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Abstract: Crop mapping in West Africa is challenging, due to the unavailability of 

adequate satellite images (as a result of excessive cloud cover), small agricultural fields 

and a heterogeneous landscape. To address this challenge, we integrated high spatial 

resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR 

(TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random 

forest classification algorithm. The overall goal was to ascertain the contribution of the 

SAR data to crop mapping in the region. A per-pixel classification result was overlaid with 

vector field boundaries derived from image segmentation, and a crop type was determined 

for each field based on the modal class within the field. A per-field accuracy assessment 

was conducted by comparing the final classification result with reference data derived from 

a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data 

improved classification accuracy by 10%–15% over the use of RapidEye only. The VV 

polarization was found to better discriminate crop types than the VH polarization. The 

research has shown that if optical and SAR data are available for the whole cropping 

season, classification accuracies of up to 75% are achievable.  
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1. Introduction 

In recent years, agricultural land use has experienced high expansion rates in many parts of the 

world [1]. This expansion is mainly due to high population growth (especially in developing countries) 

and the need to grow more food to meet the rising food demand. Accurate and up-to-date information 

on agricultural land use is essential to appropriately monitor these changes and assess their impacts on 

water and soil quality, biodiversity and other environmental factors at various scales [2–4]. This is 

particularly important considering the looming effects of climate change and variability. Updated 

information on agricultural land use can help in monitoring changes in cropping systems and gauge 

farmer’s reaction to the changing climate. Additionally, a wide range of biophysical and economic 

models can benefit from this information and improve decision-making based on their results.  

Remotely sensed (RS) data provide useful information for agricultural land use mapping. Periodic 

acquisition of RS data enables analysis to be conducted at regular intervals, which aids in identifying 

changes. Optical systems, which have largely been relied upon for agricultural land use mapping [5,6], 

measure reflectance from objects in the visible and infrared portions of the electromagnetic spectrum. 

The amount of reflectance is a function of the bio-physical characteristics of the reflecting feature 

(e.g., canopy moisture, leaf area and level of greenness of vegetation). Since different crops at varying 

vegetative stages exhibit different bio-physical characteristics, optical images have been useful in 

previous crop mapping studies [7–9].  

However, the reliance of optical systems on the Sun’s energy limits image acquisition in cloudy or 

hazy conditions. Images acquired during these periods are normally of little use in mapping due to high 

cloud/haze cover. Whereas on irrigated land under arid conditions, the entire growing period can be 

easily covered by optical data [10,11], agricultural land use mapping efforts in rainfed dominated 

agricultural regions, like West Africa (WA), are hampered, because the rainfall season coincides with 

the cropping season. Consequently, little or no in-season images are available for agricultural land use 

mapping, leading to challenges in discriminating between different crop types or crop groups [12–14]. 

For example, a number of land use studies [15–17] in WA have had to lump all crop classes into one 

thematic class (cropland), due to a poor image temporal sequence.  

Synthetic aperture radar (SAR) systems are nearly independent of weather conditions. Unlike 

optical sensors, active radar systems have their own source of energy, transmitting radio waves and 

receiving the reflected echoes from objects on the Earth’s surface. The longer wavelengths of radio 

waves enable transmitted signals to penetrate clouds and other atmospheric conditions [18], which 

make radar systems highly reliable in terms of data provision, especially during periods in which 

optical sensors fail [19–21].  

Moreover, the information content of radar imagery differs from that of optical data owing to 

differences in how transmitted signals from the two systems interact with features on the ground. 

A radar sensor transmits an electromagnetic signal to an object and receives/records a reflected echo 

(backscatter) from the object. Backscatter intensities recorded by radar systems are largely a function 
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of the size, shape, orientation and dielectric constant of the scatterer [22]. Thus, in vegetation studies, 

radar backscatter intensities will differ based on the size, shape and orientation of the canopy components 

(e.g., leaves, stalks, fruit, etc.). Crops with different canopy architecture and cropping characteristics 

(e.g., planting in mounds) can be distinguished based on their backscatter intensities [23–25]. 

The recent introduction of dual and quad-polarization acquisition modes in many radar satellites 

(e.g., Radarsat-2, PALSAR, TerraSAR-X) further increases the information content in radar data. 

Owing to the differences in imaging and information content, data from optical and radar systems 

have been found to be complementary [26]. Several studies have shown that integrating data from the 

two sources improves classification accuracies over the use of either of them [27]. The authors of [23] 

tested the integration of Landsat TM and SAR data (Radarsat, ENVISAT ASAR) for five regions in 

Canada. They concluded that in the absence of a good time series of optical imagery, the integration of 

two SAR images and a single optical image is sufficient to deliver operational accuracies (>85% 

overall accuracy). The authors of [28,29] noted an increase of 20% and 25%, respectively, in overall 

accuracy when radar and optical imagery were integrated in crop mapping. Other studies found 

percentage increases between 5% and 8% when the two data sources were merged [13,30–34].  

In this study, high resolution multi-temporal optical (RapidEye) and dual polarimetric (VV and VH) 

radar data (TerraSAR-X) have been combined to map crops and crop groups in northwestern Benin, 

West Africa. Excessive cloud cover during the main cropping season in West Africa has, for many 

years, hindered crop mapping efforts in the sub-region due to the unavailability of satellite images. 

A recent study [12] conducted in the sub-region with multi-temporal RapidEye images identified poor 

image temporal coverage as the limiting factor in accurately discrimination between certain crop types. 

A further limiting factor is the heterogeneity (small patches of different land use and land cover types) 

of the landscape [35], which leads to spectral confusion between classes, especially when per-pixel 

approaches are employed [36]. In order to reduce this confusion, a field-based classification approach 

was employed [37,38]. Vector field boundaries were derived through image segmentation. A per-pixel 

classification result was then overlaid and the modal class within each field assigned to it.  

The aim of this study was to combine optical and radar data to ascertain the contribution of radar 

data to crop mapping in WA. The specific research question addressed is: can dual polarized radar 

images acquired during peak cropping season months complement optical data to improve classification 

accuracies in crop mapping?  

