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Master’s Thesis in Informatics

Bayesian Orientation Estimation and Local Surface
Informativeness for Active Object Pose Estimation

Bayessche Rotationsschätzung und lokale
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Abstract

This thesis considers the problem of active multi-view pose estimation of known objects
from 3d range data and therein two main aspects: 1) the fusion of orientation measure-
ments in order to sequentially estimate an objects rotation from multiple views and 2) the
determination of informative object parts and viewing directions in order to facilitate plan-
ning of view sequences which lead to accurate and fast converging orientation estimates.

Addressing the first aspect, the Bingham probability distribution over 3d rotations, a
parametric probability density function defined on the unit quaternion sphere, is inves-
tigated in a black box fusion task based on real data. The experiment shows that the re-
sulting rotation errors are equal to fusion approaches based on pose clustering, a particle
filter and a histogram filter while having the advantage of a continuous and parametric
probabilistic representation.

To evaluate the informativeness of surface parts and viewing directions of an object with
respect to orientation estimation, we present a conceptually simple approach based on the
classification of locally computed 3d shape features to viewing directions they could be
observed from during a training phase. At first, the applicability of the viewing direction
classification to object orientation estimation is investigated. Secondly, the trained classi-
fication pipeline is used to determine informative viewing directions and discriminative
local surface parts by analyzing the discrepancy between predicted and correct classifi-
cations on training data using the Kullback-Leibler divergence as information-theoretic
measure of dissimilarity.

Experiments on simulated and real data revealed that the accuracy of the orientation
estimation using the proposed method is not yet comparable to state-of-the-art algorithms
in the general case of unrestricted viewing directions. The problem was identified as non-
robustness of the classification to deviations from the discrete set of training view direc-
tions. The evaluation of view and surface part informativeness, however, gives plausible
and promising results for building effective view planning criteria.
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1. Introduction

In this chapter, the general motivation and scope of the presented work will be introduced.
Relevant, basic terminology will be explained and a short outline of the thesis is given.

1.1. Overview

Recognition and pose estimation of known objects is necessary for many tasks including
monitoring and tracking purposes or robotic manipulation of objects. Whereas recogni-
tion is the task of deciding which object is present, pose estimation refers to estimating
an object’s position and orientation in up to three dimensions. If the objects are known in
advance, analyzed by the estimation algorithm in an offline training phase and the online
application is limited to the a priori known objects, one speaks of model based object recog-
nition and pose estimation. Robotic part handling in industrial applications is a prominent
example and commercial use case for such algorithms because industrial manipulation is
most often limited to a fixed set of parts known in advance.

Model based recognition and pose estimation have been subject to extensive research
since the early 70s (Chin and Dyer [5]) and generally work in two steps. In the offline
phase, a representation of the object is built using features derived from training data. In
the online phase, incoming sensor data is matched to this representation and by doing
so, the desired quantity - for example the object’s pose - is measured. The quality of this
measurement is affected through several aspects of the measurement process. Aspects
involving the sensor directly include for example the inherent loss of 3d information when
working with monocular 2d intensity images, loss of color information in 3d range data,
limited spatial and temporal resolution, limited field of view and sensor noise. Through
the environment, the sensed data can be affected by the scene illumination and occlusions.
Lastly, the objects to be recognized and located can share feature characteristics with the
environment, among each other or among different views of the same object. This last
aspect can lead to classification and pose ambiguities even under perfect environment and
noise free sensing conditions.

Aforementioned influences are minimized by designing the extracted features to be
more or less invariant to many of these aspects. This way, state-of-the-art algorithms
achieve correct recognition results and pose measurements using only a single view of
the scene or object. In case of ambiguities or inaccuracies introduced by the environment,
the object itself or simply sensor noise, it can be helpful to acquire several sensor mea-
surements and fuse the information obtained by them. Utilizing multiple measurements
in general will lead to higher accuracy of the measured quantities. Furthermore, tasks for
which the presence of unknown objects is expected often necessitate fusing information
from multiple measurements to obtain reliable estimates (for example in object search or
scene exploration as explained in Kriegel et al. [19]).

1



1. Introduction

Such multi-view approaches can be divided into passive and active ones. Active multi-
view approaches are characterized by some sort of configurability for the sensor data ac-
quisition which is deliberately exploited to obtain optimal conditions for the sequential
measurement process. A camera mounted on a robotic manipulator is a simple exam-
ple for a system where the configurability lies in the choice of the camera pose. Other
often considered parameters are camera focus or zoom. From a system’s point of view, ac-
tive multi-view approaches consist of three main components: (1) a component providing
measurements given an obtained view, (2) a component fusing measurements of different
views and (3) a component deciding how to best configure the data acquisition process for
the next measurement. In contrast to this, passive multi-view systems cannot influence the
data acquisition process and therefore lack the last component.

The main goal of this thesis is the investigation and development of an active multi-
view pose estimation system exploiting the mobility of a 3d depth sensor through mount-
ing it onto a robotic manipulator. While this also involves a hardware and robotic control
problem to some extent, the main concern of this work is the software dealing with the
perception and planning aspects of such a system. Designing these parts is a complex task
as many different aspects come together. This can be showcased when thinking in terms
of the aforementioned three components. The first component includes the core computer
vision algorithm of the system. It performs feature extraction and often also the matching
to the model database. This component is of interest here in so far that it interfaces to
the second component via the measurement it provides. The second component is of cru-
cial importance for every multi-view approach in general and in particular for the work
done in this thesis. It deals with the probabilistic modeling of the pose space as well as
the measurement uncertainty and is investigated in detail. The third component drives
the sequential perception-action loop and is a challenging planning problem on the ba-
sis of uncertain information. It provides the conceptual motivation for the investigations
presented in this thesis and while not being fully evaluated, some insights and proof-of-
concept results are presented.

1.2. Conceptual Motivation

To motivate the work presented in this thesis, let us consider the planning aspect of an
active pose estimation system a little bit further. Intuitively, the planning is based on some
sort of expectation or prediction regarding the measurements which would be obtained for
a certain camera configuration. This expectation in turn is based on the more or less known
state of the environment and the estimated pose of the object(s). Besides the predictive
nature of the problem, the computational complexity and therefore the time necessary to
plan the measurement process quickly becomes an issue for practical application.

The problem of computational tractability can be tackled by approximate calculations
and by precomputing helpful statistics for the planning based on the a priori known ob-
jects. Depending on the amount of precomputation, a planning approach is termed as
offline approach (lots of precomputed knowledge) or online approach (no precomputed
knowledge). Given for example an object classification task, precomputed knowledge
could be provided by means of the most unambiguous viewing direction for every ob-
ject with respect to a correct classification. This direction would be derived based on the

2



1.3. Thesis Outline

training images and used in a basic online planning approach by trying to establish this
view for the current most likely class. While precomputed statistics can result in large
computational savings during online planning, there is an inherent connection between
the nature of the precomputed statistics and the flexibility of the planning. In the just
mentioned example, partial occlusions as observed in cluttered environments cannot be
handled by the planning even if the actual classification is part based and thus can cope
with occlusions. The precomputed statistics are on a too coarse level.

One of the conceptual motivations for this thesis was therefore to develop an active pose
estimation approach which makes use of finer grained precomputed statistics. In order to
plan camera poses in cluttered environments, the precomputed statistics should allow to
consider partial occlusions while still enabling to offload some of the computations to an
offline analysis phase. The main idea to achieve this behavior is to analyze how infor-
mative different features or surface parts of an object are with respect to pose estimation.
Given this information the online planning tries to bring such surface parts into the cam-
era’s field of view. Because of statistics over surface parts, such an approach would also
allow to consider occlusions on a finer level.

Another aspect regarding computational tractability is an efficient probabilistic repre-
sentation of object poses. This affects the fusion component as well as the planning com-
ponent. Parametric probability distributions like the Gaussian normal distribution are gen-
erally more desirable for efficient measurement fusion than for example sample based rep-
resentations because they can allow for closed form algebraic solutions. While the transla-
tion part of an object’s pose behaves nicely in this respect, it is not trivial to define proper
probabilistic distributions over 3d rotations.

As the close range visual appearance of objects varies more strongly with the relative ro-
tation between camera and object than with the relative position, object pose estimation is
relaxed to object orientation estimation for the presented work. The investigation of a well
defined parametric distribution over rotations, the Bingham distribution, and sequential
object rotation estimation using this distribution thus became an integral part. Sequen-
tial fusion using the Bingham probability distribution is first analyzed for a black box pose
estimation algorithm and small involved uncertainties. A second approach to object orien-
tation estimation is then explored using a classification based method. Individual features
are classified to viewing directions they could originate from and this way not only the
orientation of the object can be estimated but also the aforementioned analysis of surface
informativeness can be carried out. Especially for the orientation estimation, the Bingham
distribution’s unique ability to represent large uncertainties in a parametric way plays an
important role.

1.3. Thesis Outline

Chapter 2 will introduce the basic formalism underlying active pose estimation systems.
Related work and specific approaches to solve perception planning and feature selection
are discussed and evaluated with respect to the outlined motivation. Chapter 3 introduces
the Bingham distribution as a probabilistic model for 3d rotations and integral part of the
probabilistic representation necessary for the later chapters. Its performance in a passive
multi-view fusion task is evaluated against other approaches to orientation fusion, namely

3



1. Introduction

a pose clustering algorithm, a histogram filter (also called discrete Bayes filter) and a par-
ticle filter. Chapter 4 introduces a conceptually simple approach to orientation estimation
based on feature classification. The approach is again evaluated in a passive (random)
multi-view fusion scenario on simulated and real data. Chapter 5 investigates how the
previously introduced feature classification can be used to derive a local model of surface
informativeness and shows a proof-of-concept for the relevance of these results using a
multi-view scenario with simulated occlusion. The findings in this thesis are summarized
in chapter 6.

4



2. Generic Passive and Active Multi-View
Pose Estimation

This chapter gives an introduction to the general architecture and relevant components
of a multi-view pose estimation system. Relevant design parameters are explained and
showcased at various systems described in research literature. Special emphasis is put
on systems with an active (decision making) component which drives the sequential pose
estimation process. With the established understanding of relevant approaches in the liter-
ature, the motivation provided in the introductory chapter is detailed and further put into
perspective.

2.1. Components of a Multi-View Pose Estimation System

Dealing with uncertain information lies at the core of every system which uses multiple
sources of information. In the general case of our setting, every acquired and processed
sensor data (for example an intensity image, a laser scan, etc.) results in a pose measure-
ment z of the object and due to sensor noise and unmet assumptions while processing the
sensor data, this measurement will be wrong to some extent. Probability theory is one way
to capture and deal with this uncertainty in a principled manner.

Let us define xt as the system’s state vector at time step t. The system’s task is to se-
quentially estimate (xt, xt+1, . . .) - starting from x0 - using acquired sensor data. Choosing
what exactly is to be estimated and therefore defining the dimensionality of the state

space Ω, xt ∈ Ω, is an important design parameter. For a classification task, x would be
the discrete space of possible class labels, for the following chapters x will be a 3d ro-
tation and in the general case it would be the 6d pose of an object or maybe even the
concatenated pose vector of multiple objects. Uncertainty with respect to the current state
is formally represented by maintaining not only a single state vector xt, but a probabilistic
belief bel(X = xt).

By processing new sensor data and gaining more pose measurements zt, the system’s
belief should converge to an accurate estimate even though individual measurements are
erroneous. In fact, our belief distribution from above is a conditional distribution bel(X =
xt) = p(X = xt|zt, . . . , z0) which represents the state after accumulating the information of
all measurements until the current time step. A new measurement zt is incorporated into
the estimate by following Bayes’ update rule

p(X = xt|zt, . . . , z0)
︸ ︷︷ ︸

posterior

∝ pt(zt|xt)
︸ ︷︷ ︸

measurement model

p(xt|zt−1, . . . , z0)
︸ ︷︷ ︸

prior

(2.1)

in which we assume the current measurement zt is conditionally independent of previ-
ous measurements given the current state xt. The measurement model is also often termed

5



2. Generic Passive and Active Multi-View Pose Estimation

data likelihood function because in practice it is treated with xt as the variable as zt is a
concrete measurement made at this time step. The prior can be further split up to con-
tain an explicit model of the state dynamics (formally p(xt|xt−1)), but since the object is
assumed to be static in this thesis and also the discussed related work, we can set the prior
equal to the previous time step’s posterior.

