration package, current-
ly existing for use in TROMP, is the RKF45T package.

The communication through the TROMP calling sequence is the same as that in
TOMP (described in [4]), with the additional subroutine names, SUBPHI and
ZWEIGE added. The CTROMP common block has additional parameters, TRAP and
NPHI. TRAP is set equal to .TRUE. if the trapping option is to be used in con=-
junction with the RKF45T integrator; NPHI states the number of components in
the supplied stopping vector, PHI. Otherwise, the common block CTROMP, which
conveys parameters needed for TROMP, contains the same information as CTOMP
(which is the common block link between TOMP and the user). The parameters in
CTROMP have been reordered in the standard form, i.e., double precision, sin-
gle precision, integer, and logical.

An additional common block IDENT has been included to identify the particular
integration (as a debugging aide). The form for IDENT is

COMMON/ IDENT/ITERS ,KNT,KNTFI ,KNTBI

ITER8 identifies the current iteration in the optimization
package (not supplied in TROMP),

KNT =1, indicates the first forward integrationm,
KNTFI = J, indicates the Jth perturbed forward integration,
KNTBI =1, indicates the backward integration.

Otherwise, TROMP and TOMP are used identically. TROMP is listed in Appendix A
with the modifications listed between comment cards of the form
1" "

o AR P W

8. TEST RESULTS

The problem presented in § 4 must be considered in two parts. First, the
individual integrations with stops at the discontinuities, and then the
application an optimization code using the cost function and gradient evalu-
ations from TROMP to optimize the trajectory subject to given constraints.
Input parameters are given in the driving program and are again printed in

19

the output listing (Appendix C). The final time is a fixed value, TF = 3.2 s
(with a burn-out time of 2.7 s).

9.1 A Sample Integration

To illustrate the isolation of the points of discontinuity, the first inte-
gration is presented with "dense" printing. The solution is printed after
each acceptable integration step, with output at discontinuity points of the
ODE (zeros of the PHI function) showing the branch of the ODE to be used as
the integration continues. The initial choice of branches is also printed.
The solution is listed in Appendix C.

The detected points of discontinuity involve the velocity (PHI(3)=0), corre-
sponding to the branching in az , and the burn-out time (PHI(2) or TIME=2.7),
corresponding to the branching in the thrust and mass equations. The a > a
boundary is never violated during this sample integration, meaning that Ia'
does not switch branches during the first integration. Conditions not per-
taining directly to the integration have been deleted in the output in
Appendix C.

The initial branching is IZWEIG(1l)=1, i.e., Eqn. 4.5.1, IZWEIG(2)=1, i.e.,
Eqns. 4.8.2.1, 4.8.3.1, and IZWEIG(3)=1, i.e., Eqn. 4.9.1. At the following
T values, discontinuities in the ODEs are isolated and the following branch-
ing changes are made:

Time: Parameter: New Branch: Corresponding
Equation:
T= 0.1384 V= 150. IZWEIG(3)=2 Eqn. 4.9.2
T= 0.5501 V= 536.5; IZWEIG(3)=3 Egqn. 4.9.3
T= 0.8438 TIME=2.7 IZWEIG(2)=2 Egqn. 4.8.2.2

The integration required 201 derivative evaluations of which only 9 were used
to isolate the discontinuities.

9.2 The Constrained Trajectory Optimization Problem

The Sequential Linear Least Squares Programming [5] is applied to the problem
in §4 with initial conditions the same as those in the sample integration in
§9.1. A description of the OCP may be found in [4]. The trapping option is
again used (with printing suppressed) to locate discontinuities in the dif-
ferential equations (i.e., the zeros of the PHI function in the trapping rou-
tine). Test results are presented in Appendix C, giving the cost function and
constraint violations after each iteration, along with the altered control
function, a,.

With maximum velocity as the cost function,

20

F=-Y(1)

and equality constraints:

¥¢ = ~1.74533 rad,
Zg = -160.0 “ m,
x¢ = 15000.0 m,
and inequality constraint:
I, < ACC = 1.D-04
£

at the final conditiomn, TF = 3.2,

the optimization procedure converged in 15 iterations, with the requested
accuracy of 1.D-04 . The total derivative count required to solve the problem
was 67519 . Of this, 66159 were required to solve the integration problems
(including the PHI vector analysis), with the additional evaluations being
required by the TROMP package during the cost function evaluations. Of the
66159 derivative evaluations used during the integration, 4357 evaluations
were used to isolate the zeros of the PHI functions (or the points of discon-
tinuity). Computations were performed in double precision on the IBM 3081,
MVS system at the DFVLR-Oberpfaffenhofen, using the extended H-compiler.

The use of the double branched I, function, Eqn. (4.5) as opposed to a con-
tinuous function, which also has contributions when the constraint bounda-
ries are not violated, is justified in this example. If the ODE system in §4
is solved using the I, expression from Eqn. 2.2, along with the control func-
tion a, from the converged solution, the I value is

0.1827D+0 const: k=1

=
]

o
Id = (.1663D-1 const: k=5,
Iu = 0.2896D-2 const: k=10,

with the final boundary constraints naturally satisfied. Thus, the SLLSQP
program could not have converged to the given solution. On the other hand, a
solution which satisfies Ig < ACC, (the convergence tolerance for SLLSQP),
using Eqn. (2.2) will naturally satisfy, the bound using (4.5). Basically,
the use of (2.2) prohibits the solution from staying in particular regions
which are not yet across the boundary even though such regions could be
Important to the optimal solution. ‘

In addition, the problem in §4 with the SLLSQP package was run without the
trapping option for isolating discontinuities. A well written ODE package
should be able to reduce the step size near discontinuities, performing a
"natural"” trapping procedure for locating the discontinuities. This process
gives reasonable accuracy in some applications but can cause difficulties in
other problems. More specifically, at each point of discontinuity a number
of steps are attempted, each being rejected until the step size is small
enough that the detected error is less than integration tolerance. This does
not state that the point of discontinuity has been isolated within inte-
gration tolerance. The step size estimation process about a discontinuity (in
the "natural" trapping approach) is less efficient than the trapping proce-

21

dure in RKF45T, which can converge to the point of discontinuity using a
Newton iteration. In an optimization process, the integration '"noise"
resulting from the "natural" trapping causes convergence difficulties, since
the slight perturbations in the optimal solution estimates are contaminated
with more integration errors. The test results verify this argument. The
number of iterations for convergence with the "natural" trapping increased
from 15 to 25, with the total derivative count equal to 140526. (The drastic
increase in derivative evaluations is, in part, the result of a gradual build
up of such costs from each integratiom, i.e., each integration with "natural
trapping” requires more derivative evaluations than that required by the
RKF45T trapping procedure although never a striking amount. Naturally, the
ten additional iterations increase the derivative evaluation count
immensely.) The CPU time for the RKF45T run with trapping procedure is 18.71
s while that for "natural" trapping procedure (run to convergence) is 30.76.

10. CONCLUSIONS

The use of the RKF45T with trapping option for for isolating discontinuities
in systems of ordinary differential equations, can be an effective tool for
reducing computing time. The user must supply additional subroutines to iden-
tify the points of discontinuity as zeros of a particular function, PHI, whe=-
re PHI may be a vector of any dimension. The user defines the ODE system as a
multi-branched system, holding the branches "fixed" until update information
indicates that a point of discontinuity has been isolated. Then the "branch-
ing" may be redefined. The cost of applying such an iterative procedure for
isolating such discontinuity points was less than 7 per cent of the total
derivative count required by the RKF45T package, and increases in efficiency
if compared to "natural” isolation by a well-written software code, since the
latter procedure wastes more time in isolating discontinuities and does not
necessarily isolate the points within specified tolerance.

Acknowledgements

The author wishes to thank K.H. Well for his support throughout the develop-
ment of this system of reports and D. Kraft for his help in the use of the
TOMP and SLLSQP packages as well as for posing the problem presented in this
report. Thanks are also extended to R. Dierstein for his help in the use of
the report writing package for the final draft of the manuscript.

22

1l.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Horn, M.K,

Horn, M.K.

Hora, M.K.

Kraft, D.

Kraft, D.

Schittkowski, K.

Shampine, L.F.
Watts, H. A.

A FORTRAN Program for Solving State/Control-
Constraint Optimal Control Problems with
System Equations Having Expressions Involving
Tabular Data.

DFVLR-IB Nr. 515-83/1

RKF45T =~ A Runge-Kutta 4/5 Software Package
with User-Supplied Stops Involving the Dependent
Variables and the First Derivatives.

DFVLR-IB Nr. 515-83/3

Subroutines for Handling Tabular Data Used in
System Equations (in Appendix).

DFVLR-IB 515-82/16 (to be printed).

FORTRAN-Programme zur numerischen L&sung
optimaler Steuerungsprobleme.

DFVLR-Mitteilung 80-03, 1980.

Theorie und Anwendung der Sequentiellen
Quadratischen Programmierung in Steuerungs-
und Regelungsaufgaben.

DFVLR-Forschungs-Bericht, 1982
(to be published).

Practical Solution of Ordinary Differential
Equations by Runge-Kutta Methods.

SAND 76-0585, Sandia Laboratories,
Albuquerque, New Mexico, December 1976.

23

APPENDIX A. TROMP LISTING

sHeNeNoRsNelesNesNsEsRoReNoloNsNesRsRoNe RN ol o N el o o o R e B B B o 0w B I e I o I < I 5 B I o B o [o B o I 0 B B |

TOMP WITH MINOR MODIFICATIONS TO USE RKF45T AS ODE SOLVER
MODIFICATIONS--K.HORN 6.12.81

COPIED 28.08.82--CORRECT VERSION

. k. R e e e L L L L L T T T

SUBROUTINE TROMP(NX,MG,MQ,X,F,DF,G,DG,LDG,FCT,RHS,SLV,
SUBPHI, ZWEIGE)

e W W SR e S S M R AR S S SR MR MR SE D S N SR AN AR S A S A SR e G AR AR AR R A TR N N N NN A A N A M W e

TOMP TRAJECTORY OPTIMIZATION BY MATHEMATICAL PROGRAMMING

TROMP: INTEGRATION "TRAPPING' CAPABILITIES ADDED TO TOMP

e e e S S e e T S M e S mm e R NN S G MR NS M M A M M M SN M e R TR NN R R SR N SN SN T R SN e M M W M e e e

PURPOSE:

EVALUATION OF COST-FUNCTION F, CONSTRAINTS G,

GRADIENT VECTOR DF AND MATRIX OF CONSTRAINT NORMALS DG

AS FUNCTIONS OF PARAMETER VECTOR X.

TOMP SOLVES AN INITIAL VALUE PROBLEM (VIA SLV) OF A GIVEN
DYNAMICAL SYSTEM (IN RHS) WITH GIVEN INITIAL CONDITIONS (IN ZO0)
FOR A GIVEN PARAMETRIC. CONTROL MODEL U, WHICH IS TEMPORARYLY
REPRESENTED BY CONTINUOUS OR DISCONTINUOUS CUBIC OR EXPONENTIAL
SPLINE FUNCTIONS (SPLINE).

TOMP MAY BE USED FOR TRAJECTORY OPTIMIZATION IN CONNECTION WITH
A NONLINEAR PROGRAMMING ALGORITHM (E.G. CFMIN OR CQUNEW),

SEE REFERENCE /1/.

TROMP HAS THE ABILITY TO STOP THE INTEGRATION WHENEVER ANY
COMPONENT OF A USER-SUPPLIED, CONSTRAINT FUNCTION VANISHES.
THIS CAPABILITY IS USEFUL IN ISOLATING DISCONTINUITIES IN THE
ODE SYSTEM.

e T L T T e

INPUT ARGUMENTS:

NX : NUMBER OF PARAMETERS CHARACTERIZING THE PARAMETRIC CONTROL
MODEL TOGETHER WITH CERTAIN DESIGN PARAMETERS (NX > 0)

MG : TOTAL NUMBER OF CONSTRAINTS COMPRIZED IN VECTOR G
INCLUDING BOUNDS ON CONTROL PARAMETERS X (MG >= 0)

MQ : NUMBER OF BOUNDARY VALUES OF THE GIVEN PROBLEM (FURNISHED
IN FCT), WITH EQUALITY CONSTRAINTS FIRST (MQ >= 0)

X : VECTOR OF DIMENSION NX CONTAINING THE CONTROL PARAMETERS
AND DESIGN PARAMETERS IN THIS ORDER

LDG : LEADING DIMENSION OF MATRIX OF CONSTRAINT NORMALS DG

THETA, VECTORS OF DIMENSION MG EACH CONTAINING APPROXIMATIONS TO

SIGMA : LAGRANGE-MULTIPLIERS AND PENALTIES, RESPECTIVELY. THESE
VECTORS ARE IMPORTANT ONLY IN CONNECTION WITH MULTIPLIER
METHODS FOR CONSTRAINED OPTIMIZATION (CFMIN,E.G., IN CASE
OF WHICH VALUES OF THETA & SIGMA ARE FURNISHED BY THESE)

24

sRoleNoNesNeoRsEoRslesleoNoNoNasNsNesNsReollsNsNsNsNsNsNeoNoNoloNsNoNsNoNsNoRoNsNoNsRoResNoRNeslsNeNsNosNoEoRoRsNo NS NG R NS NG NN

OUTPUT ARGUMENTS:
F : SCALAR VARIABLE CONTAINING VALUE OF COST FUNCTION;
F IS EVALUATED IN USER FURNISHED SUBROUTINE FCT WITH
X AS ARGUMENT (SEE NEXT PARAGRAPH)

DF : VECTOR OF DIMENSION NX OF PARTIALS OF COST FUNCTION F
WITH RESPECT TO ARGUMENT VECTOR X
G : VECTOR OF DIMENSION MQ OF CONSTRAINT FUNCTIONS (BOUNDARY

VALUES OF THE PROBLEM); G IS EVALUATED IN FCT WITH X AS
ARGUMENT (SEE NEXT PARAGRAPH)
DG : JACOBI-MATRIX OF DIMENSION (LDG,MG) OF CONSTRAINT NORMALS

DF & DG ARE GENERATED BY FORWARD DIFFERENCES OR BY
IMPULSIVE RESPONSE-FUNCTIONS DEPENDING ON PARAMETER
IMPULS (SEE COMMON /CTROMP/ DESCRIPTION AND REFERENCE /1/)

SUBROUTINES AS ARGUMENTS:
FCT : USER SUPPLIED SUBROUTINE WITH PARAMETER LIST
FCT(P,X,%2,F,G,FP,FZ,GP,GZ,IFLAG)
PURPOSE :
COMPUTE COST FUNCTION & CONSTRAINT VECTOR OR THEIR
GRADIENT
INPUT ARGUMENTS:
P : DESIGN PARAMETERS (SECOND PART OF X)
X : PARAMETRIC CONTROL MODEL & DESIGN PARAMETERS
(SEE X ABOVE)
Z : VECTOR OF DIMENSION NZ (SEE COMMON /CTROMP/)
CONTAINING THE VALUES OF THE STATE VARIABLES
AT THE END OF THE FORWARD INTEGRATION (AS
RESULT OF THE INITIAL VALUE PROBLEM SOLVED IN
SLV)
IFLAG : INTEGER FLAG, INDICATING WHETHER FCT IS USED
FOR EVALUATING COST & CONSTRAINTS (IFLAG=0)
OR FOR GIVING INITIAL CONDITIONS FOR BACKWARD
INTEGRATION OF ADJOINT VARIABLES Y (IFLAG=1)
NOTE, THAT IN CASE OF GRADIENT GENERATION BY
FORWARD DIFFERENCES (IMPULS=.FALSE.!) FCT IS
USED IN THE "IFLAG=0" MODE ONLY
OUTPUT ARGUMENTS:
FOR IFLAG=0:
F : COST FUNCTION
G : BOUNDARY VALUES (EQUALITY CONSTRAINTS FIRST!)
FOR IFLAG=1 (IMPULS=TRUE ONLY!):
FP : VECTOR OF DIMENSION NP (SEE COMMON /CTROMP/)
OF PARTIALS OF COST FUNCTION F WITH RESPECT
TO DESIGN PARAMETERS P

FZ : VECTOR OF DIMENSION NZ OF PARTIALS OF COST
FUNCTION F WITH RESPECT TO STATE VARIABLES Z

GP : JACOBI-MATRIX OF (CURRENTLY) DIMENSION (25,25)
OF PARTTIALS OF G WITH RESPECT TO P

GZ : JACOBI-MATRIX OF (CURRENTLY) DIMENSION (25,25)
OF PARTTALS OF G WITH RESPECT TO Z

RHS : USER SUPPLIED SUBROUTINE WITH PARAMETER LIST
RHS(T,Z,DZ)
PURPOSE :

DESCRIPTION OF THE MATHEMATICAL MODEL OF THE DYNAMICAL
SYSTEM AS A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS
OF FIRST ORDER WITH RHS SUPPLYING THE RIGHT HAND SIDES

25

sNeoNsRoNsNesNesRsoNsNeoNsNeoNsNesNsRsNoNoNoNoRoRoRsNEoNoNoNeoNosNeoNoNesNoRsNoNoNoNoNsRoNoRoNoNosRoNoRoRoRsNoRoNsNoNoNoNsNeRe N

SLV

- e

SUBPHI :

ZWEIGE:

OF THE SYSTEM Z=F(T,Z,U); NOTE THAT THE INITIAL VALUES
ARE GIVEN IN ZO OF COMMON /CTROMP/.