2. Study Area 

The study was conducted in a catchment located in the northwestern part of the republic of  

Benin (Figure 1). Like other parts of West Africa, agriculture here is mainly rainfed. The rainfall 

distribution in the area is uni-modal and lasts from May to October [39]. Annual rainfall ranges  

from 800 mm to 1100 mm [40], while the mean monthly temperature for the past 35 years has ranged 

between 25 °C and 30 °C [41].  

The catchment is located in the Materi commune, which administratively falls under the jurisdiction 

of the Atacora Department. It has a flat terrain with slopes less than 5°. It is a rural catchment with 

scattered villages in and around it. Dassari is the biggest village, with an estimated population of  

about 20,000 as of the year 2002 [42]. The northeastern part of the catchment forms part of 
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the Pendjari National Park in West Africa. The main source of employment for inhabitants of 

the catchment is agriculture. Major crops cultivated are cotton, maize, sorghum, millet, yam and rice. 

Sorghum and millet may be intercropped, while yam is sometimes intercropped with rice, maize, okra, 

agushie, etc. Cotton is cultivated exclusively for export (the Government of Benin purchases 

the produce). The remaining crops are cultivated either for subsistence or for commercial purpose. 

Millet and sorghum are mostly for house consumption, while maize, rice and yam are normally sold in 

part to raise income for the household. Farm sizes are small. The authors of [43] estimated that about 

50% of farms in northwestern Benin are less than 1.25 ha in size. Due to the ease of marketing and 

the financial benefits associated with it, cotton fields dominate in this area and are normally bigger 

than that of other crops. It is estimated that about 50% of farm land in northwestern Benin is under 

cotton cultivation [43]. Cotton farmers receive support from the government in the form of seeds, 

fertilizer and pesticides during the cropping season.  

Figure 1. Map of the study catchment in northwestern Benin. 

 

3. Data and Image Pre-Processing 

3.1. RapidEye (RE) 

Multi-temporal RapidEye (RE) images were obtained from the RapidEye Science Archive Team 

(RESA) of the German Aerospace Center (DLR). Six monthly time-steps acquired on 4 April, 2 May, 

13 June, 19 September, 12 October and 15 November 2013, were analyzed. In addition to the 
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traditional multi-spectral bands of blue, green, red and near-infrared (NIR), RE provides data in the red 

edge channel. Level 3A data (i.e., orthorectified with a spatial resolution of 5 m and georeferenced to 

the Universal Transverse Mercator (UTM) projection) were used in this study. Atmospheric correction 

was performed for all images using ENVI ATCOR 2 (atmospheric correction) [44]. This application 

provides a sensor-specific (e.g., RapidEye, Landsat, SPOT) atmospheric database of look-up-tables 

(LUT), which contains the results of pre-calculated radiative transfer calculations based on 

MODTRAN 5 (MODerate resolution atmospheric TRANsmission) [45]. Parameters, such as satellite 

azimuth, illumination elevation and azimuth and incidence angle, required for the atmospheric 

correction were obtained from the associated metadata files of the images. A cloud mask was manually 

created. All images were co-registration (image-to-image) to ensure the alignment of corresponding 

pixels. A root mean square error of less than one pixel was obtained for all co-registrations. Spectral 

analysis was conducted for each image by deriving band ratios (NIR/green, NIR/red edge), differences 

(NIR-green, NIR-red, NIR-red edge) and normalized difference vegetation indices (NDVI, NDVI-red 

edge). For each RE time step, the original bands were used together with the indices mentioned above. 

3.2. TerraSAR-X (TSX) 

Multi-temporal dual polarimetric (VV/VH) TerraSAR-X (TSX) images acquired in StripMap (SM) 

mode were obtained from the German Aerospace Center (DLR). TSX provides high spatial resolution 

SAR data owing to its operation in the X-band (frequency of 9.6 GHz and 31-mm wavelength). 

The SM product of TSX achieves a spatial resolution of approximately 3 m (6–7 m for dual 

polarization), which makes it a suitable product for integration with RE images. VV/VH polarizations 

were selected in line with the results of previous studies that found these polarizations useful in crop  

classification [8,23]. Images were acquired in May, June, July and August (Table 1). Due to the limited 

width of dual polarization SM data (i.e., 15 km), two acquisitions, taken in an interval of 11 days (TSX 

revisit time), were made monthly in order to cover the study area. Data were supplied in both Single 

Look Slant Range Complex (SSC) and Multi-Look Ground Range-Detected (MDG) formats.  

Table 1. Acquisition dates and incidence angle of the TerraSAR-X (TSX) images analyzed. 

Date of Acquisition Incidence Angle 
Resolution 

Ground Range (m) Azimuth (m) 

4 May 2013 44.0 1.31 3.15 

15 May 2013 44.0 1.29 2.59 

6 June 2013 44.6 1.31 3.15 

17 June 2013 44.6 1.29 2.59 

9 July 2013 43.5 1.31 3.15 

20 July 2013 43.5 1.29 2.59 

11 August 2013 44.6 1.31 3.15 

22 August 2013 44.6 1.29 2.59 

3.2.1. Polarimetric Analysis 

Analysis of the polarimetric information from the two channels (VV and VH) is necessary for 

discriminating different targets based on the type of backscattering they produce. In polarimetry, 
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scattering matrices (e.g., Sinclair matrix, covariance matrix, Müller M-matrix, Kennaugh  

K-matrix, etc.) are used to describe the polarization state of electromagnetic waves under different 

scattering conditions [46]. The fundamental quantities measured by a polarimetric SAR are the 

scattering matrix elements, i.e., the transmitted and received polarizations, respectively [47]. These 

matrices contain relevant information about the scattering processes [46]. Thus, the use of these 

matrices can assist in the development of unique scattering signatures for different features and improve 

their discrimination.  

The dual polarimetric information was analyzed using the Kennaugh scattering matrix [48]. 

The Kennaugh matrix is a symmetric matrix, where the single elements of the matrix are real and 

linear combinations of the Sinclair matrix elements [49,50]. It is also referred to as the Stokes matrix 

and can be converted to a covariance or coherency matrix [50]. The Kennaugh matrix elements for 

the VV/VH cross-polarization (Equations (1)–(5)) were implemented in the “NEST ESA SAR 

toolbox” application [51]. Equations (2) and (3) represent the total backscatter intensities from both 

polarizations and their difference, respectively. Equations (4) and (5) represents the information from 

the real and imaginary parts of the SSC data, respectively. Terrain correction was performed for the 

four Kennaugh intensity bands with the Range Doppler Terrain Correction (RDTC) routine implemented 

in NEST [52,53]. Elevation data required for the terrain correction was obtained from the Shuttle Radar 

Topographic Mission (SRTM) Digital Elevation Model (DEM). The raw digital numbers (DNs) of 

the Kennaugh intensity bands were converted to sigma nought by applying radiometric normalization. 