Equation (2.1) is generally referred to as the measurement update step of a filtering al-
gorithm and its algorithmic implementation is dependent on the representation and form

of the involved belief distributions. For certain choices of the functional form of the
measurement model and prior, algebraic solutions for the posterior distribution can be ob-
tained. The prior which together with the data likelihood leads to a posterior distribution
of the same functional form as the prior, is called a conjugate prior for this data likelihood
function. Specifically conjugate priors lend themselves to sequential state estimation as
given in above equation. The actual implementation of the measurement update step is
the information fusion component of our generic multi-view pose estimation system.

A second component is concerned with computing a measurement zt from acquired
sensor data. Formally, it computes a function zt = f(x̂t, at, . . .) of the true system state
x̂t and some action parameter at. The considered action throughout this thesis will be
the change in sensor position and orientation, which greatly impacts the acquired sensor
data and thus the quality of the computed measurement zt. The form and dimensionality

of the measurement space Z, zt ∈ Z is a relevant design parameter for the algorithmic
implementation of the measurement function f . In many cases, zt will be the detected 6d
pose of an object, but other choices are possible. Eidenberger et al. [10] uses the image
coordinates of features as measurements, which results in a more complex but also more
powerful measurement model on the information fusion side. For the developed pose
estimation in chapter 4, the measurement is a 3d rotation. This component will be termed
the measurement component of our generic pose estimation system.

Active state estimation systems are characterized by a third component which intention-
ally drives the sequential estimation process by choosing a specific action a∗. By definition
of our measurement component, this action can influence the resulting measurement, so
typically a∗ is chosen by reasoning over the expected utility of various actions. The action
space A, a∗ ∈ A is a design parameter of the planning component and while the considered
action space in this work will be the camera’s pose for the next data acquisition (next-best-
view planning) the action space could also contain the camera settings (zoom, focus, . . . )
or even manipulation actions like (re)moving parts or objects. Formally, the planning com-
ponent computes a function a∗ = g(bel(xt), . . .) of at least the current belief state. Typically,
g(. . .) includes a model of the action’s utility as well as the cost associated with performing
this action.

To conclude our component overview, figure 2.1 illustrates the resulting perception-
action cycle. The next section will give an overview over concrete instantiations of these
three components by reviewing related work on active classification and pose estimation
approaches.

6



2.2. Related Work: View Planning

Measurement

zt = f(x̂t, at, . . .)

Fusion

bel(xt) ∝ p(zt|xt)bel(xt−1)

Planning

a∗ = g(bel(xt), . . .)

Figure 2.1.: The three standard components of an active state estimation system.

2.2. Related Work: View Planning

An early active vision system was described by Arbel and Ferrie [1] in 2001. They propose
an approach for view planning in order to assist object classification. It is based on offline
generated entropy maps which suggest viewing directions to allow an unambiguous clas-
sification of the object at hand. Class recognition is done via optical flow images obtained
by small arc like motions of a camera around the object. Training flow images for every ob-
ject are used to build a measurement model which is in turn used in a sequential Bayesian
scheme as in equation (2.1) to update the belief over class labels. The viewpoint selection
strategy is based on the idea of evaluating which training flow image (respectively which
training view direction) leads to a correct and maximally unambiguous classification of
the object with respect to all other objects. To do so, the information theoretic concept of
entropy as a measure of uniformity of a distribution is employed. For every training flow
image, the class distribution given the image is obtained, checked for correctness of the
maximum a posteriori (MAP) estimate and if so the entropy of the distribution is stored at
the image’s viewing coordinates (otherwise the maximum entropy value is stored). Intu-
itively, viewing coordinates for which the entropy is low indicate correct and unambigu-
ously peaked training classifications from this direction for this object. Figure 2.2 taken
from Arbel and Ferrie [1] illustrates this behavior. The online application of the computed
entropy maps is done by selecting the entropy map for the current MAP class hypothesis,
determining a pose estimate of the MAP object (this is also implicitly done using the op-
tical flow images) and then commanding the camera to the minimum entropy pose using
the map with respect to the current pose estimate. A comparison of a random with the
proposed view selection strategy reveals that the view selection allows for faster and more
correct recognition of the objects, especially when the recognition process starts with an
ambiguous view. As only discrete distributions are involved, the sequential fusion can

7



2. Generic Passive and Active Multi-View Pose Estimation

be implemented in an algebraic way. The view planning is heavily based on in advance
computed statistics and does not take the current time step’s posterior into account except
for the MAP estimate.

Another approach based on offline computed discriminative views is described by Sipe
and Casasent [34]. During a training phase they build so called Feature Space Trajectories
which capture how a globally extracted feature changes in relation to changes of the view-
ing angle. Areas in the feature space where trajectories from different objects come close to
each other indicate ambiguity with respect to object classification. Concerning only a sin-
gle object, areas where trajectories from far apart viewing perspectives are close indicate
ambiguity with respect to the object’s pose estimate. Inversely, the most discriminative
view for disambiguation of two object classes and the most informative view for the pose
estimation of an object are extracted offline and used for planning in a similar fashion than
in Arbel and Ferrie [1]. First, they reduce the classification uncertainty by driving the cam-
era towards the most unambiguous view for discriminating between the two most likely
class hypothesis. When the object class is known and the pose accuracy is still insufficient,
the camera is positioned for the precomputed best view for pose estimation.

While the strength of both described methods lies in the negligible planning overhead in
the online phase, the weakness lies in not taking the full state posterior into account. Also,
the in advance extracted most unambiguous views are most unambiguous with respect
to all other classes or object poses. The view which best disambiguates object A from
objects B,C,D and E is not necessarily the same view as the best view disambiguating
A and from B and C only. While this is a general problem of precomputed knowledge
based on one vs. the rest statistics, the particular application during planning adds to
the suboptimality of the approach by using only the one or two most likely class or pose
hypotheses. As Laporte and Arbel [22] point out, this leads to redundant data acquisition.
Lastly, the aforementioned approaches to precomputed statistics are based on globally
extracted features and do not take partial occlusions into account.

In 2002, Denzler and Brown [6] described a system for the purpose of object classifi-
cation, but with a view planning approach based on online information theoretic con-
cepts. Instead of precomputing discriminative views offline, the whole approach is cen-
tered around an online evaluation of how much a certain camera action and the resulting
observation due to the action is expected to reduce the current state posterior’s uncertainty.
Formally, this quantity is measured by the mutual information (MI) between the proposed
observation and the current state. The MI is defined as the difference between the entropy
of the state posterior now and the entropy of the state posterior conditioned on the ob-
servation obtained by the action. Evaluating the MI in practice requires integrating over
the state and observation space for every action to be considered, which is difficult and
computationally costly for continuous state and observation spaces. Even in the case of a
simple Gaussian observation likelihood and state posterior, there is no closed form solu-
tion for the MI [6]. They thus experiment with a discretization of their continuous spaces
and Monte Carlo integration techniques. In both cases, this approach also necessitates a
generative model of the observations given a system state and action which they build dur-
ing a training stage. The experiments conducted involve highly ambiguous objects and in
one case very weak observed features (mean gray level over a patch). However, they show
that they obtain nearly perfect recognition rates even with such weak features. Further, the
MI based planning leads to a drastic reduction in the number of necessary observations in

8



2.2. Related Work: View Planning

Figure 2.2.: Views of the toothpaste object (top row) and entropy maps (bottom row). The
left image shows a view with high entropy (white color on the entropy map)
leading to ambiguous classification. The right image shows a view with low
entropy leading to unique and correct classification. Source: Arbel and Ferrie
[1]

their experiments. Conceptually, this approach results in the optimal action to take with
respect to state uncertainty reduction. This does not mean that after every action the un-
certainty will be reduced (that depends on the actual observation made), however, in the
long-run, convergence of this one step look-ahead strategy can be proven - not necessarily
to the true state though [6]. The method can be applied to continuous as well as dis-
crete state and observation spaces, but is fixed to a discrete set of actions. One problem
for practical application with higher dimensional state and observation spaces will be the
computationally demanding MI computation.

Although the work of Arbel and Ferrie [1] and Denzler and Brown [6] propose interest-
ing and in the case of Denzler and Brown [6] generally optimal strategies for the selection
of camera parameters and viewpoints, the system’s have only been verified for low dimen-
sional state spaces or treated pose estimation in an unprincipled way because they were
designed for an active classification task. For the practical application of recognizing ob-
jects and estimating their poses in 3d, view selection and pose estimation go hand in hand
as both alter the relative pose between camera and object. A system explicitly modeling
the object’s orientation in addition to its class is described in Laporte and Arbel [22]. It
also introduces a new view selection criterion which is not based on what effect the mea-
surement has on the state posterior (like in the MI criterion), but on ”the extent to which
an observation is useful in disambiguating two hypotheses [. . . ] based on how probable
they are” ( Laporte and Arbel [22, p.273]). The pair-wise disambiguation idea is similar to
the informative views derived by the Feature Space Trajectories in Sipe and Casasent [34],
however here a more probabilistic approach is followed. The view criterion is formalized
as a measure of dissimilarity over the measurement distributions for two different state
hypothesis but given a fixed action. This dissimilarity measure can be precomputed as
no state distribution is involved and the state space is discretized and small enough. On-
line application then reduces to weighting the measurement dissimilarities based on how
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probable the involved state hypotheses are in the current state posterior. Finally, an action
is chosen which, via the dissimilarity in the resulting measurement, disambiguates the
most likely hypotheses. For their synthetic experiments, the system’s state is comprised
of the class label together with two discretized rotation angles specifying pan and tilt of
aircraft models. The viewing space is equivalent to the pan and tilt parametrization and
consists of the discretized inclination and azimuth angles specifying the camera position
on a sphere around the object. Experiments comparing the proposed view selection with
a random one and the MI strategy from Denzler and Brown [6] showed that all methods
achieve similar pose and recognition accuracy. In comparison to the random strategy, the
proposed criterion on average used fewer observations. Compared to the MI criterion,
the number of necessary views was similar, but the computation time for the proposed
method at least one order of magnitude faster.