IN MODE IMPULS=TRUE RHS ALSO MUST FURNISH THE RIGHT
HAND SIDES OF THE HOMOGENEOUS ADJOINT SYSTEM

DEFINED BY Y=-(DF/DZ)'*Y. THIS SYSTEM HAS TO BE INTE-
GRATED BACKWARD FROM TF, WITH SUITABLE 'INITIAL CON-
DITIONS' RESULTING FROM THE BOUNDARY VALUES AND FOR-
MULATED BY THE USER IN SUBROUTINE FCT IN MODE IFLAG=1.
FOR FURTHER INFORMATION SEE REFERENCE /1/.

INPUT ARGUMENTS:

T : INDEPENDENT VARIABLE (TIME)

A : CURRENT SYSTEM STATE (VECTOR OF DIMENSION NZ)
OUTPUT ARGUMENTS:

DZ : CURRENT STATE DERIVATIVES (WITH RESPECT TO T)

VECTOR OF DIMENSION (NZ)

: USER SUPPLIED STANDARD SOFTWARE SUBROUTINE WITH PARAMETER

LIST SLV(RHS,NZ,Z,T0,T1,RELTOL,ABSTOL, IFLAG,WORK, IWORK)
PURPOSE :
SUBROUTINE SLV INTEGRATES A SYSTEM OF NZ FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM
DZ(I)/DT = F(T,2(1),2(2), ... , Z(NZ))
WHERE THE Z(I) ARE GIVEN AT T
INPUT ARGUMENTS:
NZ,Z,TO,T1,RELTOL,ABSTOL, IFLAG
OUTPUT ARGUMENTS :
z
SUBROUTINE SUPPLIED AS ARGUMENT:
RHS (SEE ABOVE)
ALL ARGUMENTS ARE DESCRIBED IN REFERENCE /2/
REMARK: RKF78 IS URGENTLY RECOMMENDED AS SLV HERE,
BOTH WITH RESPECT TO ACCURACY & EFFICIENCY
REMARK: RKF4ST MUST BE USED FOR TRAPPING CAPABILITIES
UNTIL RKF78T IS AVAILABLE.
USER SUPPLIED, STANDARD SOFTWARE SUBROUTINE WITH
PARAMETER LIST SUBPHI (NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,
UPDATE , IVAN,, BOUNCE , ABSER)
PURPOSE :
SUBROUTINE SUBPHI EVALUATES THE PHI VECTOR WHOSE
ZERO ARE SOUGHT DURING THE INTEGRATION. UPDATES
AT ZERO LOCATIONS ARE POSSIBLE, PROVIDING USER
CONTROL OVER THE ODE SYSTEM DURING THE INTEGRATION.
SUBPHI IS REFERENCED AFTER EACH SUCCESSFUL INTEGRA-
TION STEP AND AT PHI VANISHING POINTS. (PHI MAY BE
A VECTOR OF STOPPING CONDITIONS--DIMENSIONED NPHI)
INPUT ARGUMENTS:
NPHI, INDEX,NEQN,T,Y,YP,KOUNTR,UPDATE , BOUNCE , ABSER
OUTPUT ARGUMENTS:
PHI, PHIP
ALL ARGUMENTS ARE DESCRIBED IN REFERENCE /XX/

USER SUPPLIED, STANDARD SOFTWARE SUBROUTINE WITH
PARAMETER LIST ZWEIGE (NEQN,T,Y)

PURPOSE:

26

oo OaaQaaaaaaoaoaoaaoaoaocoooaoaooaooOooaoaoaaoaaoooaoaOoaoOoOoOoaaoaaooaoaoaoaaaana

SUBROUTINE ZWEIGE IDENTIFIES THE BRANCHES OF EXPRES-
SIONS IN RHS WHICH ARE TO BE USED AT THE INITIAL
- CONDITIONS. THE STRUCTURE IS GIVEN BY THE USER
WITH ADDITIONAL PARAMETERS NEEDED HELD IN COMMON
WITH RHS, SUBPHI, AND ZWEIGE. INITIAL CONDITIONS
FOR THE BACKWARD INTIGRATION WILL BE THE FINAL CON-
DITIONS FROM THE FORWARD INTEGRATION.
ZWEIGE MUST IDENTIFY THESE BRANCHES CORRECTLY.
INPUT ARGUMENTS:
NPHI,T, Y (YP HAS NOT YET BEEN EVALUATED IN TROMP)
OUTPUT ARGUMENTS:
USER-SUPPLIED--IN USER SUPPLIED COMMON BLOCKS

R e L L L .

COMMON AREA:

CTROMP : THE MAIN TASK OF COMMON /CTROMP/ IS TO RESERVE STORAGE AND
TO COMMUNICATE VALUES OF THE PARAMETRIC CONTROL MODEL U.
A CONSEQUENCE THEREQOF IS THAT COMMON /CTROMP/ IS USED AT
LEAST IN SUBROUTINE RHS AND IN A SUPERVISING PROGRAM.

THE CONTROL MODEL U IS EXAMPLIFIED ONHAND OF THE
FOLLOWING FIGURE:

A
I I _ I I |
A o
| | BOLI.1:1) | I | UU(I,1,4) I
I I I I I I
| | + + + U(I,1,4) + |
u + | b | | + -+ [
|+ I ¥ I I '+ I
| + U(1,1,1) | + R o B S |
| . *® o RN I e
I + % ® % | * |
| = | * | * | il [
I % %* {- f. - * I
| | ® UI:252) | * * U(I,2,4) I
FdTeR i h RN *« l I* |
| U1,2,1) | ¥ | | I
I * I @ |
I I I I |
e >
GRID(1,1) GRID(KNOT(1),1) GRID(RNOT (INTERV),I
=GRID(1,2) GRID(1,3)
TO T ===> TF

THE INTERVALL (TO,TF) OF THE INDEPENDENT VARIABLE T

IS DIVIDED INTO I SECTIONS (I=1, ... ,INTERV; O<INTERV<6)
WITH J GRIDPOINTS IN EACH SECTION (J=1, ... ,KNOT(I);
O<KNOT(I)<16). TO EACH GRIDPOINT IN THE TOTAL MESH K CON-
TROL PARAMETERS U(J,K,I) ARE RELATED (K=1, ... ,KONTRL;
0<KONTRL<6) .NEITHER THE SECTIONS NOR THE GRIDS ARE CON-
STRAINED TO BE EQUIDISTANT.

TWO DISCONTINUOUS CONTROL FUNCTIONS U VERSUS T ARE SHOWN
(MARKED BY + AND *, RESP.) TOGETHER WITH AN UPPER BOUND UU

27

OGaanOaagaOaaoaoaonNOoaaOoooaaaaoaoaaaagoaoanoaaaaaaQaoaaan Qoo

ON U(I,J,K) FOR ALL GRIDPOINTS I IN EVERY INTERVAL K FOR
THE J'TH OF KONTRL CONTROL FUNCTIONS (MARKED BY _).

CUBIC OR EXPONENTIAL INTERPOLATING SPLINE FUNCTIONS ARE
CURRENTLY USED FOR APPROXIMATING THE PARAMETRIC CONTROL
MODEL U OVER THE MESH, WITH ST(I,J), I=1, .. ,KNOT(INTERYV)
,J=1, ... ,KONTRL, AS STIFFNESS PARAMETERS FOR THE EXPO-
NENTIAL SPLINE. VALUES FOR STIFF ARE GENERATED IN SUBROU-
TINE GENER. IF STIFF=0 FOR ALL GRIDPOINTS AND ALL CONTROLS
CUBIC SPLINE FUNCTIONS ARE USED. FOR FURTHER EXPLANATIONS
SEE SUBROUTINE SPLINE AND REFERENCES /1,3,4/.

SUMMARIZED, THE USER MUST PROVIDE VALUES FOR

GRID : GRIDPOINTS

STIFF : STIFFNESS PARAMETERS

U : INITIAL VALUES FOR THE CONTROL MODEL

UL,UU : LOWER AND UPPER BOUNDS FOR THE CONTROLS
(NECESSARY ONLY IF LBOUND OR UBOUND ARE TRUE
FOR THE CONSIDERED CONTROL)

INTERV : NUMBER OF INTERVALS OR SECTIONS. IN EACH SECTN
A SEPERATE SPLINE FUNCTION APPROXIMATES THE
CONTROL MODEL, THUS ALLOWING FOR DISCONTINUOUS
CONTROLS. IF THE USER CONJECTURES A CONTINUOUS
SOLUTION INTERV=1 IS RECOMMENDED. O<INTERV<6

KONTRL : TOTAL NUMBER OF CONTROL FUNCTIONS, O<KONTRL<6

ENOT(I): AN INTEGER ARRAY PRESCRIBING THE NUMBER OF
GRIDPOINTS OR KNOTS IN INTERV I. O<KNOT(I)<16

LBOUND(I),

UBOUND(I), I=1, ... ,KONTRL, ARRAY OF LOGICAL VARIABLES
INDICATING WHETHER A LOWER OR UPPER BOUND ON
CONTROL(I)IS PRESCRIBEB (E.G. LBOUND(2)=TRUE)

P(I) : I=, ... ,NP, FREE DESIGN PARAMETERS SUCH AS
SWITCHING TIME FOR DISCONTINUOUS CONTROLS,
FREE FINAL TIME TF, OR AIRCRAFT DESIGN PARA
METERS (WING LOADING A.O.)

NP : NUMBER OF FREE DESIGN PARAMETERS, 0<NP<11
TOL : RELATIVE=ABSOLUTE LOCAL ERROR TOLERANCES
FOR SUBROUTINE SLV (SEE RELTOL,ABSTOL ABOVE)
zo(x) : I=1, ... ,NZ, INITIAL CONDITIONS FOR THE STATE
VARIABLES OF THE ANALYZED SYSTEM
N2 : NUMBER OF STATE VARIABLES, 0<NZ<21

IMPULS : LOGICAL VARIABLE INDICATING WHETHER GRADIENTS
ARE GENERATED VIA IMPULSIVE RESPONSE FUNCTIONS
(IMPULS=TRUE) OR FORWARD DIFFERENCES (FALSE)

STORE,STORB: LOGICAL VARIABLES TO BE SET TRUE IF INITIAL
TRAJECTORIES ARE TO BE PRINTED; BOTH ARE RESET
FALSE AFTER PRINTING

LPLOT : LOGICAL VARIABLE TO BE SET TRUE IF PLOTTING IS
DESIRED; OTHERWISE IT MUST BE FALSE

MQP : NUMBER OF SETS OF ADJOINT VARIABLES TO BE

' INTEGRATED BACKWARD, INITIALIZED IN TOMP
AND TRANSFERED TO RHS.
MQP = 1 FOR MINIMIZATION WITH CFMIN IN VERSION
NEWTON=.FALSE.
1+MQ IN ALL OTHER CASES.

MQP

A,B,C,UH,AH,BH,CH ARE INTERNAL ARRAYS OF VARIABLES USED
BY SUBROUTINES SPLINE, SPLINT & GENER. THEY MUST NOT BE

28

slesNsReNeReRslisRollesNesloResleoReslolsNolloNoNoRsRsNoloNoNoNrsEsEsRsEsErEsNosHoNsRoNsREsRsloNoNoloRsRosRelsHoNoNoRoNoloNoloN ol

ALTERED BY THE USER.
FORWRD : INTERNAL LOGICAL VARIABLE NOT TO BE CHANGED BY
THE USER.

CCFMIN: COMMON /CCFMIN/ IS FULLY DESCRIBED IN SUBROUTINE CFMIN
DUMMY(15) : DOUBLE PRECISION ARRAY OF PRIVATE VARIABLES
THEY MUST NOT BE CHANGED BY THE USER
IG : INTEGER*4 VARIABLE, SET BY CFMIN HELPING TO
REDUCE COMPUTATION TIME

IG = 0: FUNCTION EVALUATION ONLY

IG = 1: FUNCTION AND GRADIENT EVALUATION (IMPLICIT FORM)
IG = 2: FUNCTION AND GRADIENT EVALUATION (EXPLICIT FORM)
IG = 3: GRADIENT OF CONSTRAINTS ONLY

IF TOMP IS USED IN CONNECTION WITH OTHER NONLINEAR
PROGRAMMING ALGORITHMS THAN CFMIN IG=2 IS RECOMMD.

LFL : LOGICAL VARIABLE SET TRUE BY TOMP IF STEPSIZE IS
TO BE REDUCED IN CFMIN, OTHERWISE LFL=FALSE; IT
MAY NOT BE MANIPULATED BY THE USER.

R e D NS SR SR MR G N S R D G S A M D T e e S M N G S N N AR S MR N D e e N R R T MR A W R A R N M e e e

0.SUBROUTINE TROMP IS A SLIGHT MODIFIECATION OF SUBROUTINE TOMP
DESCRIBED BELOW. CHANGES ARE PLACED BETWEEN "C-====--cecccaca--- o
CARDS FOR EASY RECOGNITION. TROMP HAS THE ADDED FEATURE THAT
THE INTEGRATION WILL BE HALTED WHENEVER USER-SUPPLIED AUXIL-
LIARY FUNCTIONS VANISH. THIS CAN BE USED TO IDENTIFY DISCON-
TINUITIES IN THE RHS SUBROUTINE. DETECTION OF THE VANISHING
POINTS IS ACCOMPLISHED THROUGH THE USER SUPPLIED SUBROUTINE
SUBPHI. SUBROUTINE ZWEIGE IS REFERENCED BEFORE EACH INTEGRA-
TION STEP SO THAT THE USER MAY IDENTIFY THE PROPER BRANCH OF
THE RHS SUBROUTINE EXPRESSIONS. THE APPLICATION OF TROMP IS
DESCRIBED IN /XX/.

1.SUBROUTINE TOMP IS BEST SUITED FOR TRAJECTORY OPTIMIZATION
IN CONNECTION WITH NONLINEAR PROGRAMMING AND REVERSE COMMUNICATION
(SEE REMARKS IN SUBROUTINE CFMIN)
EXAMPLE :

DIMENSION W(350,E.G.)