To enable integration with the RE data, the data were resampled to 5-m resolution using bilinear 

interpolation and georeferenced to the UTM projection (Zone 31N (north)). The two images acquired 

per month were then mosaicked and subsetted to match the dimensions of the RE data. Visual 

inspection of the Kennaugh intensity bands revealed a high level of noise in the elements “K5” and 

“K6” compared to the other two elements. For this reason, elements “K5” and “K6” were not 

considered in subsequent analysis. 
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Apart from the Kennaugh intensity bands, backscatter intensities from the individual polarizations 

(VV/VH) were processed by performing terrain and radiometric correction. Again, the RDTC routine 

in NEST was used to convert the raw DNs to sigma nought and georeferenced to UTM Zone 31N.  

For each monthly time-step, the two Kennaugh intensity bands (K0 and K1) and the backscatter 

intensities of the two polarizations (VV/VH) were stacked together (i.e., four bands per time step) for 

subsequent analysis. 
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3.2.2. SAR Data Filtering 

Filtering is an important pre-step to analyzing SAR images. Traditionally, local mean filters 

(e.g., Lee, Frost, etc.) have been used. However, non-local means (NLM) filters have an advantage 

over mean filters in that they improve the preservation of structure and texture [54]. The use of NLM 

filters for SAR images has been demonstrated in recent years [55]. NLM filters work with the 

assumption that, for every small window (patch) in an image, there are similar windows (i.e., in terms 

of grey level intensity) (patches) in the whole image or a defined search window. Thus, the estimated 

value of a pixel under consideration is based on a weighted average of all pixels in the image or a 

defined search window [54].  

A NLM filter implemented with ENVI’s Interactive Data Language (IDL) was used for post 

filtering of the processed TSX data. The algorithm estimates the similarity (weight) between two pixels 

using the squared Hellinger distance [56]. A similarity window of 9 × 9 pixels was used, while the 

search window used was set at 21 × 21 pixels. The algorithm was run twice on the data (i.e., the first 

result as input for the second run) to achieve enough averaging. Figure 2 demonstrates the advantages 

of using NLM filters on SAR data by comparing a portion of the July TSX image in its unfiltered state, 

a corresponding filtered image using the Lee adaptive filter (with window size 7 × 7; [57] and an NLM 

filtered image. Like in the case of the NLM filter, the adaptive Lee filter was applied twice on the raw 

SAR. The red ellipses show that the NLM filter better preserves the structure of agricultural fields than 

the other two methods. 

Figure 2. Comparison between (a) a raw TSX image, (b) a corresponding image filtered 

with the Lee adaptive filter (window size of 7 × 7) and (c) a non-local means (NLM) 

filtered image (similarity window of 9 × 9 and search window of 21 × 21). 
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3.3. Training and Validation Data 

Field campaigns were organized in July and October 2013, to collect training and validation data 

for classification and accuracy assessment, respectively. Crops that were mapped and considered in 

this study are: cotton, maize, millet, sorghum, rice and yam. Figure 3 presents a cropping calendar for 

the various crops investigated. In each campaign, focal areas, each about 1 km
2
, were identified for 

mapping. Within each focal area, representative fields for all crop types were mapped using a handheld 

Global Positioning System (GPS) device. Occasionally, fields outside these focal areas were mapped 

due to the absence of certain crop types in the area. For example, rice and yam fields were not always 

available in the focal areas. As much as possible, trees were avoided in mapping the fields. Five 

photographs were taken per field (i.e., one each to north, south, east, west and one from north position 

to the middle of the field). In all, eighty-four fields were mapped in July for training the classifier, 

while seventy-six fields were mapped in October for accuracy assessment. Table 2 details the number 

of fields per crop that were used for training and validation. 

Figure 3. Cropping calendar for each of the crops considered in the study based on 2013 

field surveys. Each bar represents the start of land preparation to the harvest period. The 

start or the harvest period indicated may differ by up to two weeks or more. 

 
* land preparation for yam starts from January. 

Table 2. Number of training and validation fields used in crop classification. Millet and 

sorghum were subsequently merged into one group (cereals). 

Crop Training Validation 

Cotton 19 19 

Maize 19 15 

Millet 13 10 

Sorghum 11 8 

Rice 12 13 

Yam 10 11 

4. Methodological Approach  

The methodological approach adopted in this study includes four main steps (Figure 4). In Step 1, a 

crop mask (i.e., separation between cropped and non-cropped areas) was derived. This step was 

necessary to reduce confusion between crops and surrounding natural/semi-natural vegetation, due to 

high similarities between the phenological cycles of these two classes [36,58]. In the second step, a 

per-pixel crop classification was conducted on the derived crop mask (i.e., cropped areas only) using a 
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hierarchical classification scheme and the random forest classification algorithm. Crop classification 

using per-pixel approaches often results in a “speckled” output due to high spectral within-field 

heterogeneity [8]. In West Africa, this situation is further aggravated by a heterogeneous landscape [12]. 

Recent studies have overcome this challenge by overlaying per-pixel classification results on 

parcel/field boundaries and assigning the modal class within each field as its class [5,23]. This 

approach has been found to improve classification accuracies [32,37]. In line with this, the third step of 

the methodological approach involved the derivation of field boundaries in the study area using the RE 

images and a segmentation algorithm. These boundaries were combined with the results of Step 2 to 

produce a per-field crop map. In Step 4, the accuracy assessment was conducted on the per-field crop 

map using independently surveyed fields (Table 2). The sections below detail each of the four steps. 

Figure 4. Schematic of the methodological approach. Analysis was conducted in the order 

indicated by the steps. RE, RapidEye; RF, random forest. 
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4.1. Classification Algorithm 

The random forest (RF) classification algorithm [59], which belongs to the class of ensemble 

classifiers, was used for classification. The RF package in the statistics software “R” was used [60,61]. 