The most complete approach described in literature, integrating object classification, 6d
continuous pose estimation and view planning, to the best of my knowledge is the work
of Grundmann and Eidenberger [9] [10] [11]. Formally, the state space is the joint space
of n objects, each with a class label and a 6d pose. By assuming independence between
the objects, the distribution factorizes over n single object distributions each defined by a
discrete distribution over the class label and a class label conditional distribution over the
6d pose space. Poses in 6d are represented as a concatenation of a 3d position vector and
a 3d Rodrigues vector for the rotation. The probabilistic model thereof is a mixture distri-
bution of 6d multivariate Gaussians. Rodrigues vectors specify rotations via an axis-angle
parametrization where the angle is given by the length of the vector and the axis by the
vector scaled to unit length. The inherent singularity at zero degree rotation, the symmet-
rical structure of the Rodrigues rotation parametrization and the finite interval ]0, 2π] for
the rotation angle (and therefore the vector length) do not play nicely with the infinite and
continuous range over which the 6d Gaussian is defined. While Eidenberger et al. [11] use
unconstrained 6d Gaussians for computational efficiency of operations like mixture multi-
plication, they state that additional steps are required and performed to maintain a proper
distribution for the rotational part of the Gaussian. Object recognition and pose estimation
is performed using stereo cameras and 3d located SIFT features. The measurement model
allows for prediction of feature locations in the image plane given constellations of mul-
tiple objects and a camera viewpoint. This way and by building the measurement model
not in 6d pose space but in the image coordinate space of the features, occlusions between
the objects in the scene can be taken into account. View planning is addressed as decision
making problem for an agent in a partially observable environment which needs to select
a new observation pose (the planning space is heavily discretized using only in the order
of 10 possible camera poses). This leads to the formal framework of a partially observable
Markov decision process (POMDP), where an agent tries to maximize the expected future
reward by following an optimal action policy which maps the current state belief to an
action. In order to derive such a policy, the state and action space, a model of state dynam-
ics given an action, a state observation model and a reward function has to be defined.
The reward function defines the immediate reward obtained by taking a certain action in a
certain state. For view planning as in Eidenberger et al. [11], the reward function is based
on a weighted sum of an uncertainty reduction component similar to the MI criterion, a
cost model for the action and a space exploration model rewarding exploratory actions. A
policy of maximizing this reward is sought either by considering the reward only for the
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next action (1-horizon planning), the next n actions (n-horizon planning) or an infinite se-
ries of actions (infinite-horizon planning, typically weighted in a way to account more for
short-term reward). Even for simple POMDPs solving for the optimal policy offline can
be computationally intractable. In Eidenberger’s case, it is obvious that due to the high
dimensional state space over sets of objects, the optimal policy for solving such a POMDP
cannot possibly determined offline. Instead, it is approximately solved online, starting
from the current state belief. The different planning strategies (1-horizon, infinite-horizon)
and different reward models (with and without exploratory component) are compared
to random and incremental (shifting the viewing pose clock-wise) view planning strate-
gies on 200 scenes containing up to 10 cluttered objects. At similar recognition rates, all
tested POMDP planning strategies outperform the random and incremental strategy with
respect to number of observations as well as cost of movement. Adding an exploratory
component to the reward leads to a slightly higher total object recognition rate, however,
the increase in pose accuracy for already detected objects is slightly worse compared to
non-exploratory driven view sequences. Infinite-horizon planning has no measurable ad-
vantage over 1-horizon planning, which can be used to justify a simpler framework based
on the direct application of the MI criterion like in Denzler and Brown [6]. Regarding the
runtime of the presented method, unfortunately no concrete numbers are given apart from
the pose and object detection which takes 0.9 seconds on a 2 GHz Intel multicore processor.
The consequent use of parametric distributions, a closed form upper bound approxima-
tion for the costly information gain summand of the reward function and the number of
real experiments suggests a planning time in the order of seconds.

In summary we have seen offline as well as online approaches to perform better than
random approaches to active multi-view object recognition and pose estimation. The ben-
efits of offline (Arbel and Ferrie [1], Sipe and Casasent [34]) and hybrid (Laporte and Ar-
bel [22]) approaches lie in a computationally efficient online application. The practical
application of such offline approaches to more complex scenes which involve occlusion,
however, has not been demonstrated and by building offline statistics over global features
on unobstructed object views these method’s ability to do so is at least questionable. On-
line approaches based on information theoretic measures of information gain are formally
sound but computationally challenging for continuous domains as uncertainty measures
like the MI criterion are integrals over the state and observation space. Implementations
are based on the discretization of the involved state/observation space, numerical integra-
tion techniques (Denzler and Brown [6]) or approximate solutions based on upper bounds
(Eidenberger et al. [11]). The system of Eidenberger et al. [11] shows promising real world
results in multi object scenarios, but is limited to richly textured objects and has only been
demonstrated with a very limited action space (likely due to computational performance
reasons). By using descriptive 2d SIFT features, by building a precise measurement model
on feature observation level and through the use of parametric probability models, the
resulting system is able to explicitly consider occlusions during view planning while still
maintaining computational tractability.

From the perspective of view planning, a direction for further research thus lies in
finer scale offline computed statistics, which in turn can be used for more flexible on-
line planning. In particular, a measure of informativeness of regions on the object instead
of just the informativeness of a viewing direction could allow a flexible online planning
method which avoids the computational complexity of purely online information gain
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driven methods. The high dimensional and continuous approach in Eidenberger et al. [11]
motivates the investigation of parametric probabilistic approaches. Especially the proba-
bilistic treatment of rotations in 3d seems improvable. These aspects and the related work
discussed so far further justify the investigations regarding sequential rotation estimation
and local surface / feature informativeness pursued in the following chapters.

Another obvious direction for further work would be to extend the work of Eidenberger
et al. [11] towards other types of objects (e.g. untextured) using local features on 3d range
data instead of intensity based features. However, the different nature of surface geometry
in contrast to color and intensity images brings forth some additional difficulties. The local
variability of geometry perceived with common sensing approaches like stereo cameras or
cheap depth sensors (Microsoft Kinect) is lower than the perceived variability of color in-
formation and more prone to noise or missing data. This for example necessitates larger
radii for repeatable feature descriptor computation and makes reliable keypoint detection
and reference frame estimation more challenging. Many state-of-the-art approaches for
object pose estimation based on 3d data therefore often follow a dense correspondence ap-
proach instead of keypoint based ones. Dense approaches can work on different levels, for
example based on depth data directly (iterative closest point (ICP)) or using dense feature
correspondences (Rusu et al. [30]). Dense but randomized methods based on precomputed
feature hash tables and generalized voting for object poses work well on 3d features and
effectively counteract the higher noise levels present in depth data (Drost et al. [8], Tuzel
et al. [37]). Recent work on depth based classification and pose estimation has also shown
that dense, 3d feature based approaches can greatly benefit from selecting the most in-
formative regions for processing. In the next section, therefore, related work regarding
feature selection strategies for 3d range data is given.

2.3. Related Work: Feature Selection

In the work of Madry et al. [24], a system for category recognition of objects is presented
which improves over several other methods by incorporating a measure of feature infor-
mativeness. Standard features (they used Fast Point Feature Histogram (FPFH)) describing
the local geometry around a point are computed densely over training views of several ob-
jects in different categories. The features of all objects combined are clustered into words of
similar feature descriptors. A standard Bag-of-Words (BoW) approach to category recog-
nition would now build a model for each category by summarizing all feature to word
assignments for features of a category into a histogram over words. As the authors term it,
this is a purely quantitative category representation which ignores that for example many
features of a bottle are similar to those of a mug because of the round shape. Although
the interesting characteristics (the opening of the bottle, the handle and opening of the
mug) find their way into the BoW representation, they are likely hidden through the far
more often occurring features on the body. The authors therefore propose to train classi-
fiers (they use support vector machines (SVMs)) for every category within every word and
suggest to use the classifiers prediction confidence in building a category specific model.
To this end, they design a meta-feature by concatenating the most-discriminative (highest
prediction confidence) features and use this meta-feature for object category classification.
This way, their approach improves the correct categorization rate by 11% with respect to
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Figure 2.3.: Confidence of features of an animal statue for originating from the animal cat-
egory and other categories. Whereas neck part is a very informative region
for classification to the (correct) animal category, the more round body would
characterize a screw driver. Source: Madry et al. [24], ©2013 IEEE

the described BoW based categorization. More interesting for the problem concerned in
this work, they obtain a notion of what are the object parts which are most informative
for an object category. This regional informativeness with respect to a specific category is
proportional to the classification confidence and visualized as heat map plots in figure 2.3
(Source: Madry et al. [24]). One can easily see how this kind of information could be use-
ful for an active vision system by planning views in such a way that the most informative
object parts for two competing hypotheses become visible. The implemented classification
pipeline in my work is conceptually similar to the one here, except that we train proba-
bilistic logistic regression (LR) classifiers and are interested in informative object parts for
orientation estimation rather than classification.

A different approach, specifically targeted towards feature selection for pose estimation
is presented in Tuzel et al. [37]. Their pose estimation is an extension of Drost et al. [8].
This is a voting approach based on a hash table which maps point pair features to object
poses. During training, point pair features for a model are obtained and the relative pose
between the feature frame and the object pose is recorded for the hash table bin the feature
descriptor falls into. Online, a point pair of the scene is selected, the model point pairs in
the corresponding hash table are retrieved and used to vote for their during training ob-
served object poses. For smooth objects they sample points unconstrained on the surface
(surface-to-surface (S2S) features), for industrial object’s with many planar regions they
sample points on depth edges of the model (boundary-to-boundary (B2B) features). Fea-
ture selection is brought into this framework by assigning vote weights to either complete
hash table bins or the points on the object model which were used during training. The
weight vector is determined using an optimization framework and a dataset of validation
3d scenes on which the pose accuracy with the current weight vector is measured and it-
eratively improved. The criterion driving this process is finding a weight vector which
produces a maximum in pose vote space at the correct pose for all object instances within
all scenes. The evaluation of the learned weighting and a baseline uniform weighting re-
veals a general increase in recognition rate especially for high occlusions and industrial
objects, which with uniform weighting have many point pairs leading to ambiguous ob-
ject poses because of their symmetries and regular structures. Learning a weight vector
for model points works slightly worse than learning a weight vector for hash table bins,
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which is probably explained by the much larger dimensionality of the problem (weight
vector length for bin weighting 5.4K, for model point weighting 39K). However, weighting
model points seems interesting from a view planning perspective as the weighting encodes
the informativeness of a surface point with respect to pose estimation. While they did not
yet target view planning, a complicating aspect would be that the weighting encodes no
information regarding the viewing direction the model point needs to be observed from.
Also, two model points are needed for a pose estimate and optimally view planning would
take this into account by reasoning over the visibility and pairing of points. For their sin-
gle view experiments on a challenging industrial object dataset, they report improvements
of up to 31% in the correct pose recognition rate for learned bin weights in comparison to
uniform weights. Besides learned weights, they also experimented with heuristic based
weightings, for example weighting a bin inversely proportional to the number of recorded
point pairs for that bin. This turned out not to improve the recognition results, because,
as they argue, even features which occur often might still be necessary to disambiguate
between certain poses.

Despite the approaches for feature selection described in Madry et al. [24] and Tuzel
et al. [37], a probabilistic model of the feature distribution over the object’s surface would
also lend itself towards an analysis of surface point informativeness. In Glover et al. [16], a
dense probabilistic model over 3d features is built by clustering the feature descriptors into
words and estimating a distribution over feature orientation and position on the object for
features belonging to one word. If inverted, observing a certain feature with a local feature
frame gives a distribution over possible object poses. An analysis regarding the relevance
of a feature for pose estimation thus could be carried out by information theoretic criteria
like the entropy of the surface distribution. Eidenberger et al. [11] build a sparse, keypoint
based probabilistic model based on stereo matching and clustering similar SIFT features
to 3d interest points on the object’s surface. The clustering and observations of the same
interest point from multiple directions allows for statistics for example over the interest
point’s location, which is represented as a 3d Gaussian. The sparsity arises naturally from
the SIFT keypoint detection and further feature selection is done by throwing away inter-
est points with only a small number of observed feature detections. As explained in the
previous section, this model is used in a purely online information gain driven method for
view planning.

2.4. Summary

This chapter described the general formalism of active pose estimation systems under the
assumption that the object is static. Various approaches to active sequential object clas-
sification and pose estimation using the presented formalism have been analyzed with a
special emphasis on how they facilitate view planning. Finer grained offline statistics for
view planning as well as the selection of discriminative features for pose estimation have
been identified as directions for further research.

Encouraged by the performance improvement and simplicity of the approach to feature
selection for categorization by Madry et al. [24], a similar approach, but targeting feature
selection for orientation estimation, will be presented and applied to orientation estima-
tion in chapter 4 and analyzed with respect to view planning in chapter 5. As necessary
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foundation for these later chapters, the next chapter will introduce a parametric proba-
bility distribution over 3d rotations and showcase its suitability for sequential orientation
fusion.
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3. Rotation Estimation using the Bingham
Distribution

This chapter introduces the Bingham distribution, a parametric distribution over 3d rota-
tions. The expressiveness of the distribution is illustrated using individual Binghams and
Bingham mixture models. A Monte Carlo and an algebraic approach for sequential orien-
tation fusion using Bingham mixture models is derived and evaluated on a standard 3d
rotation filtering task. The estimation accuracy of different parametrizations is assessed
and the resulting best ranked parametrization compared to other approaches to sequential
orientation estimation.