EXIT = DIM(W)

10 CALL CFMIN (.... ,X,F,G,FX,GX, ... ,W, ... ,EXIT,..)
GAIE TEMP: Coxus (X TEFREE,)
5 .AND. EXIT.LT.10) GOTO 10

IF(EXIT.GT.

2.THE EQUATION NUMBERS IN THE COMMENTS WITHIN THE PROGRAM FLOW
REFER TO REFERENCE /1/.

METHOD :
(I) SOLUTION OF 1 INITIAL VALUE PROBLEM TO DEFINE F & G
(II) SOLUTION OF NX PERTURBED INITIAL VALUE PROBLEMS FOR DF & DG
BY FORWARD DIFFERENCES
(III) SOLUTION OF MQP FINAL VALUE PROBLEM TO DEFINE DF & DG
BY IMPULS RESPONSE FUNCTIONS DEFINED BY THE ADJOINT SYSTEM.
NOTE THAT MQP IS ONE IN CASE WORKING IN CONNECTION WITH CFMIN

29

oEeNeNeNoNoNoNosNoRaloNolofNoNeloRoNolloNoNoRoRoRolloNoNe ol ao el

PR R RN NN o]

WHILE MQP=MQ+1 FOR POWELL'S METHOD FOR INSTANCE;
SEE REFERENCE /1/

(IV) SOLUTION OF 1 INITIAL VALUE PROBLEM TO GRAPH & STORE THE SOLU-
TION FOR PLOTTING IN MODE IG<O

REFERENCES :

/1/ KRAFT,D. (1979) COMPARING MATHEMATICAL PROGRAMMING ALGORITHMS
BASED ON LAGRANGIAN FUNCTIONS FOR SOLVING OPTIMAL CONTROL
PROBLEMS. DFVLR IB 552-79/7.

/2/ SHAMPINE,L.F.,WATTS,H.A. (1976) PRACTICAL SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS BY RUNGE-KUTTA METHHODS. SANDIA LABS.
REPORT SAND 76-0585.

/3/ BULIRSCH,R.,RUTISHAUSER,H. (1968) INTERPOLATION UND GENAEHERTE
QUADRATUR. IN:SAUER,R.,SZABO,I.(EDS.) MATHEMATISCHE HILFS-
MITTEL DES INGENIEURS,VOL.III. BERLIN-HEIDELBERG-NEW YORK:
SPRINGER.

/&/ RENTROP,P. (1979) AN ALGORITHM FOR THE COMPUTATION OF THE
EXPONENTIAL SPLINE. TO APPEAR IN 'HANDBOOK SERIES APPROXI-
MATION. BERLIN-HEIDELBERG-NEW YORK: SPRINGER.

IMPLEMENTED BY:
KRAFT,D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
D-8031 OBERPFAFFENHOFEN

STATUS: 05. DECEMBER 1979, REVISED 05. APRIL 1982

MINOR MODIFICATIONS (FOR TRAPPING CAPABILITIES) BY:
HORN, M.K., DFVLR = INSTITUT FUER DYNAMIK DER FLUGSYSTEME
D-8031 OBERPFAFFENHOFEN

. T e e T I I e e e i e

SUBROUTINES REQUIRED: * = DIRECT CALL
*GENER ,*SPLINE,*BILD,*GRAPH,*FCT,RHS,*SLV,SWW2,ZPFORM, IKL
IF RKF78 IS USED AS SLV ADDITIONALLY RKFS AND FEHL ARE REQUIRED

DOUBLE PRECISION A,B,C,F,G,H,P,U,X,Z,
.AH,BH,CH,DF,DG,DH,DT,FP,FZ,GP,GZ,TF,TT,T0,T1,UH, UL, UU, Z0,
.DEL,ONE,PM6 ,TOL, GRID,TOL1,WORK,ZERO, DSQRT,DUMMY,SIGMA,STIFF,
.THETA, FSTORE,GSTORE,SPLINT,HFF

INTEGER I,J,K,L,M,N, ID,IG,I1,I2,I3,I4,I5,MG,MQ,NN,NP,NX,NZ,
.IDG,MQP,MQ1, ISPL,JUMP,KNOT,LONG,NABS,NORD, IFLAG,IWORK,KNOTI,
.LSAVE,NGRID,NPLOT ,NXNMP, INTERV,KONTRL,KNOTI2, IOUT,JOUT

B L e I e e e e T

- e e S e e e e e s N e S A e e S R N e e S M s e SN N e e D NS N S S S e NS e S SN S S N S e e e e e

LOGICAL IMPULS,FORWRD,STORE,STORB,LBOUND,UBOUND,IFL,JFL,KFL,LFL,
*NUL,OUT ,NOBOUN, LPLOT, SAMESC/F/ ,HOLD, LEFCT

e e e S s e e SN S e Rm NN ED M e NI SR R M R NS MR W R R Gm M S e RN M D S e e A R Se S M R W S R R e e e T RS e A M e e e

DIMENSION X(NX),DF(NX),G(01),DG(LDG,01),SIGMA(01),THETA(01),FP(10)
*,FZ(20),GSTORE(20),GP(10,99),G6Z2(20,99),2(250),

- - e e e e e e e e A R e e A SN e e e e e e e S M S S e e e e e e e R e e e e e e e e e e D

c

* WORK(3253),IWORK(10)

REAL ORDO,ORD1,0RD,ABS,ABST,T2,T3, UF(402,5),2F(402,20),HF(402,5)

COMMON /CCFMIN/ DUMMY(15),IG,LFL
COMMON /C OUT / IOUT,JOUT,HFF(5)

COMMON /CTROMP/
1 GRID(15,5),STIFF(15,5),U(15,5,5),A(15,5,5),B(15,5,5),C(15,5,5),
2 UL(15,5,5),UU0(15,5,5),UH(15,15,5,5),AH(15,15,5,5),BH(15,15,5,5),
3 CH(15,15,5,5),P(10),Z0(6),TOL,INTERYV,KONTRL,KNOT(5),NP,NZ,

4 MQP,IG,NPHI,LFL,
5 IMPULS,FORWRD,STORE,STORB,LPLOT,LBOUND(5),UBOUND(5),LFCT,TRAP

COMMON/IDENT/ITERS ,KNT,KNTFI,KNTBI ,NFE,NEXT

B I e R e R —

D e e e e s e e s e e W N S s A RS SR SH SN e D SN M W NS D D S e S N S S N SN SN S R M M e SE S M S R S M R N e e o

e e e e e R e e e e M S e W D D S e S R U N M e D N MR e S SD SR S e R N N S e SR S S D M A SR SR R G SR R TS S e M A e e

DATA ZERO,ONE,PM6/0D0,1D0,1D-6/,IFL,JFL,KFL/3%F/,1D/400/ ,NN/17/,
*ORDO ,ORD1,0RD,ABS , ABST ,NORD,NABS ,NUL , OUT/

* 0EO, OEO,6E0,15E0,4E0, 4, 10, T, F/,LONG/053/,NGRID/080/,
*NPLOT/8/

O e e e e R G R G

C#e%

1.0: TRAJECTORIES & BOUNDARY VALUES FOR OPTIMAL CONTROL PROBLEMS #

O e e e G R S G T e

C

Ciee
Cieve
c

C
Cx*

C#¥*
c

TOL1 = TOL
ADJUSTMENT OF TOLERANCE FOR GRADIENT GENERATION
BY DIFFERENCE SCHEMES

IF(.NOT. IMPULS) TOL1 = 1D-2*TOL

IF(IG.GT.2 .AND. .NOT. LPLOT) GOTO 280
LFL = .FALSE.

RESTORE CONTROL-PARAMETERS & EVALUATE SPLINE FOR NOMINAL CONTROL ##*
GENER GENERATES TENSION PARAMETERS FOR EXPONENTIAL SPLINES *%

ISPL = 1
IF(STIFF(1,1).NE.ZERO .AND. .NOT.JFL) ISPL =
DO 110 I=1,ISPL

LSAVE = 0

DO 110 I=1,INTERV

KNOTI = KNOT(I)

DO 110 J=1,KONTRL

DO 100 K=1,KNOTI

LSAVE = LSAVE+1

100 U(K,J,I) = X(LSAVE)

IF(L.EQ.2)
*CALL GENER (KNOTI,GRID(1,I),U(1,J,I),STIFF(1,1),C(1,J,I))

110 CALL SPLINE(KNOTI,GRID(1,I),U(1,J,I),STIFF(1,I),

e A(1,J,1),B(1,7,1),6(1,7,1))
IF(NP.LE.0) GOTO 130
NXMNP = NX-NP

31

C
C** RESTORE DESIGN-PARAMETERS #¥
C
DO 120 I=1,NP
120 P(I) = X(NXMNP+I)

130 ASSIGN 220 TO JUMP

(eememmeme--cecccsccccessecsmsmessessssesesmeessmesescmsscesssc-ssac—-esa-
KNT = 0
KNTFI = -1
KNTBI = 0
NFE =20
NEXT =0

Do o o i
IF(LPLOT) ASSIGN 690 TO JUMP

C

C**% ENTRY POINT FROM 2.2 #*
C** FORWARD INTEGRATION OF SYSTEM STATE EQ.(2.2) **

C ---
KNT = KNT + 1
KNTFI = RNTFI + 1
[L e e e e e e L
140 IF(LFCT) GOTO 215

FORWRD = .TRUE.
C** INITIAL VALUES OF STATE VECTOR EQ.(2.3) **
DO 150 I=1,NZ
150 Z(I) = Z0(I)
TO = GRID(1,1)

IFLAGS = 1

IF (TRAP) IFLAGS = 10

IF (TRAP) CALL ZWEIGE(NZ,TO0,Z)
IFLAG = 1 * IFLAGS

IF(.NOT.JFL) IFLAG = -1 * IFLAGS

IF(.NOT.STORE) GOTO 160
JOUT = 1
C PRINT 998
5 PRINT 996, TO,(Z(J),J=1,NZ)
CALL OUTPUT(TO,Z,WORK)
160 CALL RHS(TO,Z,WORK)
CALL FCT(P,X,Z,FSTORE,GSTORE,FP,FZ,GP,GZ,2,T0,WORK)
DO 210 I=1,INTERV
KNOTI=KNOT(I)
DO 210 J=2,KNOTI
T1 = GRID(J,I)
c
C** SOLVING THE INITIAL VALUE PROBLEM *%
6
CURRENTLY RKF78 IS RECOMMENDED AS SLV
c
KOUNT = 0
169 CONTINUE
KOUNT = KOUNT + 1

IF (IFLAG .LT. 0 .AND. TO .NE. T1) GO TO 170

32

IF (IFLAG .EQ. 3) GO TO 170

IF (IFLAG .GT. 2 .AND. IFLAG .LE. 8) GO TO 180
IF (IFLAG .GT. 25) GO TO 180
GO TO 190 i
I e e e
180 PRINT 997, IFLAG,FORWRD
[e e
IF (IFLAG .GT. 8) STOP
[e
C
C*% GSET FLAG FOR STEP-SIZE REDUCTION IN CFMIN *%
c
LFL = .TRUE.
GOTO 800
190 IF(.NOT.STORE) GOTO 200
C TT = TO*P(I)
C PRINT 996, TO,(Z(X),K=1,NZ)
CALL OUTPUT(TO,Z,WORK)
200 CONTINUE

CRUDE IMPLEMENTATION OF MULTIPOINT BOUNDARY VALUE PROBLEMS
CALL FCT(P,X,Z,FSTORE,GSTORE,FP,FZ,GP,GZ,2,T0,WORK)

205 IF(IFLAG.EQ.-2 * IFLAGS) ' GOTO 170
IF(.NOT.JFL) IFLAG = -2 * IFLAGS

KNT = -1
NFE = NFE + IWORK(1)
NEXT = NEXT + IWORK(3)

SPACE FOR USER SUPPLIED PRINT OUT AFTER FORWARD INTEGRATIONS

IF KNT KNTFI = 0) , UNPERTURBED FORWARD INTEGRATION

(KNT = 0) , PERTURBED FORWARD INTEGRATION

O~

S e A S3 m e e m S S e M N SE SR e e A S WD e S NS SR S e e e e A e e SN A SH EN M e NN D N e A RN MR S SN e N SN T e e

aaoaoaaaaan
=
i
=l
V

JoUuT = 0
JFL = .TRUE.
STORE = .FALSE.

C** FUNCTION EVALUATION FOR NOMINAL & VARIED CONTROLS EQ.(3.7) *%*
C
215 CALL FCT(P,X,Z,FSTORE,GSTORE,FP,FZ,GP,GZ,0,T0,WORK)

G OT 0O JUMP, (220,580,610,690)
220 F = FSTORE
IF(MQ.LE.O) GOTO 235

DO 230 I=1,MQ
230 G(I) = GSTORE(I)
C
O L e e e R e S S S
C**% 1.1: BOUNDS ON CONTROL VARIABLES **
CIHHEHHHERHEHAHEHEERRHHREHRE R AR R
C
235 M = MQ
DO 270 I=1,INTERV
KNOTI = KNOT(I)

33

DO 270 J=1,KONTRL
IF(.NOT.LBOUND(J)) GOTO 250
DO 240 K=1,KNOTI
M = M+l ‘
240 G(M) = (U(K,J,I)-UL(K,J,I))/DMAX1(DABS(UL(K,J,I)),PM6)
250 IF(.NOT.UBOUND(J)) GOTO 270
DO 260 K=1,KNOTI
M = M+1
260 G(M) = (UU(K,J,I)-U(K,J,I))/DMAX1(DABS(UU(K,J,I)),PM6)
270 CONTINUE
NOBOUN = M.EQ.MQ
MQl =
IF(IG.EQ.0) GOTO 800
c
O a1 o
C*+ 2.0: EVALUATION OF GRADIENT OF PENALTY LAGRANGIAN %
O L e a2 e 2 2 2
&
280 IF(.NOT.IMPULS) GOTO 540
C
O R L T a2 2 2
C*+ 2.1: GRADIENTS BY IMPULSIVE RESPONSE FUNCTIONS *%
CHHHHEEHHEHHE A
DO 290 I=1,NX
DF(I) = ZERO
IF(MQ.LE.0) ‘ GOTO 290
DO 285 J=1,MQ
285 DG(J,I) = ZERO
290 CONTINUE
c
C#% VARIED CONTROLS FOR QUADRATURES CALLED IN RHS **
C THESE ARE THE DELTA-S IN EQ.(3.9)
C
DO 310 I=1,INTERV
KNOTI = KNOT(I)
DO 310 J=1,KONTRL
DO 310 K=1,KNOTI
DO 300 L=1,KNOTI
= U(L,J,I)
IF(K.EQ.L) H = H+DSIGN(DMAX1(DABS(H),PMG),H)
300 UH(L,K,J,I) =
310 CALL SPLINE(KNOTI GRID(1,I),UH(1,K,J,I),STIFF(1,I),
% AH(1,K,J,I),BH(1,K,J,I),CH(1,K,J,I))
C
C** BACKWARD INTEGRATION OF STATE, COSTATE & QUADRATURES EQ.(2.6) *%*
g
FORWRD = .FALSE.
C#** INITIAL VALUES OF COSTATE EQ.(3.10) #*
IF(NP.EQ.0) GOTO 325
DO 320 I=1,NP
FP(I) = ZERO
IF(M.EQ.0) GOTO 320
DO 315 J=1,M
315 GP(I,J) = ZERO
320 CONTINUE
325 DO 335 I=1,NZ
FZ(I) = ZERO
IF(M.EQ.0) GOTO 335