This algorithm automatically generates a large set of classification trees (forest), each tree based on a 

random selection of training samples and predictors. Predictors are the spectral bands of RE 

(i.e., original + indices) and TSX (see Sections 3.1 and 3.2). Training samples are derived by 

overlaying training areas/polygons on the predictors and extracting the corresponding pixel values. By 

building several classification trees, RF overcomes the generalization errors associated with single 

classification trees and, thus, increases the classification accuracy [62]. Each tree in the forest casts a 

unit vote for the most popular class. The classification output is determined by a majority vote of the 

trees. RF conducts an internal validation (out-of-bag error rate) based on training samples that are not 

used in the generation of the trees [63]. This error rate served as an initial assessment of classification 

accuracy and as a guide to the selection of appropriate parameters for each run. For all classifications, 

a maximum of five hundred trees were generated, while the default number of predictors (i.e., square 

root of total number of predictors) to be tried at each node [60] was used. The RF variable importance 

measure [60] was used to identify the most important predictors in all classifications. The mean 

decrease in the Gini coefficient served as a measure of variable importance. 

4.2. Derivation of a Crop Mask 

Derivation of a crop mask prior to crop classification has been found to improve classification 

accuracies [64]. This is particularly important in heterogeneous landscapes, such as West Africa, 

where farming is done around hamlets and in bushes. The practice of integrated crop and livestock  

systems [65] also results in grasslands that are close to fields, which are often left for animal  

grazing. Consequently, crop mapping on full-image scenes results in considerable confusion between  

crop/non-crop areas.  

Ploughed fields or fields at early vegetative stages have unique spectral characteristics compared to 

surrounding natural/semi-natural vegetation, due to high reflectance from the background soil. Thus, 

an image acquired during the ploughing or early crop stages is important for accurately discriminating 

cropland from surrounding land uses and covers. Since ploughing in the study area begins in late 

April/early May, the RE image acquired on 13 June was first classified to identify fields that had been 

ploughed as of the time the image was acquired. Two classes (early ploughed/non-crop) were 

considered at this stage. The areas identified were masked out from the RE image time series. Due to 

variable planting dates in the study area and the fact that some crops are cultivated a bit later after the 

onset of the rainy season (e.g., maize), a considerable number of fields in the study area had not been 

ploughed at the time of the June acquisition. Therefore, a second classification was performed to 

identify these fields. This classification was performed using all six available RE images, with only two 

classes (late ploughed/non-crop) considered as previously. Cropped areas identified in both 

classifications (early and late ploughed) were combined to derive a crop mask. A per-pixel accuracy 

assessment was performed by comparing the final results (crop/non-crop) with reference data obtained 

from the field campaign. Overall accuracy, producer’s accuracy and user’s accuracy [66] were computed. 
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4.3. Crop Classification 

4.3.1. Experimental Design 

The objective of this research was to investigate whether SAR data acquired during the cropping 

season can complement optical data to improve classification accuracies in the study area. In order to 

achieve this objective, four experiments were conducted with different image combinations (Table 3). 

In Experiment (A), four RE images acquired in April, May, October and November were used for 

classification. This selection was made based on analysis of historical Landsat acquisitions (1984–2011) 

in the region. Historical acquisitions reveal a high possibility of obtaining optical imagery for these 

months. This is mainly due to the fact that these months fall largely outside the peak rainfall season, 

during which there is relatively lower cloud cover with better chances of obtaining cloud-free optical 

images. Thus, this experiment was conducted to determine the accuracies that can be obtained with 

such a time-series. Experiment (B) assessed the improvement in classification accuracy when SAR 

imagery acquired during the peak cropping season (May, June, July, August) was added to the RE time 

series in (A). Experiment (C) assessed the accuracy of classification when all available RE images 

were used for crop classification, while Experiment (D) considered the use of all available RE and 

TSX images.  

Table 3. Experimental design for crop classification. Blue cells indicate the use of RE 

only; green indicates the use of TSX only, and orange represent the use of RE and TSX. 

Experiment April May June July August September October November 

A         

B         

C         

D         

4.3.2. Classification Approach 

Crop classification was performed on the generated crop mask to discriminate five crop types/groups. 

These are cotton, maize, rice, yam and millet/sorghum. Millet and sorghum were combined into one 

class (cereals) due to similarities in their structure, planting dates and the fact that they are often 

intercropped [67]. The initial classification of all the five classes using different image combinations 

resulted in high levels of confusion between the classes.  

A study of the RE NDVI temporal profiles of the training data revealed that variable planting dates 

of the same crops, which leads to temporal within-class variability, was possibly the cause of the 

confusion. As depicted in Figure 5, two cotton fields (Cotton 1 and 2) exhibit different temporal 

profiles, with one having a peak in September and the other in October. Maize 1 has a temporal profile 

similar to that of Cotton 1, with both having a peak in September. Farmers in the study region 

subjectively decide on when to plough and seed. Some farmers plant late in the season, due to poor 

rains, while others still follow the traditional cropping calendar regardless of the amount of rainfall 

received. This situation could lead to different crops (e.g., Cotton 1 and Maize 1) exhibiting similar 

phenological profiles, while the same crops (e.g., Cotton 1 and Cotton 2) would exhibit different 
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phenological profiles. The authors of [68] identified similar challenges (temporal within-class 

variability), especially for rice cultivation, in the Khorezm region in Uzbekistan, Central Asia. They 

noted that temporal segmentation of MODIS time series results in a better representation of crops that 

exhibit temporal variability in phenology. However, temporal aggregation of information was 

impossible for this study, due to the heterogeneity of the time series available here (SAR and optical 

data, irregular acquisitions). 

Figure 5. Differences/similarities in the phenological cycles of same/different crops in the 

study area. Cotton 1 and 2 exhibit different phenological cycles, while Cotton 1 and  

Maize 1 having similar phenological cycles. Each profile represents the mean signature of 

a field. 