3.1. 3d Rotations

The space of rotations in 3d is inherently different from the space of 3d translations as it is
not a vector space (e.g. not commutative meaning when applying a sequence of rotations
the ordering within the sequence matters). It is a 3-dimensional manifold (3 degrees of
freedom), but no parametrization with only 3 parameters exists which covers this space
without singular points [35]. Consider for example Euler angles and specifically the in-
trinsic Z-X-Z convention. Here, a rotation is specified by three consecutive rotations about
the Z-, X- and again Z-axis, where the rotations occur around the consecutively rotated
axes. This parametrization is complete in the sense that for every 3d rotation there exist
three angles for the rotations Z-X-Z which specify this rotation. However, when setting
the rotation angle for X to zero, the remaining two rotation angles which are left to specify
(formally two degrees of freedom) produce rotations around the same axis and thus only
one degree of freedom is controllable. This is a classical example of a singularity. Over the
course of history many parametrizations of the 3d rotation group, the so called special or-
thogonal group SO3, have been presented and important characteristics, for example the
uniqueness of the parametrization or the computational complexity of operations (compo-
sition, rotating a vector, inversion, renormalization, etc.), have been analyzed. Historically
popular parametrizations are e.g. rotation matrices, Euler angles (e.g. roll, pitch , yaw),
Rodrigues vectors and unit quaternions.

Singularities or symmetries inherited from a particular parametrization make specifying
a proper probability distribution over 3d rotations a non-trivial task. In [21] and [13] the
above mentioned parametrizations are analyzed for their suitability with respect to prob-
abilistic data fusion. The quaternion parametrization, which is discussed in the following
section, stood out as being very suitable for defining probability distributions over the 3d
rotation group. Such a distribution can be defined either using a zero-mean 4-dimensional
Gaussian distribution (leading to the Bingham distribution [3] discussed in section 3.3) or
a 3-dimensional Gaussian distribution in the local, 3-dimensional tangent space around a
specific quaternion rotation as described in [13] and briefly reviewed in section 3.5.
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3.2. Quaternions

Quaternions are extended complex numbers w + ix + jy + kz where i2 = j2 = k2 =
−1 and ij = k = −ji with w, x, y, z ∈ R. An alternative way of thinking would be to
see quaternions as 4-vectors (w, x, y, z) ∈ R

4 with special and suitably defined addition
and multiplication operators [20]. Generally, w ∈ R is referred to as the scalar part and
(x, y, z) ∈ R3 as the vector part.

Every quaternion vector q with unit length, which therefore lies on the unit hypersphere
S3 ⊂ R

4, represents a rotation in SO3. The parametrization is unique up to an antipodal
symmetry on the sphere S3, which means every rotation r ∈ SO3 is represented by exactly
two unit quaternions q and −q = (−w,−x,−y,−z). Every 3d rotation can be expressed
as a rotation about an axis specified by a unit vector (ux, uy, uz) ∈ S2 ⊂ R

3 and a rotation
angle θ. This parametrization is called the angle-axis representation of a 3d rotation and is
related to the the quaternion representation in the following way:

q = cos(
θ

2
) + (iux + juy + kuz) sin(

θ

2
) (3.1)

Looking at how the angle-axis representation and the corresponding unit quaternion are
related, one can get a first intuition about how different kinds of uncertainties are repre-
sented on the quaternion unit sphere S3. For example, let us consider a small deviation
from the identity rotation in a random direction. The identity rotation is trivially identified
using (3.1) and θ = {0, 2π} as qid = (±1, 0, 0, 0). A small rotation is obtained by choosing
a small rotation angle θ solely. Choosing the rotation axis (ux, uy, uz) uniformly random
from S2 (unit sphere in R

3) then leads to a small random rotation with uniform preference
regarding the direction of rotation. We see from (3.1) that fixing θ = a to a certain value
and changing the axis of rotation only has influence on the vector part of the quaternion.
In other words, every rotational deviation from the identity rotation by a fixed θ lies on a
circle of the S3 sphere, created by the intersection of a hyperplane orthogonal to (1, 0, 0, 0)
with the sphere S3 where the axis intersection of the hyperplane with (1, 0, 0, 0) is defined
by the amount of rotation through the term cos( θ2).

For a different scenario, consider a rotation of arbitrary magnitude θ ∈ [0, 2π] but around
a fixed axis (ax, ay, az). From (3.1) we see that changing the angle of rotation θ implies
different numerical values for the scalar as well as the vector part of the quaternion. How-
ever, the ratio between the elements of the vector part stays the same, since they are
only scaled by sin( θ2). When gradually changing θ from θ = 0 to θ = 2π while fixing
(ux, uy, uz) = (ax, ay, az) the path taken on the unit sphere S3 follows a great circle created
by the intersection of the sphere with a plane passing through the origin [33]. A great
circle is defined by two points on the sphere together with the origin and thus every un-
certainty characteristic describing a uniform rotation around a fixed axis specifies a unique
great circle by means of the origin, the point (1, 0, 0, 0) for θ = 0 and for example the point
(0, ax, ay, az) for θ = π.

3.3. Bingham Distribution

The Bingham distribution was first discussed by Christopher Bingham [3] in 1974 in the
context of directional statistics. It is not limited to describe distributions over directions
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in 3d (S2), but can be generalized to arbitrary degrees of freedom respective distribu-
tions over n-dimensional hyperspheres Sn, n ∈ N

+. The distribution is always antipodally
symmetric, thus in the case of n = 3, it correctly captures the antipodal symmetry of the
quaternion parametrization of rotations in 3d. It gained recent popularity through various
publications by J. Glover ([14], [16], [15]), who successfully used the distribution for 3d
object pose estimation and rotational alignment of point clouds.

The Bingham distribution over quaternions is derived from a 4d zero-mean Gaussian
density

p(x;C) =
1

»

(2π)4 |C|
exp(−1

2
xTC−1x) (3.2)

where x ∈ R
4 and C is a covariance matrix. This standard Gaussian is defined over all R4

and by re-normalizing it we can obtain a proper probability distribution over S3 and thus
3d rotations. Intuitively, the process of renormalization can be thought of as intersecting
the unit quaternion sphere with the volumetric Gaussian density in 4d and normalizing
the resulting density on the sphere to integrate to one. The Gaussian form of the Bingham
distribution is thus

p(x;C) =
1

F
exp(xTC−1x) (3.3)

with x ∈ S3 is now constrained to lie on the unit sphere and F is chosen so that

∫

x∈S3

exp(xTC−1x) = 1 (3.4)

The standard form of the Bingham distribution is given by

B(x;K, V ) := p(x;K, V ) =
1

F (κ1, κ2, κ3)
exp(

3∑

i=1

κi(v
T
i x)

2) (3.5)

with K = (κ1, κ2, κ3)
T , κi ∈ R

− ∪ {0} denoting the concentration parameters and V =
[v1|v2|v3], vi ∈ S3 a set of orthogonal basis vectors. The standard form is based on an eigen-
vector/eigenvalue decomposition of the Gaussian covariance matrix C. Every covariance
matrix can be decomposed into an orthogonal matrix of eigenvectors Q = [v1|v2|v3|v4]
and a diagonal matrix of eigenvalues Λ = diag(λ1, λ2, λ3, λ4) via principal component de-
composition C = QΛQT . For convenience we now define K̂ = Λ−1 = diag(κ̂1, κ̂2, κ̂3, κ̂4)
where κ̂i = 1/λi. Through zero-ing out κ̂4, one arrives at above mentioned concentration
parameters κi as follows.

For definiteness, an ordering constraint is imposed on the eigendecomposition so that
κ̂1 ≤ κ̂2 ≤ κ̂3 ≤ κ̂4. Noting that any orthogonal transformation is length preserving,
the normalization constant is actually only dependent on the magnitudes of κ̂0, . . . , κ̂4.
Applying the eigendecomposition to equation (3.3) it thus follows

p(x; K̂, Q) =
1

F (κ̂1, κ̂2, κ̂3, κ̂4)
exp(xTQK̂−1QTx) (3.6)

However, this is still an over-parametrization as the re-normalization of the 4d Gaus-
sian to the unit sphere S3 also brings scale-independence to changes to the eigenvalues
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λi with it. In [3], Bingham shows that given arbitrary concentration parameters K̂ =
diag(κ̂1, κ̂2, κ̂3, κ̂4) and K′ = K̂ − κ̂4I with I being the 4d identity matrix, it holds

p(x;K′, Q) = p(x; K̂, Q) (3.7)

By convention, κ̂4 is therefore zeroed out resulting in K = (κ1, κ2, κ3), κi = κ̂i − κ̂4. Bring-
ing equation (3.6) into the summation form of equation (3.5) and leaving out the last sum-
mand due to its concentration coefficient with value zero, one arrives at the standard form
of the Bingham distribution.

From the 4d Gaussian perspective, having κ4 = 0 implies an eigenvalue of λ4 = +∞
in eigenvector direction v4. For concentration parameters κi < 0, i ∈ {1, 2, 3} the mode of
the Bingham distribution will thus always be v4 (which lies on S3 and is thus a valid 3d
rotation). Generally, the more negative one chooses the three concentration parameters, the
more peaked the distribution gets. By choosing the eigenvectors vi, i ∈ {1, 2, 3} one adjusts
the rotation axis in which rotational uncertainty applies. By choosing the concentration
parameters, the kind of rotational uncertainty is specified. Two easy interpretable choices
are:

• κ1 = κ2 = κ3 = α ≤ 0: Gaussian like rotational uncertainty. For α = 0 the dis-
tribution is completely uniform. The more negative the κi-s get, the more peaked
the distribution gets. Figure 3.1 shows the angular deviation from the mode of the
distribution for 68% and 98% of samples drawn of distributions with concentration
parameters ranging from κi ∈ [−900, 0].

• κ1 = κ2 ≪ κ3 ≤ 0: Increasing the value of κ3 leads to increased uncertainty of the
4d-Gaussian in the principal component direction v3. For κ3 approaching zero (but
not equal to zero), the mode will remain at v4 but the distribution on the quaternion
unit sphere gets increasingly stretched in the direction of v3. Setting the concentra-
tion parameter κ3 to zero results in an infinite variance along the direction v3 for the
4d Gaussian and in terms of the normalized distribution over rotations this results
in a density function mimicking a great circle on the unit quaternion sphere. As ex-
plained in the previous section, a great circle represents a 3d rotation with fixed axis
but uniform rotation angle. When v3 has the special form of v3 = (0, a, b, c) this axis
around which the uniform rotation occurs is exactly (a, b, c). In figure 3.2 the rota-
tional uncertainty for different values of κ3 ∈ {−900,−480, 0} and v3 = (0, 0, 0, 1) is
shown and the increase in uncertainty for rotations around (0, 0, 1) is clearly visible.
The plots shown are similar in nature to EGI (extended Gaussian image) plots and an
intuitive way to visualize distributions over rotations. They work by rotating a base
point on the sphere by many sampled rotations of the distribution. At the rotated
point’s location, a counter is increased. When visualizing the counts via a heat map,
this gives a visualization of how the distribution behaves. In the plots in figure 3.2
the point p = (1, 1, 1)/||(1, 1, 1)|| is rotated by n = 100000 sampled rotations. The
mode of the distribution is the identity rotation, hence for κ3 < 0 the peak is at p.
For κ3 = 0, we see the expected rotational invariance around the z-axis which is a
consequence of choosing v3 = (0, 0, 0, 1).
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Figure 3.1.: Maximum angular deviation from the mode of the distribution for different
concentration parameters (all κi set to the same value) and sample percentages.