34

DO 330 J=1,M
330 GZ(I,J) = ZERO
335 CONTINUE
C*%* ONLY THE NON ZERO VALUES OF FP, ETC. HAVE TO BE OCCUPIED EQ.(3.10)
CALL FCT(P,X,Z,FSTORE,GSTORE,FP,FZ,GP,GZ,1,T0,WORK)
CARDINALITY OF SET OF BOUNDARY VALUES INCLUDING COST FUNCTION
COMPRISES AUGMENTED COST FUNCTION FOR MULTIPLIER METHOD : MQP = 1
CONTAINS MQP = MQ+1 VALUES FOR ALL OTHER METHODS - UNTIL A GENIUS COMES
MQP = MQ+1
IF(IG.EQ.1) MQP = MQP-MQ
L =Nz
C
CONDITIONS NECESSARY FOR OCP TO BE OPTIMAL WRT CONTROL-PARAMETERS
C
DO 380 K=1,MQP
DO 370 I=1,NZ

IF(K.GT.1) GOTO 360
H = ZERO

IF(MQP.GT.1) GOTO 350
IF(MQ .EQ.0) GOTO 350

DO 340 J=1,MQ
340 H = H+GZ(I,J)*(G(J)-THETA(J))*SIGMA(J)
350 H = H+FZ(I)

GOTO 370
360 H = GZ(I,K-1)
370 Z(I+L) = H
380 L = L+NZ
LSAVE = L
C** INITIAL VALUES OF QUADRATURES #%
DO 440 K=1,MQP
DO 390 I=1,NX
390 Z(I+L) = ZERO
IF(NP.LE.0) GOTO 440
C
CONDITIONS NECESSARY FOR OCP TO BE OPTIMAL WRT DESIGN-PARAMETERS
C
DO 430 I=1,NP

IF(K.GT.1) GOTO 420
H = ZERO

IF(MQP.GT.1) GOTO 410
IF(MQ .EQ.0) GOTO 410

DO 400 J=1,MQ
H+GP(I,J)*(G(J)-THETA(J))*SIGMA(J)
H+FP(I)

400
410

oo

GOTO 430

420 H GP(I,K-1)
430 Z(NXMNP+I+L) = -H
440 L = L+NX
IF (STORB) PRINT 999
IF (STORB) PRINT 996, TO,(Z(J),J=1,L)

IFLAGS = 1
IF (TRAP) IFLAGS = 10
IF (TRAP) CALL ZWEIGE(NZ,TO0,Z)

33

IFLAG = 1 * IFLAGS
IF(.NOT.KFL) IFLAG = -1 * IFLAGS

g S S ppup e
DO 480 I=1,INTERV
KNOTI = KNOT(I)
DO 480 J=2,KNOTI
T1 = GRID(KNOTI-J+1,INTERV-I+1)
C
C** SOLVING THE INITIAL VALUE PROBLEM %
C
(5 o e e o 0 e

IF (IFLAG .LT. O .AND. TO .NE. T1) GO TO 450
IF (IFLAG .EQ. 3) _ GO TO 450
IF (IFLAG .GT. 0 .AND. IFLAG .LE. 8) GO TO 460
IF (IFLAG .GT. 25) GO TO 460

IF(IFLAG.EQ.-2 * IFLAGS) GOTO 450
IF(.NOT.XFL) IFLAG = -2 * IFLAGS

KFL = .TRUE.
STORB = .FALSE.

NFE = NFE + IWORK(1)
NEXT = NEXT + IWORK(3)

C** EVALUATION OF GRADIENTS FROM QUADRATURES EQ.(3.9) #*%
CHANGE OF SIGN DUE TO BACKWARD INTEGRATION !!
C
DO 530 K=1,MQP
L=0
DO 500 M=1,INTERV
KNOTI = KNOT (M)
DO 500 I=1,KONTRL
DO 500 J=1,KNOTI
L = I+l
H = X(L)
H = DSIGN(DMAX1(DABS (H),PM6),H)
IF(K.GT.1) GOTO 490
C EQ.(3.94)
DF (L)

1

-Z(L+LSAVE) /H
GOTO 500

. 490 DG(K-1,L)

500 CONTINUE
IF(NP.LE.O) GOTO 530
DO 520 I=1,NP

-Z(L+LSAVE) /H

36

IF(K.GT.1) GOTO 510
C EQ.(3.9B)

DF (L+1) = -Z(L+I+LSAVE)
GOTO 520
510 DG(K-1,L+I) = -Z(L+I+LSAVE)
520 CONTINUE
530 LSAVE = LSAVE+NX
GOTO 630
[e R e
c SPACE FOR USER SUPPLIED PRINT OUT AFTER BACKWARD INTEGRATION
c
c KNTBI = 1 (KNTFI = KNT = 0)
g
[i

CHHEHHEEHEEFHFEHEHEHEHERHEHHESE R R R
C* 2.2: GRADIENTS BY FORWARD DIFFERENCES #**%
CiHEHHE HEHEEHEHFHAHHERHHE R AR R R
c
540 ASSIGN 580 TO JUMP
C** AUTOMATIC SELECTION OF DISTURBANCE PARAMETER DEL #%
DEL = DSQRT(1D-1*TOL1)
I1L= 0
I2= 0
550 I2 = I2+1
KNOTI2 = KNOT(I2)
I3 = 0
560 I3 = I3+1
16 = 0
570 I4 = I4+1
I1 = I1+1

mn

I

C
C*% VARIED CONTROLS **

H = X(I1)
DH = DSIGN(DMAX1(DABS(DEL*H),PM6),H)
X(I1) = H+DH
U(I4,13,I2) = H+DH
DH = ONE/DH
CALL SPLINE(RNOTIZ,GRID(1,I2),U(1,I3,I2),STIFF(1,I2),
* A(1,13,12),B(1,13,12),0(1,13,12))
GOTO 140
C** VARIED FUNCTIONS ¥
C
580 DF(I1) = (FSTORE -F)*DH
IF(MQ.LE.O) GOTO 595
DO 590 I=1,MQ
590 DG(I,I1) = (GSTORE(I)-G(I))*DH
595 X(I1) = H
U(I14,I3,I2) = H
IF(I4.LT.KNOTI2) GOTO 570
CALL SPLINE(KNOTIZ2,GRID(1,I2),U(1,I3,12),STIFF(1,I2),
* AL, 15,12 B(1,15,78),001,15, 2%
IF(I3.LT.KONTRL) GOTO 560
IF(I2.LT.INTERV) GOTO 550
IF(NP.IE.O) GOTO 630

37

G
C** VARIED DESIGN PARAMETERS ek
G
ASSIGN 610 TO JUMP
I1=0
600 I1 T141
L5 NXMNP+I1
H = P(I1)
DH = DSIGN(DMAX1(DABS(DEL*H) ,PM6),H)
P(I1) = H+DH
DH = ONE/DH

i

GOTO 140
C** VARIED FUNCTIONS *%
C ’
610 DF(I5) = (FSTORE -F)*DH
IF(MQ.LE.OQ) GOTO 625
DO 620 I=1,MQ
620 DG(I,I5) (GSTORE(I)-G(I))*DH
625 P(I1) = H

Cemmercmrm e e e s e - e e . . — . - e - E e, eSS S S .. - .- -
KNTFI = KNTFI + 1

C ---
IF(I1.LT.NP) GOTO 600

C

O e e e e g T 2 B e
C#*% 2.3: GRADIENTS OF CONTROL BOUNDS **
CHHEHHEEEHEEE R
c
630 IF(IFL.OR.NOBOUN) ' GOTO 800
IFL = .TRUE.
K = MQ+1
DO 640 I=1,NX
DO 640 J=K,MQ1
640 DG(J,I) = ZERO

L=20
N=20
M = MQ

DO 680 I=1,INTERV
KNOTI = KNOT(I)
DO 680 J=1,KONTRL

IF(.NOT.LBOUND(J)) GOTO 660
DO 650 K=1,KNOTI
L = I+1
M= M+l
650 DG(M,L) = ONE/DMAX1(DABS(UL(K,J,I)),PM6)
660 IF(.NOT.UBOUND(J)) GOTO 680
DO 670 K=1,KNOTI
N = N+1
M o= M+1
670 DG(M,N) = -ONE/DMAX1(DABS(UU(K,J,I)),PM6)
680 CONTINUE
GOTO 800

O L e o o
C*% 3,0: TFORWARD INTEGRATION OF SYSTEM STATE FOR GRAPHING #%
O T T
C
690 FORWRD = .TRUE.
K=1

38

DO 700 I=1,KONTRL
700 UF(K,I) = U(1,I,1)
DO 710 I=1,NZ
ZF(K,I) = Z0(I)

710 Z(I) = Z0(I)
TO = GRID(K,K)

IFLAGS = 1

IF (TRAP) IFLAGS = 10

IF (TRAP) CALL ZWEIGE(NZ,TO,Z)
IFLAG = IFLAGS

= TO
TF = GRID(KNOT(INTERV) , INTERV)
= TF
DT = (TF-T0)/DFLOAT(ID)
TOUT = 0
JOUT = 0
CALL OUTPUT(TO,Z,WORK)
IF(IOUT.LE.O) GOTO 720
DO 715 I=1,I0UT
715 HF(K,I)=HFF(I)

720 K = K+1
Tl = TO+DT
c
C** SOLVING THE INITIAL VALUE PROBLEM %%
c :
i et i o i e 5 S o 5
730 CALL SLV(RHS,SUBPHI,NPHI,NZ,Z,TO,T1,TOL1,TOL1,IFLAG,WORK,IWORK)
IWORK(4) = 0
(im0
IF(IOUT.LE.OQ) GOTO 736

CALL OUTPUT(T1,Z,WORK)
DO 734 I=1,I0UT
734 HF (K, I)=HFF(I)
736 DO 740 I=1,NZ
740 ZF(X,I) = Z(I)
DO 750 I=1,INTERV
J=1
IF(TO.LE.GRID (KNOT(I),I)) GOTO 760
750 CONTINUE
760 TT = DMIN1(TO,TF)
DO 770 I=1,KONTRL
770 UF(K,I) = SPLINT(KNOT(J),GRID(1,J),U(1,I,J),STIFF(1,J),
e AL1, 1,00, 803,T .J) e, 1,33 JIT)
IF(T1.LT.TF-PM6) GOTO 720
C
C¥** STORE STATES AND CONTROLS FOR GRAPHING VIA PLTF (PLI-JOBSTEP) *+
£
DO 780 I=1,NZ
780 CALL BILD(1,K,ZF(1,I),0RDO,0RD1,0RD,ABS,ABST,NORD,NABS,NUL,OUT,NN)
DO 790 I=1,KONTRL :
790 CALL BILD(1,K,UF(1,I),0RDO,O0RD1,0RD,ABS,ABST,NORD,NABS,NUL,OUT,NN)
IF (IOUT.IE.O) GOTO 796
DO 794 I=1,I0UT
794 GCALL BILD(1,K,HF(1,I),0RDO,O0RD1,0RD,ABS,ABST,NORD,NABS,NUL,OUT,NN)
C
C** GRAPHING ON LINE PRINTER #%

39

C

796 NZ1=MINO(NZ,10)

CALL GRAPH(ZF,402,10, NZ1,K,SAMESC,NGRID,T2,T3,NPLOT,LONG)
CALL GRAPH(UF,402,05,KONTRL,K,SAMESC ,NGRID,T2,T3,NPLOT, LONG)
IF(IOUT.LE.O) GOTO 800
CALL GRAPH(HF,402,05, IOUT,K,SAMESC,NGRID,T2,T3,NPLOT,LONG)

800 RETURN

C

Cit### NON EXECUTABLE STATEMENTS fHHHHEHHEHHHEEHHHEAEFEHHHEHEHREREEEEERERE

C

996 FORMAT(1H ,1P13D10.2)

997 FORMAT(20H #%* TOMP : FLAG = ,I2,L1,5H %#%%%)
998 FORMAT('1STATE VECTOR :')

999 FORMAT('1COSTATE VECTOR :')

END

APPENDIX B. PROGRAM LISTING FOR OCP APPLICATION

The fo
© report

The dr

llowing driving program and subroutines have been used in the solution
of the state/control-constraint optimal control problem presented in this

. Computations have been performed in double precision.

iving program gives the initial data for the problem and references the

TROMP/RKF45T system and the SLLSQP package to solve the OCP.

FK1

KRODE

KRPHI

WARN

ZWEIGE

The D

1

which evaluates the cost function, f, and constraint violations,

£

which evaluates the right hand sides of the differential

equations.

which evaluates the PHI functions, i.e., the vector of stopping
conditions for the integration package and which permits updates
in the differential equation branching as the discontinuities are

isolated.

which prints a warning message if the incorrect branch of the ODE

is being used.

which determines the branches to be used for the initial inte-

gration step.

riving program:

e e e R R T M e MmN R mE T em G e M e e T e R e G e e N R N S 4R T SH SR R M N e T M e e e e e e e e e mm em wm mm om om

COMMON /CTROMP/

GRID(15,5) ,8TIFF(15,5) ,U(15,5,5) ,A(1S8,5,5),B(15,5,5),0(15,5,5),

40

UL(15,5,5),UU0(15,5,5) ,UH(15,15,5,5) ,AH(15,15,5,5) ,BH(15,15,5,5),
CH(15,15,5,5),P(10),Z0(6),TOL, INTERV,KONTRL,KNOT(5),NP,NZ,
MQP,IG,NPHI,LFL,

IMPULS , FORWRD, STORE , STORB , LPLOT , LBOUND(5) , UBOUND(5) ,LFCT , TRAP

(S = VLR L]

COMMON/CRKF45/IOPT, IDUM4S (4)
COMMON/ IDENT/ITERS , KDUMM(3) ,NFE ,NEXT
COMMON/PLOTTD/TIME (500) ,APT(500) ,AMPT(500) ,DT,NPT, IPLOT
COMMON/FINALT/TFINAL
COMMON/CCFMIN/DUMMY (15) , IGRD,KFLAG
COMMON /FKOUNT/KF
DIMENSION XX(15),AZ(15),STIFFF(15)
DIMENSION X(16),DF(16),G(40),DG(40,18)
DIMENSION GY(10,99),G6%(20,99)
DIMENSION XL(16),XU(16),W(5000),INDEX(100)
REAL AA(500,2),THAX, TMIN

LOGICAL IMPULS,FORWRD,STORE,STORB,LPLOT,LBOUND,UBOUND,TRAP,LFCT
E ,LFL

- e e e e e S A D R O M M e A G N e M D N D N N A N e e e e e e e e S M AR R e e e e e

e e e S S e I SR M M M M A S G N e N e M N A M M A EN W e R e e e e e e e e e A e S e e e e e e e e e

DATA XX/.0000000000000000D+00, .3703703703703704D-02,
.1851851851851852D-01, .3703703703703704D-01,
.7407407407407407D=01,.1111111111111111D+00,
.2222222222222222D+00, . 3703703703703704D+00,
.4629629629629630D+00, . 5555555555555556D+00,
.6666666666666666D+00,.7777777777777777D+00,
.8518518518518519D+00, .9259259259259259D+00,
1.000000000000000D+00/

DATA AZ/.0000000000000000D+00,1.000000000000000D+00,
5.000000000000000D+00, 10. 00000000000000D+00,

12.00000000000000D+00, 15.00000000000000D+00,
10.00000000000000D+00,80. 00000000000000D+00,
100.0000000000000D+00, 120. 0000000000000D+00,
180.0000000000000D+00, 220 . 0000000000000D+00,
230.0000000000000D+00, 240 . 0000000000000D+00 ,
250.0000000000000D+00/

DATA STIFFF/0.0DO0,0.0D0,0.0D0,0.0D0,0.0D0,
0.0D0,0.0D0,0.0D0,0.0D0,0.0D0,
0.0D0,0.0D0,0.0D0,0.0D0,0.0D0/

DATA XU/0.10D0,10.0D0,50.0D0,95.0D0,12%300.D0/

DATA XL/13%0.0D0,-300.D0,-300.D0,-300.D0/

DATA NN/15/

DATA F/1.D1/,LW/5000/

~N oW N

Ny LM

NN o=

R S R AR SR R SR N AN AR A A R S S e e AR e A R W SR R AN T e A R e e e e S e AR N AR AR R e SR R e e e