 

In order to reduce the effect of this confusion, two separate masks, October and September  

peak, were created from the crop mask based on the NDVI images of the September, October and 

November RE images (Figure 4). Mask 1 included all fields that have an NDVI peak in September, 

and Mask 2 included fields with an NDVI peak in October. The October and September peak masks 

constituted 65% and 35% of the crop mask, respectively, suggesting that the majority of the crops in 

the study area reach their peak (full development) in October. Separate classifications were performed 

on the two masks to reduce confusion due to variable planting dates. Fifty-four out of the eighty-four 

training samples (see Section 3.3) were used to classify the October peak mask, while thirty samples 

were used for the September peak mask. 

Figure 6 details the classification approach adopted to classify the five crop types on each of the 

masks described above. A three-level hierarchical scheme was implemented to sequentially differentiate 

the different crop types. At each level, several band/image combinations were tested (depending on the 

experiment being conducted; Section 4.2.1) during classification to determine the optimal combination 
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for discriminating the classes under consideration. At the first level, an RF classification was 

performed to separate two broad crop groups (rice/yam and cotton/maize/cereals). These two crop 

groups were determined based on the results of an initial one-time classification involving all crops, 

which revealed little confusion between the two groups. A mask was created for each group for 

subsequent analysis. At the second level, different RF classifications were performed to separate yam 

from rice and cotton from maize, millet and sorghum. A final classification was conducted at the third 

level to separate maize from millet/sorghum (cereals). Results obtained for individual crops at Levels 2 

and 3 were combined into a final crop map (at the pixel level). A corresponding per-field crop map 

was produced by overlaying the per-pixel crop classification results with field boundaries derived 

through image segmentation (Section 4.3). The modal crop class within each field boundary was 

assigned to it. 

Figure 6. Flowchart of the hierarchical scheme adopted to discriminate the crop classes. 

Different image sets (optical with or without SAR) were used to classify crops at different 

levels of the hierarchical scheme. 

 

4.4. Derivation of Field Boundaries 

A cadastral map showing the field boundaries in the study area does not exist. Therefore, field 

boundaries were derived from the RE image acquired on 19 September. This image was chosen 

because it presented the best contrast between fields, which can be attributed to structural differences 

between the different crops at the time of acquisition. For example, maize fields, which are generally 

cultivated later in the season (late July/early August), will, by mid-September, be at  

the mid-vegetative stage, while millet/sorghum, which are planted much earlier in the season 

(May/June), would be at the seed development/senescence stage.  

The eCognition Developer Software (8.7) [69] was used to conduct a multi-resolution segmentation 

of the image. Due to a higher between-field contrast in the NIR and red edge bands, the weights of 

these bands were doubled. Different parameter sets of scale, shape and compactness were tested in 

segmenting the image. The result of each test was validated against twenty-four manually-digitized 

fields (from the September image) by comparing their corresponding areas and calculating the mean 
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absolute error (MAE) and the mean error. The result of the parameter set with the best statistics 

was selected. 

Separation between crop and non-crop segments was achieved by overlaying the segmentation 

results with the per-pixel crop mask derived in Step 1 (Section 4.1) and assigning the modal class in 

each segment to it [5,37,38]. For the crop segments, the percentage of crop pixels in each segment was 

extracted. This was to provide a reliability measure for the derived crop segments.  

4.5. Accuracy Assessment 

Accuracy assessment was conducted on the per-field crop maps with a total of 76 fields evenly 

spread over the study area (Figure 1). The overall accuracy, producer’s accuracy and user’s 

accuracy [65] were determined. Additionally, the F1 score (Equation (6)) [70,71], which combines 

producer’s and user’s accuracy into a composite measure, was computed for each class. This measure 

enables a better assessment of class-wise accuracies. The score has a theoretical range between “0” and 

“1”, where “0” represents the worst results, while “1” is the best.  

accuracysproduceraccuracysuser

accuracysproduceraccuracysuser

recallprecision

recallprecision
scoreF

''

''
221









  (6) 

5. Results and Discussion  

5.1. Derivation of Crop Mask 

Table 4 presents the confusion matrix for the per-pixel evaluation of the crop mask. The approach 

adopted (mapping plowed fields on the June RE image and the remaining fields on the available  

time series) reduced the confusion between crop and non-crop areas. An overall accuracy of 94% was 

achieved, while the producer’s and user’s accuracy were consistently above 90%.  

Table 4. Accuracy estimates for the derived crop mask. Overall Accuracy = 94.02%; 

Kappa = 0.88. 

 Class Cropland Non-Crop Total 
Producer’s 

Accuracy 

User’s 

Accuracy 
F1 Score 

Reference 
Cropland 2024 176 2200 92.0 95.8 0.94 

Non-crop 87 2113 2200 96.0 92.3 0.94 

 Total 2111 2289 4400    

5.2. Image Segmentation 

The segmentation results of the different parameter sets (scale, shape, compactness) were tested 

against twenty-four manually digitized fields from the September RE image. The manually digitized 

fields ranged in size from 0.5 to 4 ha, which is representative of farm sizes in the study area, although 

most fields are under 2 ha [43]. MAE was computed for each segmentation result based on the areas 

(ha) of the corresponding polygons (i.e., manually-digitized and segmentation). The best parameter set 

was found to be 75, 0.5 and 0.5 for scale, shape and compactness, respectively. Figure 7a shows a plot 
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of the manually-digitized fields against corresponding fields from the best segmentation. An MAE of 

0.46 was obtained.  

There were more cases of underestimation than overestimation. These errors can be attributed to 

many factors. First is the irregularity in field sizes and shapes in the study area. Fields vary in size 

depending on whether the cultivation is for subsistence or for commercial purpose. Cotton and maize 

fields, for instance, tend to be relatively larger than millet/sorghum, due to the commercial benefits 

farmers get from these crops. Additionally, some fields tend to be very irregular in shape, because of 

the use of manual approaches to land clearing. Intra-field color variation, which could be caused by 

spatial variation in soil fertility or differences in fertilizer application, was found to be one of the 

causes for the underestimation witnessed. This situation occasionally resulted in multiple segments 

within a field. The occurrence of natural/semi-natural vegetation (e.g., trees) on or at the boundaries of 

fields also resulted in under- or over-estimation of segments, since the field boundaries change 

depending on the position of the tree(s).  

Figure 7. (a) The manually-digitized fields’ (reference) versus segmented fields’ 

(b) proportion of cropland pixels in segments classified as cropland. Percentages have been 

sorted in ascending order. 