(a) κ3 = −900 (b) κ3 = −27 (c) κ3 = 0

Figure 3.2.: EGI plots showing the effect of different concentration parameters κ3 with cor-
responding eigenvector v3 = (0, 0, 0, 1)T . Increasing κ3 leads to increased ro-
tational uncertainty around the z-axis, which shows itself in a broader dis-
tributed heat map of sampled rotations (n = 100000 samples were used). More
details on how EGI plots are constructed are in the text.
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3. Rotation Estimation using the Bingham Distribution

The major problem with using the Bingham distribution in practice is the normaliza-
tion constant F (κ1, κ2, κ3) which is expensive to compute [14]. Glover therefore precom-
putes the normalization constant for a discrete set of concentrations parameters ranging in
κi ∈ [−900, 0] and interpolates them as necessary. For probabilistic data fusion certain op-
erations on Bingham distributed random variables are of special interest. This includes
for example maximum likelihood estimation of the parameters of a Bingham distribu-
tion from quaternion samples, sampling a Bingham, composing two Binghams (uncertain
quaternion multiplication), rotating a Bingham by a fixed quaternion, merging two Bing-
hams (approximating the sum of two Binghams by a single Bingham), multiplying two
Binghams, extracting the mode of a Bingham, computing the entropy of a Bingham and
computing the Kullback-Leibler (KL) divergence between two Binghams. Glover derives
all above mentioned operations for the Bingham distribution in [14], making use of lookup
tables for the normalization constant. Except for the composition of two Binghams and the
sampling of the Bingham distribution, all other operations are analytically defined and do
not require numerical approximation techniques as long as precomputed normalization
constants are used. The composition of two Binghams q = f ◦ g where f and g are Bing-
ham distributed and ◦ represents quaternion multiplication can only be approximated by a
Bingham distribution as Binghams are not closed under composition. Sampling is realized
by Glover using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) approach
with the 4d Gaussian distribution as proposal distribution. As the samples from the 4d
Gaussian projected to the unit quaternion sphere are good proposals for samples of the
actual Bingham distribution, Glover et al. [16] argues that the MCMC sampler converges
very quickly to the desired target distribution and that this approach works well in prac-
tice.

3.4. Bingham Mixture Models

While individual Bingham distributions are in general unimodal (except one or more con-
centration parameters are zero), a sum of several Binghams is capable to represent ar-
bitrary probability landscapes over rotations given a sufficient number of components.
Formally, a Bingham Mixture Model (BMM) is defined as

BMM(x; {αi}, {Ki}, {Vi}) :=
∑

i

αiB(x;Ki, Vi) (3.8)

where B(x;Ki, Vi) is Bingham distributed as defined in equation (3.5) and
∑

i αi = 1. Un-
fortunately, BMMs - just like Gaussian mixture models - lose some of their analytical ben-
efits as operations like maximum likelihood parameter fitting, entropy calculation and
KL-divergence calculation are not defined analytically anymore and have to be approxi-
mated using for example Monte-Carlo integration techniques. In the context of this thesis,
we need to be able to fit BMMs to quaternion samples, multiply two BMMs and extract the
maximum mode of a BMM.

For fitting a BMM to a sample set of quaternions {qi}, Glover [16] describes a greedy
sample consensus method. At every iteration step, M Binghams are fitted to M sample
subsets consisting of four randomly drawn quaternions from {qi} (the minimal number
to fit a Bingham distribution) using a maximum likelihood approach. The data likelihood
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3.5. Projected Gaussians as Probabilities over Rotations

for all of them is evaluated under a capped loss function (maximum error contribution is
limited), the best Bingham above a certain likelihood threshold is added to the mixture
and all associated quaternion samples are removed from the sample set before the pro-
cedure repeats. Adding components to the mixture stops if no more components can be
found (threshold on the data likelihood) and a uniform Bingham is added to the mixture
to account for the remaining samples.

The multiplication of two BMMs is done by pairwise multiplication of the Binghams of
both mixtures. As the result of multiplying two Bingham distributions is again a Bingham
and can be done in an algebraic way, multiplication of two BMMs is also well-defined and
will be explained further in section 3.6.

Finding the maximum mode of a BMM cannot be done in closed form. An approxima-
tion is computed by sampling a high number of rotations from the BMM (typically 50000),
evaluating their probability density value under the BMM and selecting the sample with
the maximum value. This procedure will be used in later sections whenever the MAP
estimate of a BMM belief distribution is computed.

3.5. Projected Gaussians as Probabilities over Rotations

Despite the Bingham distribution, other approaches for specifying probabilities over 3d
rotations exist. Feiten et al. [13] propose to use projected Gaussians and/or mixtures of
projected Gaussians to represent unimodal and/or multimodal distributions over rota-
tions. A projected Gaussian is a multivariate Gaussian defined in the tangent space of a
specific basis rotation q ∈ S3. In the same fashion as the tangent space for a point on a
3d sphere is a 2d plane (and thus an ordinary 2d vector space), the tangent space for a
quaternion rotation on the 4d unit sphere is a 3d vector space. A 3d Gaussian defined in
this tangent space defines a distribution over the 4d unit sphere by means of a central pro-
jection. Every point in the tangent space maps to two opposite points on the unit sphere
through the line specified by the point and the center of the sphere. This correctly captures
the antipodal symmetry and thus specifies a proper probability distribution over rotations.
Similar as for the Bingham distribution, this distribution requires a renormalization which
as derived in [13] can be approximated efficiently.

Comparing the projected Gaussian and the Bingham distribution reveals advantages
and disadvantages for both sides. Feiten et al. [13] argue that projected Gaussians are
more efficient due to the complicated calculation of the normalization constant for the
Bingham distribution. This is can be counteracted by a lookup table approach as imple-
mented by Glover and Kaelbling [14]. Furthermore it has to be noted that a projected
Gaussian is based on specific base quaternion direction to define the tangent space, which
has to be adapted with operations like merging two projected Gaussians and thus also
leads to additional computations. A more interesting difference is that the projected Gaus-
sian is closed under composition while the Bingham distribution is not. This enables to
propagate uncertainty for example along the links of a robotic arm. For the Bingham dis-
tributions, the result of a composition can only be Bingham approximated. A principal ad-
vantage of the Bingham distribution, however, is the ability to represent distributions with
rotational invariance. A distribution with uniform rotation about a specific axis, for exam-
ple, resembles a great circle on the quaternion unit sphere and cannot be represented by a
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3. Rotation Estimation using the Bingham Distribution

single projected Gaussian whereas for a single Bingham this just means one zero-valued
concentration parameter. As Lang [21] points out, the Bingham distribution is more suited
towards rotational distributions with high uncertainty. For more concentrated distribu-
tions this advantage of course tends to vanish.

For jointly specifying distributions over orientation and position, the projected Gaus-
sian can be extended without much effort as described in [13]. This is done by adding
three translational dimensions to the projected Gaussian, resulting in a 6d Gaussian with
only the first three dimensions undergoing the central projection. This joint representation
allows to capture correlation effects between position and orientation uncertainty and is
thus superior to a Bingham based distribution over rotations and a separate 3d Gaussian
over the position. A quantitative comparison of the computational efficiency and the rep-
resentational accuracy between the two approaches has not been conducted yet but might
be of interest.

The work in this thesis requires the ability to represent uniform uncertainties around
axes which makes the Bingham distribution the distribution of choice here.

3.6. State Fusion using Bingham Mixture Models

The general state estimation problem has been outlined in chapter 2 and follows equation
(2.1). Adapted for the case of estimating an object rotation, equation (2.1) can be written as

p(qt|zt, . . . , z0) = p(zt|qt)p(qt|zt−1, . . . , z0) (3.9)

where qt, zt ∈ SO3 are 3d rotations which are without loss of generality assumed to de-
scribe an object’s rotation (frame o) in the world frame w (qt := wqo,t resp. zt := wzo,t).
The measurement process underlying p(zt|qt) can be described as producing a rotation
measurements

zt = wt ◦ qt (3.10)

based on the object’s rotation qt corrupted by a Bingham mixture distributed indepen-
dent measurement noise wt ∼ BMM(α,K,V ) with ◦ denoting quaternion multiplication.
Based on findings of Glover [14], the conditional distribution p(zt|qt) is Bingham mixture
distributed according to zt|qt ∼ BMM(zt;α,K,V ◦ qt) where V ◦ qt are the eigenvectors
of the original Bingham mixture components rotated by the fixed qt. This mixture is a
distribution over zt given a fixed qt. To apply this model in practice we can rewrite the
distribution to obtain one over qt given a fixed zt by reordering the terms in the same way
as presented in Glover and Kaelbling [14]

BMM(zt;α,K,V ◦ qt) =
∑

i

αi

Ñ

1

Fi

exp
3∑

j=1

κi((vi ◦ qt)T zt)2
é

(3.11)

=
∑

i

αi

Ñ

1

Fi

exp
3∑

j=1

κi((v
−1
i ◦ zt)T qt)2

é

(3.12)

= BMM(qt;α,K,V −1 ◦ zt) (3.13)
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3.6. State Fusion using Bingham Mixture Models

If we now assume a Bingham mixture prior p(qt|zt−1, . . . , z0) = BMM(qt;β,K
∗,V ∗), the

posterior is also Bingham mixture distributed by multiplying the prior and measurement
BMM. The components of the posterior BMM are built by pairwise multiplication of the
prior and measurement mixture components

p(qt|zt, . . . , z0) =
∑

i

∑

j

αiβjB(qt;Ki, V
−1
i ◦ zt)B(qt;K∗

j , V
∗

j ) (3.14)

As the multiplication of two Binghams is well-defined and carried out by building the
Gaussian form of the Binghams, adding their covariance matrices and re-shaping the result
into standard Bingham form via an eigenvector/-value decomposition, above equation
describes a unique algebraic solution to this sequential estimation problem.

3.6.1. Algebraic Fusion

In the algebraic posterior defined by equation (3.14) we see that the number of components
grows rapidly as two mixtures with N and M components result in a posterior mixture
with N*M components. For computational reasons, one should try to keep the number of
components within mixtures as low as possible but as high as necessary. This brings up the
challenge of mixture reduction which means to reduce the number of components while
maintaining an acceptable level of representational accuracy with respect to the unreduced
mixture. For Gaussian mixtures, mixture reduction has been studied in the past (for ex-
ample [28] [38] and [31]) and as the Bingham distribution is Gaussian, these methods are
in principle applicable to Bingham mixture reduction as well. Special consideration has
to be taken only, because all Gaussians within a Bingham mixture have zero mean, that
means for example the reduction criterion of Salmond [31] is not applicable as it does de-
pend solely on the mean of the mixture components. As Williams suggests in [38], the
representational accuracy between the reduced and the original mixture would ideally be
assessed by the KL divergence (an information-theoretic measure of dissimilarity between
two probability distributions) and optimized to be as small as possible. However, there
is no closed form solution for the KL divergence of two Gaussian (or Bingham) mixtures
which makes efficient mixture reduction a non-trivial problem.

For evaluation of the Bingham mixture fusion, the reduction method of Runnals [28],
originally developed for Gaussian mixtures, has been implemented and tested for Bing-
ham mixtures. It works by iteratively choosing two components of the mixture and merg-
ing them into one component. This is done until a specified number of components is
reached. The two components to be merged are chosen by an upper bound criteria de-
rived by Runnals. It states that the the KL divergence of the mixture before the merge (
Mi+j ) and after the merge ( Mij ) of components i and j is smaller than

dkl(Mi+j ,Mij) ≤ αidkl(Bi, Bij) + αjdkl(Bj , Bij) (3.15)

with Bi and Bj denoting the individual original components, Bij denoting the merged
component and αi, αj are the respective components’ weights. As Bi, Bj and Bij are single
Gaussians (or Binghams), the KL divergence is analytically computable. Every iteration
step the two components leading to a minimal approximated before-after KL divergence
are chosen to be merged. An example reduction is illustrated in Figure 3.3 by reducing an
eight component mixture gradually down to one component.
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3. Rotation Estimation using the Bingham Distribution

Figure 3.3.: EGI plots for Bingham mixture reduction: The initial Bingham mixture
(top,left) has eight components and roughly represents a 4-fold symmetric dis-
tribution around the z-axis (two components per fold). From left to right, top
to bottom, the mixture gradually gets reduced by one component using Run-
nals [28] KL-criterion given in equation (3.15). With four components, the mix-
ture still captures the 4-fold symmetry by deciding to merge every fold’s two
components together. Further reduction leads to a stronger distortion of the
original distribution.