INITTALIZATION OF CONSTANTS FOR PLOTTING ALPHA AND DERIVATIVE
EVALUATION COUNTERS:

T e e e T T e T e e e e e T

C INITIALIZATION FOR TROMP:

KONTRL
KNOT(1)
NP
IMPULS
STORE
STORB
LPLOT
LFCT
LBOUND(1)
UBOUND(1)
TOL =
M

.FALSE.
.TRUE.
.FALSE.
.FALSE.
.FALSE.
.FALSE.
.FALSE.
.D-05

nmnwmnuwunnn

1
4
4

C INITIAL VALUES--Z, GRID, AND U--NO VALUES FOR BOUNDL, BOUNDU
C OR DESIGN PARAMETERS

= 58.6D0
= 90.0D0 * 3.141592653589793D0 / 180.DO
Z0(3) = 8.79D0 * DCOS(Z0(2))
=-8.79D0 * DSIN(Z0(2))
= 0.0D0
= 0.0D0

DO 10 J = 1,NN
GRID(J,1) = XX(J)
STIFF(J,1) = STIFFF(J)
UWJ,1,1) = AZ(J)

10 CONTINUE

PRINT 500, INTERV,KONTRL,KNOT(1),NP,NZ, IMPULS, STORE , STORB,
1 LPLOT, LBOUND (1) ,UBOUND(1) ,LFCT, TOL,M

PRINT 499

PRINT 501, (J,Z0(J),J=1,NZ)

PRINT 499

PRINT 502, (J,STIFF(J,1),J=1,NN)

PRINT 499

PRINT 503, (J,GRID(J,1),J=1,NN)

PRINT 499

PRINT 504, (J,U(J,1,1),J=1,NN)

42

ACC = 1.D-04
MAXIT = 50
MODE = 0

- e e e s BN Am Sn S GD D A SN N A G SS S G S N D BN D GN SN Gn N Am D NS T S RGN NN D A GH S em NN e S S Sm S Em m Gm SN S A am OE AR G0 AR R W e
e e e Em e om s Em ay Sn S am Em em s A SR N SN EN ER m Em NN D Oh SH EE N M W 4m SR M S An A A A S A R S N GE N R AN Sm N A M S AN Em m G A e e e e A e e R
e T T T T R R I b R

= KNOT(1)
151 =1,N
) = U(I,KONTRL, INTERV)

- e e s e e e e e e o e e e e e e En Sn M e S SN G G e e N G SN Gn M G A S5 TH SN MM N e S S M s M S e e S A n Em s en s Am e e s e e e

- e = A W e S v SE S o =B WD e S D SN M Gm D SR T AR W SN SE SR S e M RN A AR S S AN e AR N M AN e D A SS W S AR G AW N OE AR AR S N W W

PRINT 505
130 CONTINUE
NPHI = 3
CALL TROMP(N,M,M,X,F,DF,G,DG,LDG,
1 FK1,KRODE,RKF45T,KRPHI , ZWEIGE)
NFET = NFET + NFE
NEXTT = NEXTT + NEXT
132 CONTINUE
CALL SLLSQP(M,ME,LDG,NX, X, XL, XU, F, G, DF, DG, ACC,
1 MAXIT, MODE, W, LW, INDEX)

IF (MODE .EQ. 0) GO TO 150
IF (MODE .GT. 1) GO TO 150
IF (MODE .EQ. =-1) GO TO 145

IG=0
PRINT 558,MODE
GO TO 130

145 CONTINUE

16 = 2
PRINT 558,MODE
GO TO 130

150 CONTINUE

- e mm e e e W S e e T e e e M R MR SR MM M U M U SR R M e S W N MM N R M R G e T ME RS M T MmN M T tm e ew em e em o e em

PRINT 558,MODE
PRINT 559, (J,X(J),J=1,N)
PRINT 560,F

43

C
200 CONTINUE
C
PRINT 1548 ,KF,NEXT
PRINT 1548 ,NFET,NEXTT
1548 FORMAT(///,' NUMBER OF DERIVATIVE EVALUATIONS: TOTAL NFE = ',I6,
L

1 /, NEXTRA = ',16,//)
C
C ---
C SET UP FOR PLOTTING RESULTS:
C (IPLOT ACTIVATES STORAGE IN KRPHI FOR PLOTTING ALPHA AND ALPHAM)
C (DT IS THE INCREMENT FOR POINTS IN TROMP)
C ---
PRINT 506
STORE = .TRUE.
LPLOT = .TRUE.
IPIOT = 1
DT = 1.D0/400.D0
IG=10
CALL TROMP(N,M,M,X,F,DF,G,DG,LDG,
1 FK1,KRODE ,RKF45T ,KRPHI , ZWEIGE)
c
DO 400 J = 1,NPT
AA(J,1) = SNGL(APT(J))
400 AA(J,2) = SNGL(AMPT(J))
TMAX = 1.0
TMIN = 0.0
I1 = 500
12 =2
NSET = 2
N = NPT
NGRID = 80
NPLOT = 8
LONG = 53
CALL GRAPH(AA,I1,I2,NSET,N,.TRUE.,NGRID,TMIN,TMAX,NPLOT,LONG)
C
C ...
C FORMAT STATEMENTS:
C ...

500 FORMAT(//,' NUMBER OF INTERVALS FOR GRID = ',6I3,/,

1 ' NUMBER OF CONTROL PARAMETERS = ',I3,/,

2 ' NUMBER OF KNOTS = ', 13:/,

3 ' NUMBER OF DESIGN PARAMETERS = ',I3,/,

4 ' NUMBER OF DEPENDENT VARIABLES= ',I3,/,

5 ' LOGICAL PARAMETERS--IMPULS = ',L2,/,

& JIX,'STORE = " 12,2%.' BIORE = ', L2, /.21%.°1PLOT = ' B3/,
7 21%,'LBOUND = ',L2,2X,' UBCUND = ',L2,/,21X,'IFCT = *',12./,
8 " INTEGRATION TOLERANCE = L DIS. 7.

9 ' NUMBER OF CONSTRAINTS = I35

499 FORMAT(/)
501 FORMAT(17X,' zo(',I2,') = ',D15.7)
502 FORMAT(3X,' STIFFNESS FACTOR(',I2,') = ',D15.7)
503 FORMAT(15X,' GRID(',I2,') = ',D15.7)
504 FORMAT(2X,' CONTROL PARAMETER(',I2,') = ',D15.7)
505 FORMAT(//,' MINIMIZER: SLLSQP',/,
g - SEQUENTIAL LINEAR LEAST SQUARES PROGRAMMING',/)
506 FORMAT(///,' FORWARD INTEGRATION BEFORE PLOTTING USING',
1 " OPTIMAL TRAJECTORY:',/)

44

558 FORMAT(/,' MODE = ',I&4)

559 FORMAT(/,' AFTER RETURN FROM SLLSQP:',/,(' X(',I2,') = ',D15.7))

560 FORMAT(//,' F = ',D15.7,//)

1506 FORMAT(//,3X,' PARAMETERS FOR SLLSQP:',/,3X,
T

1 MODE = ',I4,/,3X,

g MAXIT = ', 14./.3%,
3 ' NUMBER OF CONTROL GRID POINTS, NX = ',I4,/,3X,
4 ' NUMBER OF EQUALITY CONSTRAINTS, ME = ',I4,/,3X,
5 ' LEADING DIMENSION OF DG MATRIX, LDG = ',I4,//,3X,

6 ' BOUNDS ON CONTROL VALUES:',//,

7 (6%, "360° .18, = ' 15,7588, R, 15,0 = Is. 1Y)

C
STOP
END

Subroutine FK1 for evaluating the cost function and constraint
viclation:

C
C ___

SUBROUTINE FK1(Y,X,Z,F,G,FY,FZ,GY,GZ,IFLAG,T,WORK)
C ___

IMPLICIT REAL#*8(A-H,0-Z)

DIMENSION _

1 G(1),Y(1),X(1),2(1),FY¥Y(1),FZ(1),G6Y(10,99),G2(20,99),

2 WORK (1)

DIMENSION YP(6)

DATA VF/800.D0/,GAMF/-.174533D0/,ZF/-160.D0/ ,XF/1500.D0/
C

COMMON /CTROMP/

1 GRID(15,5),STIFF(15,5),U(15,5,5),A(15,5,5),B(15,5,5),C(15,5,5),

2 UL(15,5,5),UU(15,5,5),UH(15,15,5,5),AH(15,15,5,5),BH(15,15,5,5),

3 CH(15,15,5,5),P(10),%0(6),TOL,INTERV,KONTRL,KNOT(5),NP,NZ,

4 MQP,IG,NPHI,LDUM(18)
g

LOGICAL LDUM
c
C ___
8 CALL DERIVATIVE ROUTINE:
C ...

CALL KRODE(T,Z,YP)
C
C ___
5 IFLAG = 0 EVALUATE COST FUNCTION AND CONSTRAINTS
C ___
C COST FUNCTION: MAXIMUM VELOCITY
g

F = -72(1)/VF
c
C ___
C RANDWERTE
C ___

G(1) = (Z(2)-GAMF)/GAMF

G(2) = (Z(4)-2ZF)/ZF

G(3) = (Z(3)-XF)/XF

G(4) = -Z(5) + 1.D-04

45

OO CE D GGy o (GG QGO ey al .y o2

RETURN
END

Subroutine KRODE for evaluating the ODE:

e e e s o S S S S S3 MR D G S5 6 e SN SR ON SN M AN N D N SR R A RS N D e ED G S M e s S B S RS s G e e e m SD Re e M e e

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(6),YP(6)

COMMON/FKOUNT /KF

COMMON/FINALT/TOUT
COMMON/BRANCH/IZWEIG(3)
COMMON/PHILIM/ALPHA ,DALDT ,ALPHAM, DALMDT

COMMON /CTROMP/

1 GRID(15,5),STIFF(15,5),U(15,5,5),A(15,5,5),8(15,5,5),C(15,5,5),
2 UL(15,5,5),UU(15,5,5),UH(15,15,5,5),AH(15,15,5,5),BH(15,15,5,5),
3 CH(15,15,5,5),P(10),Z0(6),TOL,INTERV,KONTRL,KNOT(5),NP,NZ,

4 MQP,IG,NPHI,LDUM(18)

LOGICAL LDUM

DATA KNOT1/15/ _

DATA CALPHA/-2.33D-03/

DATA TF,F0,FSTR,XMO,CHI/2.7D0,29.9D+03,7.9D+03,137.2D0,
1 -0.4133D-03/

DATA CWO,CWAA,RHO,S/0.3D0,0.7D0,1.22575D0,0.0314D0/

T T T T T e e e e T

- e e e e e e Sm mm Em SR SN D SR SN EH OD P N T e R WD S R A SW SR SR B SN S0 4N G e G e S SD e S e O S S G S S8 W S D MY e e S S e s aw e nw e e

T IS A NORMALIZED VALUE. IF CORRECT TIME IS NEEDED IN ODE
TIME = TOUT*T '

e S s e Em e N D T S T S R D MR G D T R N MR S R N N G S S T MR S e S mm s e 69 N e A S S e WS S M mm oem e o e

CONSTRAINT VIOLATION ODE: Y(5)
GAMMA" = Y(6)

DERIVATIVES ARE NORMALIZED AT THE END OF KRODE. TERMS IN THE
ODE EXPRESSIONS ARE WRITTEN IN TERMS OF TIME NOT NORMALIZED
TIME.

D--DT DESIGNATES DERIVATIVE WRT TIME, E.G.,DVDT,DAZMDT, ETC.

e e e e D G D T SR G N D G2 SR W G R NI D AN R RS GH D NS SN R R S N R S R S S SS SS e S e AR SR RN G e AN M R M M M e
e e e e R M e e A S SN MM M Em B8 M G EN N AN SN S A MR R D S MR S M M N SD EN SD MDA N ED D SR e e MW e MM ew R A e e e e e S e s e

o e o Em Em m E em R A S S e em e SN e e e e e e e e M SN e s e e e e Em e e MmN MM e D N A e e N SN GS eR M ER SN W D SN GS M e e e Em e

55 e o e e en SN D s o D e D D SN e S GH S RN SN R G G S A A5 MR R R S e A Su S e S SR R N D N S RN N S GH SE N SN D MR R SN R SR S W S s

- e e e e G Em e e e A N D AN D SH D D S MR M SN D N RS SR S S N S Em Ay Sr EN S3 S R Sm Sm SN AR SN SN D N ED O Gm M e S e HB S e e Sw S8 Gm em e m

o n m em e e D e D e S R SE Y D SN N AN SH N T SR S M R R MR R GD SR S N A3 SE N EE SD NN ED Gm Mm MM Am e S Ge s SS W S e e s e

=
[N
1

SPLINT(XKNOT1,GRID(1,1),U(1,1,1),STIFF(1,1),
1 A(1,1,1),B(1,1,1),0(1,1,1),T)
DSPLNT(KNOT1,GRID(1,1),U(1,1,1),STIFF(1,1),
1 A(1,1,1),B(1,1,1),6(1,1,1),T)

DAZDT = DAZDT/TOUT

=
>
N
=}
=
n

TIME = TOUT*T

V =Y(1)

GAMMA = Y(2)

ALPHA = AZ/(CALPHA*V*V)

T e I T T T e L T e ——

e e em e en Em e e e e 5 GD D SN S SN G D S5 SN SR KD D A D N SR G S3 N M Ah N SN M3 S S G M e A5 M e SN e S S e M T S e e MY W e A M e m S e W

IF (IZWEIG(2) .EQ. 2) GO TO 10
T < TF AT BEGINNING OF STEP--USE BRANCH 1 OF F AND XMASSE
= EXPRESSIONS
FO + FSTR * TIME
DFDT = FSTR
XMASSE = XMO + CHI * (FO + 0.5D0 * FSTR * TIME) * TIME
DXMDT = CHI*(FO0 + FSTR*TIME)
GO TO 12
10 CONTINUE
T > TF AT BEGINNING OF STEP--USE BRANCH 2 OF F AND XMASSE
EXPRESSIONS

- e e e e ow e em T Em m Sm em RE R M N SR N AR S W AR SN M ER N R e S8 e S S e ww M e e W T S TR S MR T D m En W A m m

k]
Il

F = 0.0D0
XMASSE = XMO + CHI * (FO + 0.50D0 * FSTR * TF) * TF
DFDT = 0.0D0
DXMDT = 0.0DO
12 CONTINUE

D S N D SN SR M D Sn e e e e S e e e e e S e) e e TR MR MR NN N R SR D SR TE RS MR MR GE S e m Em M Sm M S NS e e MmN Em M A Mm Em Em ms Em o

CW = CWO + CWAA * ALPHA * ALPHA
WIDER = 0.50D0 * CW * RHO * V * 'V * §

e R i e e T T T e . . L
R R R e R I I I I
- e e e e mm e e N TS SN S SD N R M e ST N D D M e e e A e S e A S e e e e s e e e S e e e e e e e e =

e o S S Sr e D e e D N G A M AN B M D M S e e A M S S e e e e e S M e e R S RS e e S e A W S e ms e e

IF (IZWEIG(3) .EQ. 1) AZM = 0.002D0 * V * V
IF (IZWEIG(3) .EQ. 2) AZM = 45.0D0 + 0.660D0 * (V - 150.0D0)
IF (IZWEIG(3) .EQ. 3) AZM = 300.0DO

e SH N D T N e S M SN D R e e e e S N R T M S R m R T e T e MM R R m SR e SN AR S MR N S M R N G D Em e S R S o