 

The results of the segmentation were divided into crop and non-crop segments by overlaying them 

with the per-pixel crop mask (Section 4.1) and assigning the majority class (from the crop mask) to the 

corresponding segment (Figure 8). For each segment labeled as cropland, the percentage of cropland 

pixels in it was noted. Figure 7b presents a plot of the crop segments and the percentage of cropland 

pixels in each (percentages were sorted in ascending order). Segments that had less than sixty percent 

cropland were found to be mainly farms around hamlets. These were mostly over-segmented and 

sometimes included the hamlets themselves. Cultivation around hamlets is common in West Africa. 

In this watershed, however, there are not many, hence the relatively few number of fields in this 

category. Thirty percent of all segments were found to be pure cropland (i.e., 100% cropland pixels). 

These were found to be in areas of intensive cultivation, with little or no natural/semi-natural vegetation.  

Segments with a crop percentage of between eighty and hundred percent were found to have 

varying numbers of trees in the polygon. Sub-canopy cultivation is common in West Africa, which 

often leads to a highly fragmented landscape. The trees serve as resting places for farmers when they 

are on the farms. The category of crop segments that had a cropland percentage of between sixty and 
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eighty were found to be close to or in the midst of natural/semi-natural vegetation. Thus, the relatively 

low percentage of cropland pixels (60%–80%) noticed in these segments can be attributed to confusion 

between the two classes (crop and natural/semi-natural vegetation) or over-segmented crop fields that 

extended into the natural/semi-natural vegetation. For most of these fields, manual corrections  

were made.  

Figure 8. A detailed look of the overlay of the segmentation results on the derived crop mask. 

 

5.3. Crop Classification 

5.3.1. Accuracy Assessment 

A per-field accuracy assessment was performed for each of the experiments outlined in  

Section 4.2.1. Tables 5–8 present results for each experiments, while Figure 9 is a plot of the  

class-wise accuracies (F1 score) for the different experiments. 

Experiment (A), which was conducted with only RE images acquired in April, May, October and 

November, achieved an overall accuracy of 52%. There was considerable confusion between all 

classes, especially between rice and yam, which had an F1 score of 0.47 and 0.25, respectively. 

The relatively high confusion between the two classes can be explained by the intercropping of yam 

and rice, mostly on yam fields. Yam is cultivated in mounds (heaps of soil). This practice creates 

gullies between adjacent mounds, where farmers, in their bid to maximize the utilization of their land, 

cultivate rice. Some farmers also cultivate maize, okra and agushie on the same field. During flooding 
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months, water collects in the gullies and provides the needed water for the rice. This practice is 

believed to be the main source of confusion between the two classes. Cereals (millet/sorghum) and 

maize had an F1 score of 0.5 and 0.52, respectively. Four cereal fields were misclassified as maize and 

vice versa. This can be attributed to the image time series analyzed in this experiment. The NDVI 

image of the May acquisition was used to separate these two classes. Since most maize fields were 

plowed in July/August, the NDVI of these fields were higher than plowed cereals fields in May, 

allowing for separation between the classes. However, not all cereal fields had been ploughed at the 

time of the May RE acquisition. This means some cereal fields behaved spectrally similar to that of 

maize, hence the confusion between the two classes. Cotton had the highest F1 score of 0.74 (owing to 

a high user’s accuracy of 81%). There was, however, some confusion between cotton and cereals, 

which can be attributed to similarities in their cropping calendar and the inability of the analyzed 

temporal sequence to achieve a complete separation between the two. 

Table 5. Confusion matrix for Experiment (A). Overall Accuracy = 52%. 

 
Class Cereals Cotton Maize Rice Yam Total 

Prod. 

Acc 

User. 

Acc 

F1 

score 

Reference 

Cereals 10 1 4 3 
 

18 0.56 0.45 0.50 

Cotton 5 13 1   19 0.68 0.81 0.74 

Maize 4 2 8 1 
 

15 0.53 0.50 0.52 

Rice 1  2 7 3 13 0.54 0.41 0.47 

Yam 2  1 6 2 11 0.18 0.40 0.25 

Table 6. Confusion matrix for Experiment B. Overall Accuracy = 62%. 

 
Class Cereals Cotton Maize Rice Yam Total 

Prod. 

Acc 

User 

Acc 

F1 

Score 

Reference 

Cereals 11 
 

4 2 1 18 0.61 0.55 0.58 

Cotton 3 15 1   19 0.79 0.83 0.81 

Maize 4 3 7 1 
 

15 0.47 0.50 0.48 

Rice    10 3 13 0.77 0.63 0.69 

Yam 2 
 

2 3 4 11 0.36 0.50 0.42 

Table 7. Confusion matrix for Experiment (C). Overall Accuracy = 60%. 

 
Class Cereals Cotton Maize Rice Yam Total 

Prod. 

Acc 

User 

Acc 

F1 

Score 

Reference 

Cereals 12 2 2 2 
 

18 0.67 0.60 0.63 

Cotton 3 13 3 
  

19 0.68 0.87 0.76 

Maize 3 
 

11 1 
 

15 0.73 0.58 0.65 

Rice 
   

7 6 13 0.54 0.50 0.52 

Yam 2 
 

3 4 2 11 0.18 0.25 0.21 

The overall accuracy achieved in Experiment (B) was 62%, an increment of 10% over that of (A) 

(Table 6). This experiment considered the RE images used in (A) plus the available TSX time-series. 

With the exception of maize, all the classes improved in accuracy compared to the results of 

Experiment (A). Notable are rice and yam, which increased in their F1 score from 0.47 to 0.69 and 
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0.25 to 0.42, respectively. The F1 score of cotton also increased by about 10% from 0.74 to 0.81. The 

producer’s accuracy of maize reduced from 53% to 47%, while the user’s accuracy remained the same, 

resulting in a slight decrease in the F1 score from 0.52 to 0.48. This was due to an increase in 

confusion between maize and cotton compared to the results of Experiment (A). 

Table 8. Confusion matrix for Experiment (D). Overall Accuracy = 75%. 

 
Class Cereals Cotton Maize Rice Yam Total 

Prod. 