The final algorithm for state fusion based on algebraic multiplication thus has two steps.
At first, the full posterior is computed through element-wise multiplication as in equation
(3.14). In the second step, the full posterior is reduced to a predefined maximum number
of allowed components Nmax, which is the only parameter of this fusion method. For nota-
tional convenience, we denote this fusion algorithm as multiply & reduce (M+R) method.

3.6.2. Monte Carlo Estimation

A different way to compute the posterior distribution was implemented using a sequential
Monte Carlo (SMC) approach commonly referred to as particle filter. Instead of represent-
ing the posterior distribution in a parametric way (by specifying a density function), it
is represented by a set of M equally weighted samples {qmt },m = 1, . . . ,M distributed
according to the posterior distribution {qmt } ∼ p(qt|z0, . . . , zt). This sample set approxi-
mately represents the posterior distribution by means of the sample density; regions with
higher sample density correspond to regions where p(qt|z0, . . . , zt) has a high value [36].

In the SMC framework, updating the prior (previous time step’s posterior) with a new
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3.7. Evaluation

measurement is done in two steps: an importance weighting of the prior sample set using
the current measurement which result in a weighted sample set {qmt−1} → {(wm, qmt−1)}
and a resampling step to obtain an equally weighted set representing the new posterior
{(wm, qmt−1)} → {qmt }. The importance weighting is done by evaluating the measurement
model p(zt|qt) for a concrete sample qmt−1, hence wm = p(zt|qmt−1) [36]. The resampling step
is done by simply drawing samples from {(wm, qmt−1)} with replacement and proportional
to their importance weight. It can be proven that in the limit for M → ∞ the resampled
sample set is a valid representation of true posterior distribution. Up to now, although
we changed the relative frequency of samples within our sample set, the actual sample
values never changed. This is due to the fact that we assumed an identity (static) dynamic
model of our state (see chapter 2). To circumvent this issue and to allow the sample set
to change ”position”, a Bingham mixture is fitted to the posterior sample set using the
method described in section 3.4 and sampled again in order to obtain the prior sample
set for the next time step. The main parameter of the SMC method for state fusion is
the number samples M . In all experiments later on M = 100000, which provides a good
balance between computation time an representational accuracy.

3.7. Evaluation

In order to evaluate how well the sequential rotation estimation methods described in
section 3.6 work in practice, test data from a previous experiment of our group has been
reused (Marton and Türker [25]). The test data contains object pose detection sequences
of three industrial objects (valve, filter and control) using the object recognition and pose
estimation method from Kriegel et al. [19]. This pose estimation method works well in
practice and returns a single most likely object pose for every object detected. For the
three objects used here, the average rotational error of the pose estimate was around four
degrees. For the sequences every object was captured on its own in a non-cluttered scene.
All sequences contain 20 views of their object from different viewing directions and all
views lead to successful detection, hence 20 rotation measurements zt, t = 1, . . . , 20 exist
for every object. Whereas the valve and control object have a clear unique pose, the filter
object has a strong rotational ambiguity in form of a 4-fold rotational symmetry. It is thus
detected with a rotational error of ±90◦ or 180◦in 7 out of the 20 views.

Two Bingham mixture measurement models have been defined for evaluation of the
test sequences. The first one is the simple uninformed standard model where we assume
the rotation measurement results from the correct pose corrupted by small Gaussian-like
noise. A measurement model p(zt|qt) describing this noise characteristic is created by ro-
tating the correct pose by a Bingham with mode at identity and concentration parameters
specifying a small Gaussian-like deviation, specifically

K = κ

Ö

1
1
1

è

V =








0 0 0
1 0 0
0 1 0
0 0 1








(3.16)

p(zt|qt) = B(zt;K,V ◦ qt) (3.17)
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3. Rotation Estimation using the Bingham Distribution

To deal with outliers, a uniform Bingham Buni(zt) = B(zt; (0, 0, 0),V) is added to the
measurement model. This results in the Bingham mixture model

pG(zt|qt) = α1B(zt;K,V ◦ qt) + α2Buni(zt) (3.18)

which can be ”inverted” to a distribution over qt by following equations (3.11) to (3.13).
The Gaussian measurement model pG has two parameters: the measurement concentra-
tion κ and the outlier ratio α = (α1, α2). This measurement model will be used for all three
objects.

To test a more complex measurement model, the filter object was additionally evalu-
ated with a measurement model taking the 4-fold symmetry around the object’s z-axis
into account. It is based on a five component Bingham mixture model. The first four
components describe rotations of {0,+90,−90, 180} degrees of the correct pose qt around
the symmetry axis and the fifth component again a uniform distribution. Construction of
the symmetric measurement model pS is a straightforward extension of equation (3.18)
by adding for example the +90 degree fold as B+90(zt;K,V ◦ q+90 ◦ qt) where q+90 =
q from angle axis(+90, (0, 0, 1)T ). The resulting parameters for the model pS are again
the measurement concentration κ used for the first four components and the component
weighting α = (α1, . . . , α5).

The metric for comparing different parameter settings for the measurement models
{pG, pS} and state fusion strategies {SMC,M+R} is based on the average MAP rotation
error over the last ten views of the viewing sequences. Given a ground truth rotation qgt
(which in our case is constant over all views of a sequence) and the state distribution af-
ter measurement t = 1, . . . , 20 as p(qt|z1, . . . , zt) = BMMt(qt,α,K,V ) the MAP rotational
error θt is defined as

q∗t = map estimate(BMMt(qt,α,K,V )) (3.19)

qerr,t = (w, x, y, z) = q−1
gt ◦ q∗t (3.20)

θ′t = 2arccos(w) (3.21)

θt =

{

θ′t θ′t ∈ [0, π]

|θ′t − 2π| θ′t ∈]π, 2π]
(3.22)

The average MAP error θ̄o, o ∈ {filter, control, valve} is then defined as

θ̄o =
1

10

20∑

t=11

θt (3.23)

θ̄ =
1

3

∑

o

θ̄o (3.24)

3.7.1. Evaluation for Gaussian Measurement Model

As a first evaluation, the Gaussian-inspired measurement model pG was tested with both
fusion strategies and all three object sequences. A total of 72 different parametrizations
have been tested, 18 using the SMC fusion and 54 using the M+R fusion. The individual
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parametrization ranges explored for the different functional components are summarized
in table 3.1. All runs were ranked by the average MAP rotational error given in equation
(3.24). The full ranking is given in table A.1. A summary of the top ten parametrizations is
given in table 3.2, which also includes the maximum MAP error within the last ten views
over all three sequences and the percentages of MAP estimates below one, three and five
degrees of error for the last ten views. Figure 3.4 shows the MAP error evolution of the
best SMC and M+R method compared to the error obtained by several other approaches
to orientation fusion evaluated in Marton and Türker [25]. As can be seen, the Bingham
mixture approaches yield competitive results to a particle filter, a pose clustering and a
histogram filter approach.

Out of the 72 parametrizations, 34 perform very close to the best one with a difference
of only 0.21◦ in the avg. MAP error and 0.64◦ in the maximum MAP error. Seven of the
top 34 runs are based on the SMC fusion, 27 are based on M+R. However, the 27 M+R
runs contain only 9 different (α, κ)-parametrizations each of which can be paired with a
maximum number of components limit Nmax ∈ {1, 5, 10} and still perform nearly optimal.
Seven of the 9 (α, κ)-parametrizations for which the M+R fusion work good, also result
in near optimal SMC performance. This leads to the conclusion that SMC and M+R fu-
sion obtain good performance with similar parametrization of the Gaussian measurement
model and for these parametrizations the number of components the mixture is reduced
to (Nmax) does not play a great role. Whereas the outlier ratio α does not have an im-
pact on the obtainable performance, the measurement concentration κ does. Increasing
the concentration of the measurement distribution by decreasing κ below −120 leads to
increasingly worse performance. All of the 34 good performing runs have a concentration
κ ∈ {−27,−60,−120}, which correspond to 68% of the samples drawn from such a distri-
bution having an rotational deviation smaller than {29◦, 19◦, 14◦} (cf. figure 3.1) from the
mode of the distribution. This is somewhat contradicting to the actual measurement error
in the object sequences, as for the control, filter and valve sequence 68% of the measurement
errors lie below 4.4◦, 6.9◦ and 4.4◦. Thus even a concentration value of κ = −240 resp. 9.8◦

for the 68% interval encloses the measurement uncertainty well enough.

Table 3.1.: Explored parameter ranges for Gaussian measurement
model evaluation

Functional
Component Parameter Explored Range

SMC M {100000}
M+R Nmax {1, 5, 10}
pG α {(.9, .1), (.95, .05), (.99, .01)}

κ {−900,−480,−240,−120,−60,−27}

3.7.2. Evaluation for Multimodal Measurement Model

The evaluation of the multimodal 4-fold symmetric measurement model pS was carried
out solely based on the test sequence of the filter object, as only this object shows this kind
of measurement ambiguity (cf. the raw measurement line in the filter subplot of figure
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3. Rotation Estimation using the Bingham Distribution
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Figure 3.4.: MAP Rotational Error plots for the best SMC vs. the best M+R parameter set-
tings in comparison to a histogram filter (discretized rotation space, Hist), a
particle filter (PF) and a pose clustering approach (Cluster).
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Table 3.2.: Top 10 ranking of all parametrizations for the fusion evaluation of the Gaussian
measurement model. Complete ranking given in table A.1

avg.
MAP

max.
MAP

%
< 1◦

%
< 3◦

%
< 5◦ Fusion Nmax α κ

1 .57◦ 1.18◦ .90 1.00 1.00 M+R 1 [.95, .05] -60
2 .58◦ 1.16◦ .90 1.00 1.00 SMC [.90, .10] -27
3 .59◦ 1.03◦ .97 1.00 1.00 SMC [.95, .05] -60
4 .60◦ 1.42◦ .90 1.00 1.00 M+R 1 [.90, .10] -60
5 .61◦ 1.21◦ .90 1.00 1.00 M+R 1 [.95, .05] -27
6 .62◦ 1.30◦ .87 1.00 1.00 M+R 1 [.90, .10] -27
7 .62◦ 1.15◦ .90 1.00 1.00 M+R 1 [.99, .01] -60
8 .62◦ 1.31◦ .90 1.00 1.00 M+R 5 [.95, .05] -60
9 .62◦ 1.31◦ .93 1.00 1.00 M+R 1 [.99, .01] -27

10 .63◦ 1.36◦ .90 1.00 1.00 M+R 10 [.99, .01] -27
...

3.4). A total of 168 parametrizations has been evaluated exploring combinations of the two
fusion methods, with both measurement models pG and pS and parametrizations given in
table 3.3. The full ranking is again given in the table A.2 whereas a subselection of the
ranking is given here in table 3.4.