COMPUTE ALPHAM

47

'y
C ---
C ---
C EVALUATE ODE WRT TIME:
C ---
C ---
COSA = DCOS(ALPHA)
SINA = DSIN(ALPHA)
COSG = DCOS (GAMMA)
SING = DSIN(GAMMA)
C
YP(1) = AX * COSA + AZ * SINA
YP(2) = (AX * SINA - AZ * COSA) / V
YP(3) = V * COSG
YP(4) = -V * SING
IF (IZWEIG(1) .EQ. 1) YP(5) = 0.0DO
IF (IZWEIG(1) .EQ. 2) YP(5) = (ALPHAM - DABS(ALPHA))#**2
C ---
c COMPUTE D ALPHA / DT AND D ALPHAM /DT AND TERMS NEEDED
c FOR COMPUTING YP(6):
C ---
DVDT = YP(1)
DALDT = DAZDT/ (CALPHA*V#V) =-2.0D0%AZ/(CALPHA*V#V#*V) * DVDT
IF (IZWEIG(3) .EQ. 1) DAZMDT = 0.004D0 * V * DVDT
IF (IZWEIG(3) .EQ. 2) DAZMDT = 0.66D0 * DVDT
IF (IZWEIG(3) .EQ. 3) DAZMDT = 0.0DO
DAIMDT = -DAZMDT/ (CALPHA*V*V) +2.0D0*AZM/ (CALPHA*V+#V*V)*DYDT
DWIDDT = CW*RHO*S#*V# DVDT + RHO*V#V#*S¥(CWAA*ALPHA*DALDT)
DAXDT=(DFDT - DWIDDT)/XMASSE - (F - WIDER)/(XMASSE*XMASSE)*DXMDT
C ---
c COMPUTE SECOND DERIVATIVE OF GAMMA
C ---
YP(6) = (DAXDT*SINA - DAZDT*COSA + (DALDT - ¥P(2))*DVDT) / V
C ---
c ___
C COMPUTE DERIVATIVES WRT NORMALIZED TIME:
C ___
C ___
c
YP(1) = YP(1)*TQUT
YP(2) = YP(2)*TOUT
YP(3) = YP(3)*TOUT
YP(4) = YP(&4)*TOUT
YP(5) = YP(5)*TOUT
YP(6) = YP(6)*TOUT
G
RETURN
END

SUBROUTINE KRPHI (NPHI,INDEX,NEQN,T,Y,YP,PHI,PHIP,KOUNTR,UPDATE,

1 IVAN, BOUNCE , ABSER)
c
IMPLICIT REAL#8 (A-H,0-Z)
DIMENSION Y(NEQN),YP(NEQN),PHI(NPHI),PHIP(NPHI)
DATA TF/2.7D0/
DATA IPRINT/O/
DATA ZAPP/1.D-10/
DATA MODE1/1/,MODE2/2/,MODE&/4/
C <
COMMON/FKOUNT /KF
COMMON/FINALT/TOUT :
COMMON/PLOTTD/TTTT (500) ,APT(500) ,AMPT(500) ,DT,NPT, IPLOT
COMMON/VBD/V , VLOWER, VUPPER
COMMON/BRANCH/IZWEIG(3)
COMMON/PHILIM/ALPHA , DALDT , ALPHAM , DALMDT
C
LOGICAL UPDATE,IVAN,BOUNCE
c
IF (UPDATE) GO TO 100
C ---
C ---
g INTEGRATION IN PROGRESS:
C ---
C ---
IF (KOUNTR .GT. 0) GO TO 8
C ...
C ___
c INITIALIZATION BLOCK:
C ---
C ---
NPT = 0
DO 105 J = 1,500
APT(J) = 0.0D0
AMPT(J) = 0.0DO
105 CONTINUE
c
CALL WARN(MODE1,PHI,NPHI,T,Y,NEQN, INDEX)
C

IF (IPRINT .EQ. 1) PRINT 1544,IZWEIG(1),IZWEIG(2),IZWEIG(3)
1544 FORMAT(' INITIAL BRANCHES: ',3(1X,I3))

o i om0 S 0, 0 O 0
C SET BOUNDS FOR PHI(3) (VELOCITY RELATED DISCONTINUITY):
o 0 i
IZ23 = IZWEIG(3)
GO TO (5,6,7), IZ3
5 CONTINUE
c
C IZWEIG(3) = 1:
C
VLOWER = 0.0DO
VUPPER = 150.0D0
VSCALE = 150.0D0
GO TO 8
6 CONTINUE
C
C IZWEIG(3) = 2:
C

49

aaaa

- -

= 150.0D0
VUPPER = 536.3636363636364D0
= 536.3636363636364D0

IZWEIG(3) = 3:

VLOWER = 536.3636363636364D0
VLOWER = 4000.0D0
VSCALE = 536.3636363636364D0

- e G S D S N N A R SN e A S A RN M D D NN N RS R R S S R R e e e e e e e e e e e

- e e e e D M e S S S A N e e e e e S A e S S A N e W A A e S D S e e S N A A T N S A MR M e G e Em o e

e e e e e S M ED D S0 N e e M AN M e G S MR D s S e M M N R S M e e e S e s S A SN R A R N M S N T R Wm M s e e w

e e e e e e e e EE R SN N e S S S N e MR M SN NI SR T W SN M S M MR e AN AN S5 S e e s am et e S e S SR A e R Se e e T oA

DVDTAU = YP(1)

PHI(1) = ALPHAM*ALPHAM - ALPHA*ALPHA

PHI(2) = T+ TOUT - TF

PHI(3) = (VUPPER - V)*(V - VLOWER)/VSCALE

PHIP(1) = 2.0D0*(ALPHAM*DALMDT - ALPHA*DALDT)*TQUT
PHIP(2) = TOUT

PHIP(3) = DVDTAU * (-2.D0*V + VUPPER + VLOWER) / VSCALE

s e S e S e e e ED ER M SN SR S A G e AP M I S SN D AL SN N SH NS A G W M e W R e e e S e S e e BN R e AR R S ew o e e e wewe

e e ws e e R W e e RS D N 4R SN e AR S M e W RS N S5 N e M NN M A R D S e AR T S N e e e M A e D R e e R S e A e e e e e

IF (KOUNTR .EQ. 0) CALL WARN(MODE4,PHI,NPHI,T,Y,NEQN, INDEX)
CALL WARN(MODEZ,PHI,NPHI,T,Y,NEQN,INDEX)

IF (IPLOT .EQ. 0) RETURN

B T I e

D I e e

IF (INDEX .GT. 0) RETURN

IF (IZWEIG(1) .EQ. 1 .AND. DABS(ALPHA) .GT. ALPHAM) RETURN
IF (IZWEIG(1) .EQ. 2 .AND. DABS(ALPHA) .LT. ALPHAM) RETURN
TTT = DFLOAT (NPT)*DT

IF (DABS(T - TTT) .GT. 1.D-06) RETURN

NPT = NPT + 1

APT(NPT) = DABS(ALPHA)

AMPT (NPT)= ALPHAM

TTTT(NPT)= T

RETURN

CONTINUE

B L e e e e e e T e e e e e e R

I T I T R R

e e e e AR S e N S e e M e e e A M N AN R M N N M RN e AN MR e N A N SN AW A N e e e S A R e e e

50

aaoaaaaaoaoaaaaaa

aOaoaoaoaoaoaaaaaa

F

< I e e |

IF (IVAN) RETURN
IF (BOUNCE) GO TO 200

GO TO (110,120,130), INDEX

110 CONTINUE

- T e e e e T T R em D e S A S N SR N NN M SN EH SN SN D S M e S M e N N S BE SR D SN SN S s e e e R M RS NS ED RN SN e N e Se Sw e

DISCONTINUITY IN CONSTRAINT ODE ISOLATED: ALPHA = ALPHAM

SIGN OF PHI(1) REFELCTS THE NEW BRANCH:

IF |ALPHA| < |ALPHAM|, PHI(1) > O AND CONSTRAINT ODE
SHOULD NOT BE ACTIVE ==> IZWEIG(1)
IF |ALPHA| > |ALPHAM|, PHI(1) < 0 AND CONSTRAINT ODE
SHOULD BE ACTIVE ===> IZWEIG(1)
PHI(1) WILL NOT BE EXACTLY ZERO.

Il
=

]
N

1
2

IF (PHI(1) .GT. 0.0D0) IZWEIG(1)
IF (PHI(1) .LT. 0.0D0) IZWEIG(1)

IF (IPRINT .EQ. 1) PRINT 1515,ALPHA,ALPHAM,IZWEIG(1)
THE DIFFERENTIAL EQUATIONS HAVE BEEN CHANGED--REQUIRING NEW YP

CALL KRODE(T,Y,YP)
KF =KF - 1
RETURN

120 CONTINUE

DISCONTINUITY IN F(T) AND M(T) ISOLATED: TIME =TF = 2.7

SIGN OF PHI(2) REFELCTS THE NEW BRANCH:

PHI(2) < 0 IF TIME < TF => IZWEIG(2)=1
PHI(2) > 0 IF TIME > TF => IZWEIG(2)=2
PHI(2) WILL NOT BE EXACTLY ZERO.

IF (PHI(2) .LT. 0.0D0) IZWEIG(2)
IF (PHI(2) .GT. 0.0D0) IZWEIG(2)

1
2

nn

THE DIFFERENTIAL EQUATIONS HAVE BEEN CHANGED--REQUIRING NEW YP

CALL KRODE(T,Y,YP)
KF= KF - 1

TIME = T*TOUT
IF (IPRINT .EQ. 1) PRINT 1511,T,TIME,IZWEIG(2)

T e i T T I e e e e e T I R)

DISCONTINUITY IN AZM ISOLATED: AZM = 45 OR AZM = 300
MUST SHIFT VUPPER AND VLOWER BQUNDS: (0, 150), (150, 536.36), OR
(536.36, ABSURD LIMIT)

- e o e e e e e o S R e e e T e W RN AN S R T M M MmN MR M M e M e e e e e e e M G S e M e s e e e e

oo aaoaooOoOQaoaoooaoaoaaoaooaoaoOoOoaaaoaaoaoaoaoaaaaaan

i o W]

SIGN OF PHI(3) REFELCTS THE NEW BRANCH:
BOUNDARY HAS BEEN REACHED: | (VUPPER-V)*(V-VLOWER)| < TOLERANCE

VUPPER AND VLOWER MUST BE CHANGED TO REFLECT THE NEW REGION:

IF¥ D(PHI(3)/DV > 0O IZWEIG(3) = IZWEIG(3) = 1
NEW OLD

IF D(PHI(3)/DV < 0 IZWEIG(3) = IZWEIG(3) + 1
NEW OLD

CLARIFICATION:

PHI(3), AS A FUNCTION OF V, IS A PARABOLA WITH NOSE UP.
THE DERIVATIVE OF PHI(3) WRT V, INDICATES WHETHER THE
BRANCH NUMBER INCREASES OR DECREASES.

EXAMPLE WITH BRANCH BEFORE UPDATE: IZWEIG(3) = 2

IF D(PHI(3))/DV > 0, YOU ARE AT THE "LEFT" BOUNDARY,
NEW BRANCH: IZWEIG(3) =2 -1 =1

IF D(PHI(3))/DV < 0, YOU ARE AT THE "RIGHT" BOUNDARY,
NEW BRANCH: IZWEIG(3) =2+ 1 =3

EXAMPLE: BRANCH BEFORE UPDATE, IZWEIG(3)=2

POSITIVE SLOPE : . NEGATIVE SLOPE

BRANCH 1 . BRANCH 2 : BRANCH 3

PR M L L T e R S e —

SLOPE = (-2.D0*V + VUPPER + VLOWER) / VSCALE
ISGN = +1

IF (SLOPE .GT. 0) ISGN = -1

IZWEIG(3) = IZWEIG(3) + ISGN

IZW = IZWEIG(3)
GO TO (131,132,133),IZW

131 CONTINUE
IZWEIG(3) = 1 AFTER UPDATE

VLOWER
VUPPER

0.0Do
150.0D0

52

VSCALE = 150.0D0

GO TO 135
C
132 CONTINUE
C
C IZWEIG(3) = 2 AFTER UPDATE
C
VLOWER = 150.D0
VUPPER = 536.36363636364D0
VSCALE = 536.36363636364D0
GO TO 135
C
133 CONTINUE
c
C IZWEIG(3) = 3 AFTER UPDATE
C
VLOWER = 536.36363636364D0
VUPPER = 4000.0D0
VSCALE = 536.36363636364D0
C
135 CONTINUE
C
C THE DIFFERENTIAL EQUATIONS HAVE BEEN CHANGED--REQUIRING NEW YP
C
CALL KRODE(T,Y,YP)
KF =KF -1
PHI (INDEX) = + ZAPP
C
IF (IPRINT .EQ. 1) PRINT 1512,T,V,IZWEIG(3)
RETURN
C
200 CONTINUE

e e e e o s e e T A S R M Sm SR S N GE S NN TH S ER M TN SN S SR ED S Am A AD Sa A D e e S S N e G R S e 0 e e A T S M D e o

C
C A BOUNCING FUNCTION HAS OCCURRED: SPECIAL ANALYSIS IS NEEDED

C THE CORRECT BRANCH OF THE ODE WAS NOT USED. THE PROPER BRANCH
c HAS BEEN IDENTIFIED AND THE STEP WILL BE REPEATED.

C (KOUNTR=-2 WILL CAUSE STEP TO BE REPEATED.)

C

C

= e e e e e e e e En W N S NN TH SS M SE AW Em M Am AD D S S AE M D D R Gy S S S SR R SR A M e e S e S S e S e W T e o m o mm

GO TO (205,210,215),INDEX

5
205 CONTINUE
B
C BOUNCED ON AN ALPHA BOUNDARY
5 :
PRINT 1523,T
1523 FORMAT(//,' BOUNCED ON AN |ALPHA| = |ALPHAM| BOUNDARY AT T=',
1 D15.7,//)
g
C CHANGE BRANCH:
C
IF (IZWEIG(1l) .EQ. 1) ISGN = +1
IF (IZWEIG(1l) .EQ. 2) ISGN = -1
IZWEIG(1) = IZWEIG(1l) + ISGN
GO TO 230
g
210 CONTINUE
g

53

C BOUNCED ON A TIME BOUNDARY
C
PRINT 1522,T
1522 FORMAT(//,' PROCESS BOUNCED ON A TIME BOUNDARY--IMPOSSIBLE',/,

1 " TERMINATING ERROR: T = ',D15.7,//)
STOP
C
215 CONTINUE
c
5 BOUNCED ON A VELOCITY BOUNDARY
c

PRINT 1524,T
1524 FORMAT(//,' BOUNCED ON A VELOCITY BOUNDARY AT T=',

1 Di5.7,//)
C
IF (IZWEIG(3) .EQ. 1) ISGN = +1
IF (IZWEIG(3) .EQ. 3) ISGN = -1
IF (IZWEIG(3) .EQ. 2 .AND. SLOPE .GT. 0) ISGN = -1
IF (IZWEIG(3) .EQ. 2 .AND. SLOPE .LT. 0) ISGN = +1
g
IZWEIG(3) = IZWEIG(3) + ISGN
C
230 CONTINUE
CALL KRODE(T,Y,YP)
KF = KF - 1
KOUNTR = -2
[e e e e L L e R ks
g FORMAT STATEMENTS:
B e e L e
1511 FORMAT(' AT UPDATE T = ',D23.16," TIME = ',D15.7)
1512 FORMAT(' UPDATE COMPONENT 3:',/,' T = ',D15.7,2X%,
1 " ATV = ',D15.7,' IZWEIG(3) = ',I3)
1515 FORMAT(' UPDATE COMPONENT 1:',/,' ALPHA = ',D15.7,3X,' ALPHAM = ',
1 D15.7,3X,' IZWEIG(1) = ',I3)
RETURN
END

Subroutine WARN for printing warning messages if the wrong ODE branch
is used:

C ---
SUBROUTINE WARN(MODE,PHI,NPHI,T,Y,NEQN, INDEX)
C ---
IMPLICIT REAL*8 (A-H,0-Z)
c
DIMENSION PHI(NPHI),Y(NEQN)
C
COMMON/BRANCH/IZWEIG(3)
COMMON/VBD/V, VLOWER , VUPPER
COMMON/FINALT/TOUT
COMMON/DUMMY / TWARN1 , IWARN2 , IWARN3 , IWARN4
COMMON/PHILIM/ALPHA,DALDT, ALPHAM , DALMDT
DATA TF/2.7D0/
[e e e L el
g PURPOSE: TO PRINT WARNING MESSAGES IF INCORRECT BRANCHING IS
c BEING USED.
C
g MODES OF OPERATION:

54

aaoaoaaoaoaoaaoaaoaoaaoaoaoaoaaaaoaaaaaaan

L]

MODE = 1 INITIALIZES CONSTANTS USED IN MODE=2
MODE 1 IS USED IN SUBPHI (KRODE) IN THE INITIALI-
ZATION OF THE TRAPPING PROCEDURE (KOUNTR=0)

MODE = 2 TIME-LAG WARNING: IF TRAPPING IS BEING USED, THE

BRANCHING BOUNDARIES WILL BE VIOLATED ON ONE STEP
BEFORE THE TRAPPING ITERATION IS ACTIVATED. ONCE
THE EXISTENCE OF THE ZERO IS DETECTED, INDEX IS NO
LONGER ZERO AND CAN BE USED AS A FLAG TO INDICATE
NO WARNING IS TO BE PRINTED. THUS, MODE 2 HAS

A TIME LAG OF ONE STEP BEFORE DECIDING IF WARNINGS
ARE IN ORDER.