Acc 

User 

Acc 

F1 

Score 

Reference 

Cereals 14 
 

2 1 1 18 0.78 0.78 0.78 

Cotton 
 

16 3   19 0.84 0.89 0.86 

Maize 2 2 11   15 0.73 0.69 0.71 

Rice 
 

  10 3 13 0.77 0.71 0.74 

Yam 2   3 6 11 0.55 0.60 0.57 

Figure 9. Comparison of the F1 score achieved for the various crops in the 

four experiments. 

 

In Experiment (C), the use of all available RE time-series (April, May, June, September, October 

and November) resulted in an overall accuracy of 60%. With respect to Experiments (A) and (B), the 

cereals class increased in the F1 score by 26% and 9%, respectively, while the corresponding increase 

in maize was 25% and 35%, respectively. These improvements in class accuracies are attributable to 

the inclusion of the June RE image in this experiment. As previously explained, the late cultivation of 

maize was the best way of separating it from the cereals class. Since most cereal fields had been 

ploughed as of the time of the June acquisition, and most maize fields not; a better separation of the 

two classes was possible using the June NDVI image. As in Experiment (A), rice and yam performed 

poorly in this experiment, with yam having an F1 score of 0.21. The F1 score of cotton increased 

slightly over that of Experiment (A), but decreased marginally compared to results of Experiment (B). 

Table 8 shows the results obtained for Experiment (D). An overall accuracy of 75% was achieved. 

Here, all available RE and TSX time-series were considered in the classification. Class-wise accuracies 
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(producer’s, user’s, F1 score) were better than all other experiments. An F1 score of at least 0.7 was 

achieved for all classes, except yam. Cotton, like in all previous experiments, had the best class 

accuracy (F1 score = 0.86), followed by cereals, rice and maize. These improvements can be attributed 

to the use of all the available RE and TSX time-series, which covers the full cropping season.  

Figure 10 provides a detailed look of the per-pixel and per-field results obtained for this experiment. 

Figure 10. Detailed look at the per-pixel and per-field results obtained for Experiment (D), 

where all available optical and SAR images were in the classification. 

 

A minor limitation of the hierarchical approach adopted, which could negatively affect reported 

accuracies, is error propagation [5,72]. First, the commission and omission errors incurred in generating 

the crop mask are inherent in the reported crop classification accuracies. Second, errors in classifying a 

crop class/group at any stage of the hierarchical crop classification scheme will be propagated into 

subsequent classifications. Thus, although the scheme was implemented to reduce confusion between 

classes, it may have resulted in some errors not being accounted for in the presented accuracies.  

5.3.2. Contribution of TSX Data to Crop Mapping 

Results obtained for Experiments (B) and (D) indicate that the inclusion of TSX data increased 

classification accuracies by 10% and 15%, respectively. Owing to the classification approach adopted, 

it was possible to identify the contribution of radar in improving classification accuracies. For each RF 

classification performed at the various levels of the hierarchical scheme, the variable importance 
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measure, which indicates the relative importance of the variables/predictors used [73], was extracted. 

Table 9 shows the various levels of the classification scheme and the five most important predictors 

(out of all predictors) used to separate the classes at each level. The table indicates that the best 

separation between rice and yam was achieved by the multi-temporal TSX data. This fact is also 

evident in Tables 6 and 8. The class accuracies (F1 scores) of yam and rice increased by at least 40% 

when TSX data were included in the classification ((B) and (D)) compared to the use of RE images 

only ((A) and (C)). This can be attributed to the sensitivity of radar systems to land surface 

characteristics, such as soil moisture and roughness [74]. Due to the cultivation of yam in mounds 

(soil heaps), these fields have a rougher surface characteristic compared to rice-only fields. Thus, 

backscatter intensities are expected to be higher for yam fields than rice. Additionally, previous studies 

that used SAR data for crop mapping have distinguished between “broad leafed” and “fine/narrow 

leaf” crops and noted the usefulness of radar data in differentiating them based on their canopy 

architecture [24,25]. Broad-leaved crops have higher backscatter intensity than fine-leaved crops, due 

to a high absorption of the radar signal in the latter [75]. In this regard, yam, which can be categorized 

as broad leaf, will have higher backscatter intensities than rice, which can be considered as fine leaf. 

Figure 11a depicts a feature space plot of the July TSX VV and VH intensities for rice and yam. The 

figure shows higher intensity values for most yam fields compared to rice, although some confusion 

between the two classes still exists.  

Table 9. Top five important variables used in discriminating different crop types/groups at 

the various levels of the hierarchical classification scheme. 

Classes to Separate Top Five Important Variables 

Rice, Yam 
Cotton, Maize, 

Cereals 

Green band, Sept RE; green band, April RE; green band, 

June RE; green band, May RE; NIR band, April RE 

Cotton Maize, Cereals 
NIR band, Oct RE; red edge band, Oct RE; VV intensity, 

Aug TSX; red edge band, Sept RE; green band, Sept RE 

Maize Cereals NDVI June RE; NDVI April RE; NDVI May RE 

Rice Yam 

VV intensity, July TSX; VH intensity, July TSX; VV 

intensity June TSX; VH intensity, May TSX; VV 

Intensity Aug TSX 

The TSX data also contributed to improving the separation between cotton and maize/cereals. For 

example, the class accuracies (F1 score) of cotton increased by at least 10% when TSX data were 

included in the classification (Experiments (B) and (D)) compared to the use of only RE data. Out of 

the multi-temporal TSX data, the August acquisition was found to be important for this separation. 

This could be due to differences in the canopy structure (e.g., leaf shape and size) of cotton, on the one 

hand, and maize/cereals, on the other. Figure 11b shows a feature space plot of the August VV and VH 

intensities for cotton and maize/cereals. The plot shows higher intensities for most cotton fields 

compared to the other classes, although some confusion is still evident. The relatively shorter 

wavelength of TSX (compared to, e.g., C-band Radarsat and L-band ENVISAT) and its resultant high 

sensitivity to vegetation canopy contributed to the improved class separation when TSX was included 

in the classification. Previous studies that used TSX for the classification of agricultural areas highlighted 

its capability to observe small-scale vegetation changes due to its lower penetration depth [19,20,25]. 
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For example, in a multi-frequency SAR integration study to map major crops in two sites in Canada, [34] 

found that multi-temporal TSX produced a better overall classification accuracy than multi-temporal 

C-band RadarSat-2.  