Table 3.3.: Explored parameter ranges for multimodal measure-
ment model evaluation

Functional
Component Parameter Explored Range

SMC M {100000}
M+R Nmax {1, 5, 10}
pG α {(.9, .1), (.95, .05), (.99, .01)}

κ {−900,−480,−240,−120,−60,−27}
pS α {(.25, .22, .22, .22, .1),

(.45, .15, .15, .15, .1),

(.65, .08, .08, .08, .1),

(.85, .02, .02, .02, .1)}
κ {−900,−480,−240,−120,−60,−27}

Out of the 20 measurements in the filter sequence, seven are ±90◦ or 180◦ off, due
to the 4-fold symmetry of the filter object. Six of these seven outliers fall into the last
ten views of the sequence, over which the avg. MAP error metric is built. This eval-
uation thus puts special emphasis on how the parametrizations handle this ambiguity.
The first 43 parametrizations yield similar performance in terms of average MAP error
(best/worst difference: 0.39◦) and maximum MAP error (best/worst difference: 1.23◦).
The 44rd ranked parametrization is the first one having a maximum MAP error of over 2◦.
Within these top 43 parametrizations, only five are based on the 4-fold symmetric measure-
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3. Rotation Estimation using the Bingham Distribution

ment model and all five have very little component weight on the symmetric components
(α2...4 = 0.02), even less then the uniform component weight (α5 = 0.1). The first of these
4-fold parametrizations is ranked 16th, whereas the first 4-fold symmetric parametrization
using a significant weight for the symmetric components (α2...4 = 0.15) is ranked 50th with
an avg./max. MAP error of 1.14◦/ 1.37◦(cf. table 3.4). The worst parametrization using
pS and the SMC fusion is ranked 85th with an avg./max. MAP error of 5.39◦/ 10.02◦,
while the vast majority of pS-parametrizations with M+R fusion at some point return an
MAP estimate around one of the outlier measurements and therefore obtain much worse
MAP averages and maximum errors of up to ≈ 180◦. It can be concluded, that both fusion
methods perform better with the simple Gaussian measurement model and in general, if
used with a complex measurement model, the SMC fusion has an advantage over the M+R
fusion.

Table 3.4.: Selected rankings of parametrizations for the fusion evaluation of the multi-
modal measurement model. Complete ranking given in table A.2.

avg.
MAP

max.
MAP

%
< 1◦

%
< 3◦ Fusion Nmax

Meas.-
model α κ

1 .41◦ .56◦ 1.00 1.00 SMC gaussian [.95, .05] -120
2 .46◦ .88◦ 1.00 1.00 SMC gaussian [.95, .05] -27
3 .46◦ .63◦ 1.00 1.00 SMC gaussian [.90, .10] -60
...

16 .66◦ 1.22◦ .90 1.00 M+R 10 4fold [.85, .02, .02, .02, .10] -60
...

50 1.14◦ 1.37◦ .30 1.00 SMC 4fold [.45, .15, .15, .15, .10] -27

3.8. Summary

In conclusion, sequential orientation estimation using Bingham mixture models and the
two evaluated fusion methods works well in practice and obtains comparable performance
to approaches based on a particle filter, pose clustering and a histogram filter. For the 4-
fold symmetric object under investigation here, a simple measurement model with Gaus-
sian like uncertainty around the detected orientation and a uniform ”outlier” component
works better than a more complex measurement model which takes the object’s symme-
tries into account. Based on the competitiveness of the results to other methods, a Bingham
mixture based orientation fusion could serve well as a black box fusion algorithm for se-
quential estimation of rotations.
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4. Viewing Direction Classification:
Application to Orientation Estimation

As we have seen in chapter 2, the interplay between the method used for object pose esti-
mation and view planning is critical. Planning is ideally based on predicting the expected
measurement for an action. Due to the computational complexity involved, methods us-
ing precomputed statistics in order to lower the planning runtime in the online phase have
been subject to research and shown to perform comparable to pure online methods.

Many offline computed statistics ([1], [6], [34], partly [22]) are based on ranking the in-
formativeness of viewing directions and thus provide a rather coarse information on how
to plan views. A finer grained information would reveal which part of the object or which
feature is informative for the pose of the object. With this aim in mind, in this chapter
the dense feature scoring method of Madry et al. [24] is adapted to the case of object ori-
entation estimation instead of object categorization. While chapter 5 will give details and
proof-of-concept results regarding the application of the presented method to view plan-
ning, this chapter focuses on how to obtain an orientation estimate in the first place and
how to embed the method into a sequential orientation estimation framework. The prob-
abilistic measurement model is based on the unique ability of the Bingham distribution
to represent large uncertainties in a compact parametric way. The accuracy of the result-
ing orientation estimate is evaluated using random multi-view sequences at the end of the
chapter.

4.1. Method Overview

The developed object rotation estimation is based on 3d features calculated from point
cloud data acquired with structured light depth cameras like the Microsoft Kinect or Asus
Xtion. With the idea of determining discriminative parts of the object with respect to object
rotation estimation in order to facilitate this knowledge in view planning algorithms, we
followed a similar approach as Madry’s extraction of discriminative features for object
classification [24] where we substitute object categories with viewing directions.

The presented approach is based on mapping individual feature descriptors to the view-
ing directions from which they can be observed from. This mapping is modeled using a
probabilistic classifier trained for each object separately and treating the discrete set of
viewing directions defined by the training views of the object as class labels. The output
of the classifier is a discrete probability distribution over the viewing direction label given
a single feature.

In the work presented here, Fast Point Feature Histogram (FPFH) [30] were used as fea-
tures. These features are computed pointwise and represent the local geometry around a
point by summarizing normal and distance statistics in the point’s neighborhood. A sin-
gle FPFH feature is a 33-dimensional vector consisting of three 11-dimensional histograms
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Figure 4.1.: Block diagram of the presented method for orientation estimation. In an of-
fline phase, features (FPFH) are extracted from a set of training point clouds
from known viewing directions and a classification pipeline is trained to pre-
dict the training view direction given a feature descriptor. Online, features
are extracted from the point cloud of the object in unknown orientation and
the viewing direction classification is used to obtain a probabilistic estimate of
object’s orientation which can be used in a sequential orientation estimation
framework.

concatenated after each other. As the feature is invariant to rotations in 3d and therefore
does not define a feature coordinate frame, the above described viewing direction classi-
fication will not specify a unique rotation for a viewing direction, but a set of rotations
with rotational invariance around the camera optical axis. A single FPFH feature on its
own therefore encodes a large set of possible object rotations. Firstly, by the uncertainty
in the viewing direction it could originate from and secondly, by means of the rotational
invariance about a specific viewing axis.

A probabilistic measurement model based on the Bingham mixture distribution is used
to capture above uncertainties in a principled way. Every component of the mixture en-
codes one of the possible viewing directions and a single component models the rotational
invariance about the camera axis. This measurement model can then be used to sequen-
tially estimate an object’s orientation.

A block diagram of the method’s basic components is given in figure 4.1 along detailed
explanations in the next sections.
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4.2. Viewing Direction Classification

4.2.1. Training Setup and Choice of Classifier

The basis for training the viewing direction classifier for an object are point clouds cap-
tured from various camera poses around the object. In general, the training data I =
{Ims }, s ∈ [1, Nsets],m ∈ [1, Nviews] contains Nsets segmented point clouds for every of
the Nviews defined camera poses. The notation Is will be termed the s-th sample set and
contains the s-th point cloud for all Nviews camera poses.

For every point cloud Ims a feature set Fm
s is computed, where fm,s

j ∈ Fm
s denotes an

individual feature vector. We can now pair every feature vector fm,s
j with its view label m

and create the training data for the classifier as feature-label pairs by X =
⋃

s

⋃

m(fm,s
j ,m).

To give an idea about the size a real dataset has, consider the datasets used in the eval-
uation with real models in section 4.5. In those datasets, Nsets = 4 sample sets with
Nviews = 28 camera poses have been recorded and used to train the viewing direction
classifier. A typical training point cloud contains about ∼ 6000 points respective features
and hence the final training dataset has around |X| = 6000 ∗ 28 ∗ 4 = 672000 training
examples.

The large training data size and the required probabilistic output limits the choice of
usable classification methods. Logistic regression (LR) classifiers can be trained very fast,
are well studied in large-scale multi-class classification problems such as text classification
[18] and give probabilistic output. Therefore, and also because a mature and fast imple-
mentation of LR is available (LibLinear [12]), it is the classification method of choice in this
work.

LR is a probabilistic model for learning the class probability of a class given a feature
vector. For the binary case with only two class labels (LR can be extended to true multi-
class classification as well) the posterior class probability for the class one is defined as

p(C1|x) = σ(wTΦ(x)) (4.1)

with

σ(a) =
1

1 + exp(−a)
(4.2)

is the logistic sigmoid function, x ∈ R
K is the input feature vector, Φ(x) : RK → R

L is a
fixed and possibly non-linear transformation of the feature vector and w ∈ R

L is the model
parameter to be learned [4]. The probability for class two is simply p(C2|x) = 1− p(C1|x).
For a given training set {(xn, tn)}, i = 1, . . . , N with labels tn ∈ {0,+1}, one learns the
weight vector w by maximizing the data(set) likelihood

p(t|w) =
∏

n

p(C1|xn)tn{1− p(C1|xn)}1−tn (4.3)

with t = (t1, . . . , tN )T . While there is no closed-form solution for maximizing this data
likelihood with respect to w, the optimization problem is convex and hence has a unique
global maximum [4]. In practice, the negative log-likelihood −ln(p(t|w)) is minimized
and usually extended by a regularization term to avoid over-fitting in case of perfectly
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separable datasets. The final error function which gets minimized is thus

E(w) =
1

2
wTw

︸ ︷︷ ︸

regularization term

+C(−ln(p(t|w)))
︸ ︷︷ ︸

data term

(4.4)

=
1

2
wTw − C

∑

n

tnln(yn) + (1− tn)ln(1− yn) (4.5)

with yn = p(C1|xn) and C is a user specified parameter to balance the data term with the
regularization term [4][12]. LibLinear optimizes this function very efficiently using a trust
region Newton method [23].

The binary LR classification described above can be extended to multi-class classification
with M > 2 classes in two ways. The formally correct way would be to describe the true
multi-class classification problem and devise an efficient learning method for it. A popular
way, however, is to train M one vs. the rest (OvR) binary classifiers and combine their
outputs to a probability distribution over all classes by normalizing over the sum of the M
OvR class probabilities. This method is obviously practical, because it is fast to implement
once the basic binary claxssification framework is done. In [18], a study between true and
OvR multi-class classification using linear Support Vector Classifiers is carried out. The
findings are that the practical performance in classification accuracy of both methods is
comparable, with a slight advantage for the true multi-class formulation. For the work
presented here, an OvR approach is used as it is the standard way LibLinear treats multi-
class problems.

In order to achieve higher classification accuracy, we experimented with an additional
feature space subdivision based on the approach of [24] and conceptionally equal to [2].
Instead of training one classifier for all features and all classes in the training dataset, the
feature space is divided into a set of subspaces and a local classifier is trained for each
subspace individually. Every local classifier thus only has to model the structure within a
subspace of similar features rather than the structure of the whole feature space. By this
means, a relatively simple linear classification model such as logistic regression reaches
high classification accuracy. The feature space subdivision is implemented by clustering
of the training features X into K clusters via simple K-means clustering based on the
euclidean distance between features. A new feature is evaluated by first examining which
cluster (subspace) it falls into and then invoking this cluster’s logistic regression classifier.
The trained classification pipeline is shown as orange colored set of components in the
block diagram in figure 4.1.