MODE 2 IS USED IN SUBPHI (KRODE) WHENEVER PHI IS
EVALUATED.

MODE = & NO TIME LAG WARNING: AT UPDATE IN SUBPHI THE
BRANCHING SHOULD BE SET PROPERLY. MODE &4 PRINTS
WARNING IS ANY BRANCH VIOLATION IS DETECTED.

MODE &4 IS USED IN SUBPHI (KRODE) AT THE INITIALI-
ZATION PROCESS (KOUNTR=0) AND AT UPDATE.
IF (MODE .EQ. 2) GO TO 10
IF (MODE .EQ. &) GO TO 40
MODE 1: SET WARNING FLAGS FOR FUTURE ANALYSIS (HELD IN DUMMY
COMMON FOR PROTECTION)

- e S N RS MR R S e e S N R M S S e S e e R RS M e S e D N R RN R N R A e N e e S M e e

- e D D N D M N D e e e S e e e S R R N A M SR SR D M R R D N N S M S AP NS AR S e S G R R N SR N A e e Re e

MODE 2: CHECK FOR VIOLATIONS--ADJUSTMENTS FOR TRAPPING
ANALYSIS

- S S M D S T M R R e e S e S R R e S S G S SR e S D RS S M e e S e A e e

- S S D AR N NS D S D R e e e R A e e R S S RN R SR S SR S SN e S AN M N D S N e e S S M e e R M SR SR A N e e e e e R e em

IWARN1 = IWARN1 + 1
IF (DABS(ALPHAM) .GT. DABS(ALPHA) .AND. IZWEIG(1l) .EQ. 1)

1 IWARN1 = 0
IF (DABS(ALPHAM) .LT. DABS(ALPHA) .AND. IZWEIG(1l) .EQ. 2)
1 IWARN1 = 0

IF (IWARN1 .EQ. 0) GO TO 15
IF (IWARN1 .GE. 2 .AND. INDEX .EQ. 0) GO TO 14
GO TO 15

14 CONTINUE

DIFFICULTIES--WRONG BRANCH OF IZWEIG(1) IS USED

55

PRINT 1501,T,IZWEIG(1),PHI(1),ALPHA,ALPHAM
1501 FORMAT(//,' ALERT--WRONG BRANCH OF IZWEIG(1) IS BEING USED',/,

1 '"ATT= ",D15.7,/,
2 ' IZWEIG(1)=',I3,2X,'PHI(1)=',D15.7,/,
3 2X,'ALPHA=',D15.7,2X,'ALPHAM=',D15.7,/)
C
15 CONTINUE
c
C ---
c VIOLATION CHECKS FOR IZWEIG(2)
C ---
c
IWARNZ = IWARNZ2 + 1
IF (T*TOUT .LT. TF .AND. IZWEIG(2) .EQ. 1) IWARN2= 0
IF (T*TOUT .GT. TF .AND. IZWEIG(2) .EQ. 2) IWARN2= 0
IF (IWARN2 .EQ. 0) GO TO 25
IF (IWARN2 .GE. 2 .AND. INDEX .EQ. 0) GO TO 24
GO TO 25
24 CONTINUE
c
g DIFFICULTIES--WRONG BRANCH OF IZWEIG(2) IS USED
c

TSCALE = T*TOUT
PRINT 1502,T,IZWEIG(2),PHI(2),TSCALE
1502 FORMAT(//,' ALERT--WRONG BRANCH OF IZWEIG(2) IS BEING USED',/,

1 - il il 1 .)
2 ' IZWEIG(2)=',13,2X,'PHI(2)=',D15.7,/," ACTUAL TIME = ',D15.7,
- R
&
25 CONTINUE
C
c ---
C VIOLATION CHECKS FOR IZWEIG(3)
c ---
o
IWARN3 = IWARN3 + 1
IF (V .LT. 150.DO .AND. IZWEIG(3) .EQ. 1) IWARN3 =0
IF (V .LT. 536.36363636364D0 .AND. V .GT. 150.0DO
1 .AND. IZWEIG(3) .EQ. 2) IWARN3 = 0
IF (V .GT. 536.36363636364D0 .AND.
1 IZWEIG(3) .EQ. 3) IWARN3 = 0
IF (IWARN3 .EQ. 0) GO TO 35
IF (IWARN3 .GE. 2 .AND. INDEX .EQ. 0) GO TO 34
GO TO 35
34 CONTINUE
g
c DIFFICULTIES--WRONG BRANCH OF IZWEIG(3) IS USED
c

PRINT 1503,T,IZWEIG(3),PHI(3),V,VLOWER,VUPPER
1503 FORMAT(//,' ALERT--WRONG BRANCH OF IZWEIG(3) IS BEING USED',/,

1 Y& T="M8.7./,
2 V' IZWEIG(3)=",13,2X, 'PHI(3)=",D15.7,/,
3 2%,'v=",D15.7,2X%, "VIOWER=',D15.7,2X, 'VUPPER=" ,D15.7,/)
g
35 CONTINUE
RETURN
c
40 CONTINUE

56

= mm en e mn e e e s e e e e e e eSS S S S RN SN D S SN SN S S N S S S A SN S S SN M S s S e em A N S A em em e e M en e R en e S e

MODE 4&: CHECK FOR VIOLATIONS--NO ADJUSTMENTS FOR TRAPPING
ANALYSIS
WARNING CONDITIONS ARE THE SAME AS IN MODE=3, BUT
NO TIME LAG IS PERMITTED.

e s s am e s G S5 4N ON ED S D BN S S SH SE N NN Gm e M S SH A S W Gm S SR S AN S S S5 SN SS A N S3 S S Em en ED S B MmN S am Gm T Am S am Em em o Em e

EPS = 1.D-03

IWARN = 1

IF (DABS(ALPHAM) .GT. DABS(ALPHA)-EPS .AND. IZWEIG(1l) .EQ. 1)
1 IWARN =0

IF (DABS(ALPHAM) .LT. DABS(ALPHA)+EPS .AND. IZWEIG(l) .EQ. 2)
1 IWARN =0

IF (IWARN .EQ. 0) GO TO &5
PRINT 1501,T,IZWEIG(1),PHI(1),ALPHA,ALPHAM

45 CONTINUE
C
C ---
% VIOLATION CHECKS FOR IZWEIG(3)
C ---
C

IWARN = 1

IF (T*TOUT .LT. TF + EPS .AND. IZWEIG(2) .EQ. 1) IWARN = 0

IF (T*TOUT .GT. TF - EPS .AND. IZWEIG(2) .EQ. 2) IWARN = 0

IF (IWARN .EQ. 0) GO TO 46

TSCALE = T*TOUT

PRINT 1502,T,IZWEIG(2),PHI(2),TSCALE

46 CONTINUE

C
C ___
C VIOLATION CHECKS FOR IZWEIG(3)
C ---
C

EPS = 1.D-1

IWARN = 1 .

IF (V - EPS .LT. 150.D0 .AND. IZWEIG(3) .EQ. 1) IWARN = 0

IF (V - EPS .LT. 536.36363636364D0 .AND. V + EPS .GT. 150.0D0

1 .AND. IZWEIG(3) .EQ. 2) IWARN = 0

IF (V - EPS .GT. 536.36363636364D0 .AND.

1 IZWEIG(3) .EQ. 3) IWARN = 0

IF (IWARN .EQ. 0) GO TO 47

PRINT 1503,T,IZWEIG(3),PHI(3),V,VLOWER, VUPPER

47 CONTINUE

C

RETURN

END

Subroutine ZWEIGE for determing the initial branches of the ODE:

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(NEQN),YP(6)

57

coaoaoaaaaaan

aaa

COMMON /CTROMP/

1 ‘GRID(15;5),STIFF(15,5),U(15,5,5);A(15,5,5),B(15,5,5),C(15,5,5);
2 VLLLS,5.5) 0015 ,5,5),UB(C15,15 ,5,5) 8001518 ,5,5),BH{15, 15,5,5),
3 CH(15,15,5,5),P(10),Z0(6),TOL, INTERV,KONTRL,KNOT(5),NP,NZ,
4 MQP,IG,NPHI,LDUM(18)

COMMON/BRANCH/IZWEIG(3)
COMMON/PHILIM/ALPHA,DALDT,ALPHAM,DALMDT
COMMON/FINALT/TFINAL

LOGICAL LDUM

DATA CALPHA/-2.33D-03/,KNOT1/15/

- - R SR e R R D D SN SR M M M R SR N S RS A S Y NN S NS AN SD SS SN D R e GS ED M R e e S SR S e R A S S R A S e e e o e e

- S M S RS SN SN R S R N M G e e e N N S e e S M e S e SR SN T S e D e N S e e e e e e e e G e e e e

V =Y(1)
INITIAL VALUE: T = 0
IZWEIG(1):
COMPUTE AZ FOR DETERMINING ALPHA:
AZ = SPLINT(KNOT1,GRID(1,1),U0(1,1,1),STIFF(1,1),
1 A(1,1,1),B(1,1,1),C(1,1,1),T)
COMPUTE AZM FOR DETERMINING ALPHAM:
IF (V .LT. 150.0D0) AZM = 0.002D0 * V * V
IF (V .LT. 536.3636363636365D0 .AND. V .GE. 150.D0)
1 AZM = 45.0D0
2 + 0.660D0 * (V - 150.0D0)
IF (V .GE. 536.3636363636365D0)
1 AZM = 300.0DO

ATLPHA = AZ/(CALPHA*V*V)
ALPHAM = -AZM /(CALPHA * V * V)

IZWEIG(1) = 2
IF (DABS(ALPHA) .LT. ALPHAM) IZWEIG(l) =1

- R S S D R R SR B D ED SE N A NI N R M A e e e S AR NS S R S R R SS e eD S NS D M M N R e e e e e

IZWEIG(3) =1

RETURN
END

58

APPENDIX C. OUTPUT FROM OCP EXAMPLE

(Comments added to output listing are in italics)

Initial Parameters:

NUMBER OF INTERVALS FOR GRID = 1
NUMBER OF CONTROL PARAMETERS = 1
NUMBER OF KNOTS = 15
NUMBER OF DESIGN PARAMETERS = O
NUMBER OF DEPENDENT VARIABLES= 6
LOGICAL PARAMETERS--IMPULS = F
STORE = T STORB = F
LPLOT = F
IBOUND = F UBOUND = F
IFCT = F
INTEGRATION TOLERANCE = 0.1000000D-04
NUMBER OF CONSTRAINTS = 4
Z0(1) = 0.5860000D+02
Z0(2) = 0.1570796D+01
zZ0(3) = 0.4598755D-14
Z0(4) = =0.8790000D+01
zo(5) = 0.0
Z0(6) = 0.0
STIFFNESS FACTOR(1) = 0.0
STIFFNESS FACTOR(2) = 0.0
STIFFNESS FACTOR(3) = 0.0
STIFFNESS FACTOR(4) = 0.0
STIFFNESS FACTOR(5)- = 0.0
STIFFNESS FACTOR(6) = 0.0
STIFFNESS FACTOR(7) = 0.0
STIFFNESS FACTOR(8) = 0.0
STIFFNESS FACTOR(9) = 0.0
STIFFNESS FACTOR(10) = 0.0
STIFFNESS FACTOR(11) = 0.0
STIFFNESS FACTOR(12) = 0.0
STIFFNESS FACTOR(13) = 0.0
STIFFNESS FACTOR(14) = 0.0
STIFFNESS FACTOR(15) = 0.0
GRID(1) = 0.0
GRID(2) = 0.3703704D-02
GRID(3) = 0.1851852D-01
GRID(4) = 0.3703704D-01
GRID(5) = 0.7407407D-01
GRID(6) = 0.1111111D+00
GRID(7) = 0.2222222D+00
GRID(8) = 0.3703704D+00
GRID(9) = 0.4629630D+00
GRID(10) = 0.5555556D+00

L

CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL

GRID(11)
GRID(12)
GRID(13)
GRID(14)
GRID(15)

PARAMETER (
PARAMETER (
PARAMETER (
PARAMETER (
PARAMETER (
PARAMETER (
PARAMETER (
PARAMETER (
PARAMETER (

1)
2)
3)
4)
5)
6)
7)
8)
9)

PARAMETER (10)
PARAMETER(11)
PARAMETER (12)
PARAMETER (13)
PARAMETER (14)
PARAMETER(15)

[| I 1A A

LN | | T O (I | O | O T O | I 1

PARAMETERS FOR SLLSQP:

NUMBER OF CONTROL GRID POINTS,
NUMBER OF EQUALITY CONSTRAINTS, ME
LEADING DIMENSION OF DG MATRIX, LDG

BOUNDS ON CONTROL VALUES:

XL(
XL(
XL(
XL(
XL(
XL(
XL(
XL(
XL(
XL(
XL(
XL (
ZL(
XL(
XL(

1)
2)
3)
&)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

(e i o I s [v i o [oo o T o I o i oo B < B o

.0

S OO QOO0 00O O

L T T | | O | [| [A | Y { I 1

MINIMIZER: SLLSQP
SEQUENTIAL LINEAR LEAST SQUARES PROGRAMMING

(oo il o Bl oo B v [0]

OO0 O0O 0O OCOOOO0O00OO0

.3000000D+03
.3000000D+03

.6666667D+00
.7777778D+00
.8518519D+00
.9259259D+00
.1000000D+01

7o)

.1000000D+01
.5000000D+01
.1000000D+02
.1200000D+02
.1500000D+02
.1000000D+02
.8000000D+02
.1000000D+03
.1200000D+03
.1800000D+03
.2200000D+03
.2300000D+03
.2400000D+03
.2500000D+03

MODE
MAXIT
NX

| T T | I 1

XU(1)
X0¢ 2)
XU(3)
XU(4)
XU(5)
XUl - 6)
Xu(7)
XU(8)
XU(9)
XU(10)
XU 113
XU(12)
XU(13)
XU(14)
XU(15)

L | O (| | A Y 1}

50
15

40

slelelolellolollelleolell ool o]