Figure 11. (a) Feature space plot of yam and rice using VV and VH polarizations of the 

July TSX acquisition; (b) similar plot as in (a) for cotton and maize/cereals using VV and 

VH polarizations of the August TSX acquisition. 

 

In all classifications involving the TSX data, the VV polarization was found to better discriminate 

crop types than the other TSX bands used in the classification (VH, K0, K1). In the case of cotton and 

maize/cereals, for instance, the VV polarization is the only TSX band that came within the five most 

important variables (based on the RF variable importance measure) in discriminating the two classes. 

Previous studies [8,23,34] also noted the superiority of the VV polarization in separating certain crop 

types (potatoes and cereals) over the VH polarization. The sensitivity of the VV polarization to 

different canopy structures was found to be the main reason for their ability to discriminate different 

crop types. This reason is applicable in this study, owing to the differences in canopy architecture 

between cotton and cereals/maize, as well as rice and yam. 

5.4. Reliability of Modal Class Assignment 

Previous studies that incorporated vector field boundaries and per-pixel results by assigning the 

modal class to each field polygon have noted the superiority of such approaches over only per-pixel 

classification results [8,37]. However, the reliability of the results obtained in the modal class 

assignment depends on the reliability of the per-pixel classification [5]. In instances where the number 

of classes being considered are high, interclass confusion in the per-pixel result could lead to a 

particular field having a modal class with a small proportion (e.g., 25%). Thus, an idea of the 

proportional cover of the modal class within each field could provide information about the level of 

confusion within the field, as well as the reliability of the approach (i.e., modal class  

assignment) adopted.  

In this study, the proportion of the modal class in each correctly classified field was analyzed 

together with the local/within field variance (i.e., a measure of the number of classes). The objective is 

to ascertain the reliability of the approach adopted (modal class assignment) and to gauge the interclass 
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confusion in the per-pixel classification result within each field. This analysis was conducted for 

Experiments (A) (without radar) and (B) (with radar) due to similar patterns in Experiments (B) and 

(D). Figure 12a,b presents a plot of the proportion of modal class against local variance per each 

correctly classified field for the two experiments. The number of correctly classified fields per crop 

type is indicated in parenthesis. The plots reveal that the proportion of modal class for most correctly 

classified polygons exceeded 50% in both experiments.  

Figure 12. (a) The proportion of modal class for each correctly classified field versus  

within-field variance for Experiment (A) and (b) for Experiment (B). 

 

In Experiment (A), the cereal class had the lowest average proportion of modal class of 57% and the 

highest average within-field variance of 0.81. This suggest a high interclass confusion on cereal fields, 

which can be attributed to difficulty in separating cereals from maize and cotton with the time-series 

used. Maize, rice and yam had an average proportion of modal class of 70%, 74%, 88% and average 

local variance of 0.34, 0.32 and 0.3, respectively. This indicates that correctly classified fields in these 

classes were relatively homogeneous, and the assigned class was indeed the dominant class. Cotton 

fields had a similar average proportion of modal class of 74%, but a slightly higher average local 

variance of 0.51.  

The average proportion of modal class for cereals improved to 62% in Experiment (B), while the 

average variance reduced to 0.58. This was mainly due to a better separation between cereals and 

cotton, owing to the inclusion of the TSX data. Likewise, the average proportion of modal class for 

cotton and maize improved to 78% and 72%, while average variance reduced to 0.43 and 0.25, 

respectively. The situation for rice and yam was, however, different. The average proportion of modal 

class for rice and yam reduced to 68% and 62%, while average variance increased to 0.42 and 0.91, 

respectively. This suggests a relatively higher interclass confusion on rice and yam fields. Although 

the inclusion of the radar data improved the separation between the two classes (by correctly 

classifying three and two additional rice and yam fields, respectively), the proportion of modal class on 

these additional fields were typically between 50% and 60% (Figure 12b).  
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6. Conclusions  

This research integrated multi-temporal RapidEye (RE) and multi-temporal dual polarimetric 

TerraSAR-X (TSX) data (VV/VH) to map crops in northwestern Benin, West Africa. The study 

demonstrated the ability to map crops and crop groups in a region where the poor availability of optical 

data, complex cropping systems and a highly fragmented landscape has hindered crop mapping efforts 

for years. A hierarchical classification scheme that adapts to the challenges highlighted above was 

implemented to map crops and crop groups using the random forest (RF) classification algorithm. 

Different image combinations were used to classify crops and crop groups at different levels of the 

hierarchical scheme. Four experiments were set up to ascertain the contribution of SAR data to 

improving classification accuracies in crop mapping in the study area. 

Results indicate that the integration of RE and TSX data improved classification accuracy by 10%–15% 

over the use of RE only. The contribution of TSX data was mainly in separating rice and yam, as well 

as cotton and maize/millet/sorghum. The VV polarization was found to better discriminate crop types 

than VH polarization. The research has shown that if optical and SAR data are available for the whole 

cropping season, classification accuracies of up to 75% are achievable. This result is promising for 

West Africa, where accurate and up-to-date information on agricultural land use is urgently required to 

develop adaptation and mitigation strategies against the looming effects of climate change and 

variability. The methodology developed in this paper can be applied to other parts of the region to map 

crops and crop groups with comparable accuracies. 

Varying planting and harvesting dates were found to be a major source of misclassification. In 

future studies, fields to be used for training and validation will be monitored continuously throughout 

the cropping season (from the ploughing stage to harvest) to gain a better understanding of the 

dynamics in the phenological cycles of same crops planted/harvested at different stages of the season. 

Continuous monitoring (year-to-year) of fields in this manner is necessary to understand the dynamics 

in cropping patterns and to inure to the benefits of future attempts at operationalizing agricultural land 

use mapping in the region. 

The soon-to-be-launched Sentinel-1 satellite, which will provide free and open access SAR data in 

dual polarization mode (VV/VH) will greatly enhance crop mapping efforts in West Africa and other 

tropical regions worldwide. Day and night, all weather acquisitions will ensure the availability of data 

throughout the cropping season, which, when combined with freely-available optical data (e.g., Landsat 8), 

can deliver comparable or better classification accuracies than what has been achieved in this study. 
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