.1000000D+00
.1000000D+02
.5000000D+02
.9500000D+02
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03
.3000000D+03

Initial integration (with trapping stops printed)

60

OUTPUT: T= 0.0

VELOCITY= 0.58600D+02 GAMMA= 0.15708D+01 X = 0.45988D-14
Z = -0.87900D+01 IA = 0.0 DGAMMA/DT= 0.0
INITIAL BRANCHES: ; Jites M | '
OUTPUT: T= 0.370370D-02
VELOCITY= 0.61180D+02 0.15682D+01 X = 0.64318D-03
z = -0.94998D+01 0.0 DGAMMA/DT=-0.42520D+00
OUTPUT: T= 0.185185D-01
VELOCITY= 0.71132D+02 0.15227D+01 X = 0.70860D-01
z = -0.12638D+02 0.0 DGAMMA/DT=-0.13498D+01
OUTPUT: T= 0.370370D-01
VELOCITY= 0.82203D+02 0.14276D+01 X = 0.50187D+00
z = -0.17167D+02 0.0 DGAMMA/DT=-0.17338D+01
OUTPUT: T= 0.740741D-01
VELOCITY= 0.10447D+03 0.12541D+01 X = 0.31192D+01
z = -0.27860D+02 0.0 DGAMMA/DT=-0.11297D+01
OUTPUT: T= 0.111111D+00
VELOCITY= 0.12981D+03 GAMMA= 0.11404D+01 X = 0.82395D+01
z = -0.40736D+02 IA = 0.0 DGAMMA/DT=-0.81293D+00
UPDATE COMPONENT 3-4:
T = 0.1383976D+00 AT V = 0.1500000D+03 IZWEIG(3) = 2
OUTPUT: T= 0.222222D+00
VELOCITY= 0.21979D+03 0.10113D+01 X = 0.38863D+02
Z = -0.94147D+02 0.0 DGAMMA/DT=-0. 15685D+00
OUTPUT: T= 0.370370D+00
VELOCITY= 0.35303D+03 0.85030D+00 X .11899D+03
Z = -0,20340D+03 0.0 DGAMMA/DT=-0.46422D+00
OUTPUT: T= 0.462963D+00
VELOCITY= 0.44220D+03 0.72101D400 X .20240D+03
Z = -0.28613D+03 IA = 0.0 DGAMMA/DT=-0.39304D+00
UPDATE COMPONENT 3-4:
T = 0.5500937D+00 AT V = 0.5363636D+03 IZWEIG(3) = 3
OUTPUT: T= 0.555556D+00
VELOCITY= 0.54257D+03 GAMMA= 0.61467D+00 X = 0.31697D+03

Z = =-0.37592D+03 IA = 0.0 DGAMMA /DT=-0.34060D+00
OUTPUT: T= 0.666667D+00
VELOCITY= 0.67486D+03 GAMMA= 0.48871D+00
Z = -0.48886D+03 IA =0.0

X = 0.50103D+03
DGAMMA/DT=-0.36924D+00

61

QUTPUT: T=
VELOCITY=

QUTPUT: T=
VELOCITY=
VA —

QUTPUT: T=
VELOCITY=
A —

OUTPUT: T=

VELOCITY=

Z =

Results from

ITERATION =

ITERATION =

ITERATION =

ITERATION =

ITERATION =

ITERATION =

ITERATION =

0.777778D+00
0.82101D+03 GAMMA= 0.35973D+00 X = (0.74306D+03
-0.59735D+03 IA =0.0 DGAMMA/DT=-0.34569D+00
C ---
T = 0.84375D+00 TIME = 0.2700000D+01 TIZWEIG(2) = 2
C ---
0.851852D+00
0.91488D+03 GAMMA= 0.28400D+00 X = 0.93960D+03
-0.66239D+03 IA =0.0 DGAMMA/DT=-0.31360D+00
0.925926D+00
0.89551D+03 GAMMA= 0.22467D+00 X = 0.11472D+04
-0.71645D+03 IA =10.0 DGAMMA/DT=-0.32924D+00
0.100000D+01
0.87568D+03 GAMMA= 0.16150D+00 X = 0.13532D+04
-0.75682D+03 IA =10.0 DGAMMA/DT==0.34561D+00
each iteration
1 F = -0.109460D+01
G(1 = =0,1925268D+01 G(2) = 0.3730022D+01
G(3 = =-0.9786908D-01 G(4) = 0.1000000D-03
2 F = =0.108795D+01
G(1 = =0.1695904D+01 G(2) = 0.3295920D+01
G(3 = =0.9064575D-01 G(&) = 0.1000000D=-03
3 ¥ = -0.108348D+01
G(1 = =0.1506637D+01 G(2) = 0.2933597D+01
G(3 = -0.8308310D-01 G(4) = 0.9304128D=04
4 F = =-0.108038D+01
G(1 = =0.1327748D+01 G(2) = 0.2595101D+01
G(3 = =0.7542239D-01 G(4) = =0.3809821D-04
5 F = -0.107829D+01
G(1 = =0,1172664D+01 G(2) = 0.2300036D+01
G(3 = -0,6837602D-01 G(4) = =0.1787329D=-03
6 F = =0.107770D+01
G(1 = =0.1047959D+01 G(2) = 0.2057852D+01
G(3 = =0.6185829D=01 G(4) = =-0.1799745D-03
7 F = =0.107714D+01
G(1 = -0.8663255D+00 G(2) = 0.1708945D+01
G(3 = -0.5324333D-01 G(4) = -0.1713C03D-03

62

ITERATION = 8 F

G(1

G(3
ITERATION = 9 F

G(1

G(3
ITERATION = 10 F

G(1

G(3
ITERATION = 11 F

G(1

G(3
ITERATION = 12 F

G(- 1

G(3
ITERATION = 13 F

G(1

G(3
ITERATION = 14 F

G(1

G{- 3
ITERATION = 15 F

GL 1

G(.. 3
MODE = 0
AFTER RETURN FROM SLLSQP:
X(1) = 0.1000000D+00
X(2) = 0.2942806D+01
X(3) = 0.6388505D+01
X(4) = 0.1149777D+02
X(5) = 0.1936999D+02
X(6) = 0.2470492D+02
X(7) = 0.2340847D+02
X(8) = 0.3929148D+02
X(9) = 0.6919008D+02
X(10) = 0.7635476D+02
X(11) = 0.1272889D+03
X(12) = 0.1684633D+03
X(13) = 0.2027118D+03
X(14) = 0.2005819D+03
X(15) = 0.2351272D+03
F= -0.1095228D+01

I nnu wunn wouu i mnn o nonu o

-0.107748D+01
-0.5704772D+00
-0.4056563D-01

-0.108004D+01
-0.3986150D+00
-0.3173114D-01

-0.108137D+01
-0.3531334D+00
-0.2878550D-01

0.108547D+01
-0.1628500D+00
-0.1943426D-01

0.109095D+01
0.9998761D-01
-0.8464951D-02

0.109338D+01
0.2862318D-01
-0.3739060D-02

0.109467D+01
0.2964904D-01
-0.6084254D-03

0.109522D+01
0.3101787D-03
-0.3017842D-04

63

G(
G(

G(
G(

G(
G(

G(
G(

G(
G(

G(
G(

G(
G(

G(
G(

2)
4)

2)
4)

2)
4)

2)
4)

2)
4)

2)
&)

2)
4)

2)
4)

.1141819D+01
.1851074D-03

.8091109D+00
.1621028D-03

.7194758D+00
.1535623D-03

.3531537D+00
.1233577D-03

.1500635D+00
.2961854D-04

.3827715D-01
.1335459D-04

.4689855D~-01
.2865439D-04

.4316430D-03
.4733124D-05

NUMBER OF DERIVATIVE EVALUATIONS: TOTAL NFE
(including extra evaluations for

TROMP)

NUMBER OF DERIVATIVE EVALUATIONS: TOTAL NFE

(required for the integration)

NEXTRA

Plotted results using the Optimal Trajectory

67519

66159
4357

FORWARD INTEGRATION BEFCORE PLOTTING USING OPTIMAL TRAJECTORY:

OUTPUT: T=
VELOCITY=
VA]

QUTPUT: T=
VELOCITY=
A =

QUTPUT: T=
VELOCITY=
Z -

QUTPUT: T=
VELOCITY=
7 =

QUTPUT: T=
VELOCITY=
A =4

OUTPUT: T=
VELOCITY=
zZ o~

QUTPUT: T=
VELOCITY=
Z =

QUTPUT: T=
VELOCITY=
Z —;

OQUTPUT: T=
VELOCITY=
7 =

QUTPUT: T=
VELOCITY=
VA =

QUTPRUT: T=
VELOCITY=
VA —

0

0.
=0

« 0
58600D+02
87900D+01

.370370D-02
.61126D+02
.94996D+01

.185185D-01
.70027D+02
.12607D+02

.370370D-01
.80279D+02
.17020D+02

.740741D-01
.96655D+02
.26931D+02

.111111D+00
.11301D+03
.37365D+02

.222222D+00
.18685D+03
.68508D+02

.370370D+00
.32356D+03
.11634D+03

.462963D+00
.41886D+03
.14896D+03

.555556D+00
.52370D+03
.17879D+03

.666667D+00
.66241D+03
.20719D+03

GAMMA=
IA

GAMMA=
IA

GAMMA=
IA

GAMMA=
1A

GAMMA=
IA

GAMMA=
IA

GAMMA=
IA

IA

GAMMA=
IA =

GAMMA=
IA =

GAMMA=
IA

[=]

.15708D+01
.0

.15626D+01
.0

.14799D+01
.0

.13682D+01
.0

.11199D+01
.55860D-04

.89533D+00
.10023D-03

.50442D+00
.10023D-03

.34760D+00
.10023D-03

.25819D+00
.10023D-03

.18012D+00
.10023D-03

.91385D-01
.10023D-03

64

X
DGAMMA/DT=

X
DGAMMA/DT=

X
DGAMMA/DT=

DGAMMA/DT=

X
DGAMMA /DT

X
DGAMMA/DT

X
DGAMMA/DT=

X
DGAMMA/DT=

X
DGAMMA/DT=

X
DGAMMA /DT=

X =
DGAMMA/DT=

0
0.

.45988D-14

0

.21071D-02
.11835D+01

.15520D+00
.17122D+01

.80555D+00
.20111D+01

.42143D+01
.19723D+01

.10883D+02
.17009D+01

.52217D+02
.49206D+00

.16220D+03
.23098D+00

.26702D+03
.25608D+00

.40311D+03
.18418D+00

.61162D+03

22260D+00

OUTPUT: T=
VELOCITY=
Z =

QUTPUT: T=
VELOCITY=
/A =

OUTPUT: T=
VELOCITY=
A =

QUTPUT: T=
VELOCITY=
zZ =

QUTPUT: T=
VELOCITY=
VA =

.777778D+Q0
.81519D+03
.21811D+03

.851852D+00
.91160D+03
.21043D+03

.925926D4+00
.89414D+03
.19049D+03

.100000D+01
.87618D+03
.16000D+03

.0
.58600D+02
.87900D+01

GAMMA=-0.
.10023D-03

GAMMA= 0.
= 0.0

.43562D-02
.10023D-03

.67782D-01
.10023D-03

.11903D+00
.10023D-03

17454D+Q0

15708D+01

65

X —

0.87350D+03

DGAMMA/DT=-0.22045D+00

X 5

0.10794D+04

DGAMMA/DT=-0.22986D+00

X =
DGAMMA /DT=-

X
DGAMMA/DT

X
DGAMMA /DT

i

0.12924D+04
0.23168D+00

0.15000D+04

-0.27338D+00

0.45988D-14
0.0

Parameter 1 is Velocity

Parameter 2 is flight path angle,y

Parameter 3 is x coordinate

X-AXTS:

X~-AXIS:

X-AXIS:

X-AXIS:

X-AXIS:

X-AXIS:

.0

.2000

.4000

.6000

.8000

1.000

0.0 2.50E+02 5.00E+02 7.50E+02 1
N T —— T T , - ® S —— +
-6.00E-01 =-3.58E-07 6.00E-01 1.20E+00 1
R — S T —— . R —— S ——— +
0.0 4.00E+02 8.00E+02 1.20E+03 1
AR —— o S S — S S — +
-2.40E+02 -1.80E+02 =-1.20E+02 -6.00E+01 0.
R — rmmmmm - Fmmmmmmm————a fommmmmm————— +
0.0 3.00E-05 6.00E-05 9.00E-05 1
fommmmmm———e fommmmm—————— R tmmmmmmm————— +
-2.40E+00 -1.80E+00 ~-1.20E+00 -6.00E-01 9
S5melmmem=mmm- o iom he i e ter - 2--4-6
5 1 6 2 4

3 1 6 5 4

3 1 6 . 2 5

I3 1 . .26 ;%5 :
+3mmmmmme l-m=tmmmmmmmmmme 2tmmmmmmmm e 6lim==5=mmmmmmm +
I3 1 2 6

I 3 ¥ 4 5 6

I 3 J 2 A 5 6

DR 1 .2 . & B
tmmmm- 3mmmmn- tmmmmle2mm o mmmm e tmmm5mmnfmm st
I 3 2 4 5 6

I 3 kA, 5 6

I 3. 4 1 5 6

I 4 2 1 8 & g
fmemmemmnn- botmm3mmmmmmmmn tmmelmmm————- +em=5mmmnfmast
I 4 % 3 1 5 6

I A .2 3 v 5 B

I 4 2 5 is "5 - B

I 4 2 15 6
e DETEEE e R RETEEEEE +m==5lmmfmmmmt
I 4 2 o

I 4 2 5. 5 6

I 42 . 35 6

I 34 . 5 316
Yocmmanne 2emmtrmmmfmmanana T o +-o=5=mfm=Funst

66

Parameter 4 is z coordinate
Parameter 5 is Iq
Parameter 6 is dy /dt

.00E+03

.80E+00

.60E+03

.20E-04

.54E-07

Parameter 1

X-AXTS:

.0

.2000

.4000

.6000

.8000

1.000

is 1ift coefficient (control parameter)

0.0 6.00E+01 1.20E+02
lemmmmm————— Fommmmmmeneen Femmmemaaamaa
I 1

I 1

L i

I 1 i

temme] e mmaa S e L e CEL LR
I i)

I 1

1 1

I 1 :

e ———— I e Hommmmmm——————
I 1

I 1

I 1

I 1

e e loee-- e kel b
I

I 1

I 1

£

dommmm—————— dmmmmmmm——aae fumemmmm—————
I

I

I

I .

Yemommmmmaaaa tommmmm—————— e a—aan

1.80E+02 2.40E+02
LT T +
- +
e — +
e —— +
lemmmmmm————— +
1
1
1
1 i
drmmmmnmaa- 1+

Parameter 1 is «a
Parameter 2 is «

m
X-AXIS:
0.0 2.50E-01 5.00E-01 7.50E-01 1.00E+00
.0 Al-=mmmmmmeee Hmmmmmmeaaaae fommm e ————— tmmmn- 2mmmmn- +
I 1 2
I 21
I 12
I : i . 2 .
2000 Amemmmmemeea-- dmm e lmmmmn- dmmmmmmmmeae tmmmmn 2emmnnn +
I 1 2
I 1 .2
I 1 2.
1 1 2
4000 Ammmmmmee e o 2mmmmmn fmmmmm e +
I 1 y §
I 1 o2
I 1 2
I 1 2 .
6000 +m=--- 1mmmmnm SRTTEEE 2mmmm- Hmmmmmmm— - tmmmmm - +
I 1 2
I 1 Jp
I i &
I . :
8000 #m==-- l==2mmmmmmmmmmmean dmmmmmmm—aae tmmmmmmm——aae +
I 1 2
I 12
I i EE
I S
1.000 Y------ 1-2==mdmmmmmmmmaae e T +

68