4.2.2. Choice of Feature

The described method is not tied to a specific feature, however, in this work, the clas-
sification was carried out based on the Fast Point Feature Histogram (FPFH) [30]. The
FPFH is a rotation invariant 3d feature calculated from point cloud data without the use
of color information. It summarizes the local geometry around a query point p∗ ∈ R

3 by
means of three geometrical quantities (αi, φi, θi) computed pairwise between the query
point p∗ and neighboring points pi, i = 1 . . . k within a specified radius rf of p∗. For every
point pair (p∗, pi) with corresponding 3d normals (n∗, ni) a so called Darboux uvw frame
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(u = n∗; v = (p∗ − pi) × u;w = u × v) is calculated. The above mentioned quantities are
angular variations defined as

αi = v ·ni (4.6)

φi = (u · (pi − p∗))/||pi − p∗|| (4.7)

θi = arctan(w ·ni, u ·ni) (4.8)

where · denotes the dot product. A preliminary Simplified Point Feature Histogram
(SPFH) descriptor is built by discretizing the three dimensions (α, φ, θ) into typically d =
11 bins, building histogram statistics over the computed (αi, φi, θi) and concatenating the
histograms to a vector SPFH(p∗) ∈ R

(d+d+d). The final descriptor FPFH(p∗) ∈ R
(d+d+d) is

calculated via a weighting of nearby SPFHs according to

FPFH(p∗) = SPFH(p∗) +
1

k

∑

i

1

wi

SPFH(pi) (4.9)

where wi is the distance between the query point p∗ and the neighborhood point pi. This
way, geometric information of up to twice the feature estimation radius rf can enter the
final FPFH descriptor. As the dense computation of FPFH features for a point cloud with n
points and on average k neighbors is in O(nk), this feature was successfully used in many
approaches targeting realtime applications such as object pose estimation [16], road-side
environment classification [2] or object category classification [24].

4.2.3. Example

While a full quantitative evaluation of the viewing direction classification is presented
later in section 4.5, a short qualitative example is given here in figures 4.2 and 4.3. The
dataset and classification pipeline showcased in this example is based on real captured
point clouds of a standard mug from Nviews = 28 training viewing directions. The mug
is 9.5cm in height and the feature radius used is 3cm. As the mug has a simple geometry,
but also a reflective symmetry as well as surface parts of high ambiguity (the body), it is
an ideal object to demonstrate the viewing direction classification.

In figure 4.2 the learned feature subspaces are illustrated using a trained classification
pipeline with K = 5 and K = 10 for the K-means clustering. For K = 5, the cluster-
ing separates concave body parts (blue) from upper and lower convex body parts (white,
black) while features originating from the handle are clustered separately (green). In case
of K = 10, the clustering is similar for the body parts whereas the handle and body parts
close to the handle are subdivided into more clusters.

For each of the feature subspaces, a separate LR-classifier is trained which outputs a
discrete probability distribution p(D = m|f),m ∈ [1, 28] given a single FPFH feature f . In
figure 4.3, the resulting viewing direction classification is illustrated using an evaluation
point cloud for viewing direction D = 17. Color coded on the points is the probability of
a feature originating from the shown view, p(D = 17|f). The benefits of the probabilistic
classifier are visible in the histograms on the right. The top histogram shows how the clas-
sifier captures the reflective symmetry of the mug whereas the bottom histogram shows
the general ambiguity of features originating from the body of the mug. Please note the
more detailed description in the figure caption.
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(a) used mug (b) K = 5 (c) K = 10

Figure 4.2.: K-means feature clustering. The 3d points of the displayed evaluation cloud
are colored based on what cluster the point’s feature is assigned to. Although
the K-means clustering is done in feature space, the resulting clustering pro-
duces compact regions in 3d space as the support regions for neighboring fea-
tures overlap and most often the surface geometry and normals within a local
neighborhood vary smoothly.

Figure 4.3.: Viewing direction classification. On the left, a non-training point cloud of a real
mug obtained from viewing direction D = 17 is illustrated. Visualized as color
for every point is the probability for this viewing direction, p(D = 17|f). On
the right, the complete predicted viewing direction distributions p(D = m|f)
for two selected points are displayed. The top histogram shows the distribu-
tion for a feature which encodes some handle geometry. Therefore the distri-
bution shows a rather correct partitioning of the probabilistic weight between
displayed viewing direction (D = 17) and its symmetric counterpart (D = 15).
The bottom histogram shows the distribution for a feature encoding almost no
view-specific geometry which results in a much broader distribution. Some
feature points (red and white colored) exhibit over-confident probabilities of
p(D = 17|f) ∈ [0.9, 1.0] which is theoretically not possible for the mug object
due to its symmetry.
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4.3. Bingham Mixture Measurement Model

To use the viewing direction classification described above for the sequential estimation of
an object’s rotation (cf. section 3.6), a measurement model p(zt|qt) for a measured rotation
zt ∈ SO3 given an assumed rotation qt ∈ SO3 needs to be defined. This is non-trivial due
to two aspects. Firstly, zt and qt live in continuous domains while the view classification
uses a discrete set of viewing directions. Secondly, the used FPFH features are rotation-
ally invariant thus even a uniquely classified feature does not determine a unique object
rotation, but leaves the object’s rotation around the camera’s optical axis unspecified. We
will see that both aspects can be represented without much effort in a measurement model
based on a Bingham mixture distribution.

For any object we can define a fixed coordinate frame o whose rigid body transformation
wTo describes the object’s pose in the world coordinate frame w. The set of Nviews training
camera poses is specified by their transformation oTm

c ,m = 1, . . . , Nviews relative to the
object. Let us consider a new point cloud measurement I∗ with computed features F ∗

taken from a known camera pose wTc∗ . Assume one of the resulting features f∗ ∈ F∗

was perfectly classified to the single training view direction m∗ ∈ [1, Nviews]. Without
invariance around the viewing direction m∗ and in a non-probabilistic view of things, this
feature would tell us that the object’s rotation is

zt :=
wqo =

wqc∗ ◦ (
o
qm

∗

c )−1 (4.10)

with wqc∗ = Rot(wTc∗) the rotation part of the current camera pose and (
o
qm

∗

c )−1 the train-
ing view orientation the feature was classified to.

We can start building a continuous probabilistic representation of this view classification
by associating the training view direction m∗ with a Bingham distribution describing the
object’s rotation with respect to the training view as follows

c
bm

∗

o ∼ B(K, (
o
qm

∗

c )−1 ◦ V) (4.11)

K =

Ö

κ1
κ2
κ3

è

V =








0 0 0
1 0 0
0 1 0
0 0 1








(4.12)

with ◦ denoting quaternion rotation of the directional vectors in V .
Setting κ1 = κ2 = κ3 << 0, this Bingham describes a rotational distribution with mode

c
qm

∗

o equal to the object’s orientation in the training view m∗ and a Gaussian-like rotational
deviation around this mode. This is achieved by rotating the Bingham B(K,V) into the
correct frame by rotating its basis vectors by the fixed training view rotation (

o
qm

∗

c )−1.
To account for the rotational invariance around the camera’s view axis, we assume the

optical axis of our camera points in positive z-axis direction of the camera frame. By simply
setting κ3 = 0, which corresponds to the third column in V and hence the z-axis, we
model a uniform rotation about the camera axis as required. Setting the concentration
parameters κ1 = κ2 = κ big enough, this also effectively bridges the gap between the
discrete classification and the continuous probabilistic representation.
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By additionally rotating the distribution by the fixed current camera orientation wqc∗ ,
we obtain a continuous probabilistic representation with mode equal to (4.10)

w
bm

∗

o ∼ B(K, wqc∗ ◦ (
o
qm

∗

c )−1 ◦ V) (4.13)

Until now we considered a perfect classification of f to the class m∗. In practice, the
classification pipeline will output a distribution p(D|f) over training view labels. The
continuous equivalent of this discrete distribution can be described by a mixture model
with a single component describing an individual training view rotation as in (4.13) and
the mixture weight vector given by p(D|f)

wbo =
∑

m

p(D = m|f) wbmo (4.14)

= BMM(α = p(D|f),B = {wbmo }Mm=1) (4.15)

Instead of first building p(zt|qt) and then inverting it to a distribution over qt as in equa-
tions (3.11) to (3.13), above BMM directly describes a distribution over the object’s poses
given a measured feature f and the camera orientation wqc∗ . Formally we can denote this
as

p(wqo,t|f, wqc∗) := wbo (4.16)

Now, to fuse information from many features {fj}, j = 1, . . . , Nfeat, a simple strategy
known as distribution summation [27] works well in practice. The classification distribu-
tions for all individual features are summed, renormalized and used as final weight vector
for the distribution

αsum = normalize(
∑

j

p(D|fj)) (4.17)

The final inverted measurement model of a set of features can thus be written as

p(qt|zt) ≈ p(wqo,t|{fj}, wqc∗) = BMM(α = αsum,B = {wbmo }Mm=1) (4.18)

and is represented by the probabilistic orientation estimation component in the block diagram
in figure 4.1.

4.4. Algorithmic Details for Sequential Estimation

In section 3.6, it was explained how sequential fusion using Bingham mixture models as
prior and measurement likelihood works using a SMC and M+R method. This also car-
ries over to using the measurement model defined in equation (4.18) with some additional
assumptions regarding the preprocessing and a specialty arising from the camera-axis in-
variance of the measurement model.

In the previous section we treated the rotational invariance of the used features through
modeling the measurement distribution to be uniform around the camera’s optical axis.
Using a only a single view, this means the orientation of the object can only be detected
up to an invariance around the camera axis. For a unique orientation estimate, the se-
quential estimation requires at least two views from two non-parallel viewing directions.
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Figure 4.4.: Synthetic experiment for the fusion of two camera-axis invariant orientation
measurements. All shown distributions are represented by a single Bingham
distribution. Left column: first synthetic measurement distribution obtained
by a view along axis (0, 0,−1) illustrated as EGI plot and flag plot. Middle
column: second synthetic measurement distribution obtained by a view along
axis (−1

2

√
2,−1

2

√
2, 0). Right column: fusion (multiplication) of the two mea-

surement Bingham distributions which results in a unique orientation estimate
correctly centered around the identity rotation.

This behavior is illustrated in figure 4.4 for two synthetic measurements. Each individual
measurement results in a camera-axis invariant orientation distribution which shows as a
ring on the EGI plot. Sequential fusion (multiplication) of the Bingham distributions re-
sults in a unique orientation estimate. In addition to the EGI-plots, the bottom row shows
corresponding flag plots. A single flag encodes an orientation in a unique way using the
convention that the blue pole points into the positive z-direction (blue axis) and the flag
points into the positive x-direction (red axis). The flag plots are then generated by sam-
pling 50 rotations from the underlying distribution and rotating an identity orientation
flag by this rotation.

Furthermore, to apply equation (4.18) in practice, the preprocessing pipeline needs to
output a set of features {fj}, j = 1, . . . , Nfeat originating from the object of interest which
is visible in the input point cloud I∗. In order to simplify the feature extraction and because
the focus of this work is the sequential estimation of an object’s rotation, aspects regarding
object recognition (what object are we looking at?) and segmentation (which point cloud
data belongs to the object of interest?) are not taken into account and solved by giving
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appropriate knowledge into the preprocessing pipeline. Data segmentation is carried out
at first and either unnecessary (simulated data) or done using a bounding box filter around
the a priori known position of the object (real data). For the obtained point cloud segment
Io ⊂ I∗, feature extraction is performed with the parameter settings (normal and FPFH
estimation radius) the used classifier was trained on. After feature extraction, up to Nfeat

features are selected to enter the measurement model equation of (4.18). The selection
criterion is based on the classifier’s confidence for a particular feature, which is calculated
by means of the discrete entropy of the classification distribution

H(p(D|f)) = −
∑

m

p(D = m|f) log(p(D = m|f)) (4.19)

The entropy H(p) reaches its maximum value Hmax for a uniform distribution and de-
creases the more peaked the distribution is. It reaches its minimum value for a distribution
where p(D = m|f) = 1 for a particular m and p(D = m′|f) = 0, ∀m′ 6= m. By ranking all
extracted features of the segmented point cloud, the Nfeat features with lowest entropy are
selected to enter the measurement model described in equation (4.18).

4.5. Evaluation

4.5.1. Parameter Space and Parameter Selection using Simulated Data

In order to evaluate the proposed method for object rotation estimation, the influence of
the following parameters has been analyzed using simulated and real test data.

Table 4.1.: Parameters of View Classification based Object Rotation Estimation

Parameter Description

Nviews number of different training view poses
oTm

c m = 1, . . . , Nviews, training view poses
Nsets number of training point clouds per training pose
rn normal estimation radius
rf FPFH feature estimation radius
K number of clusters for K-means feature space subdivision
C C ∈ R

+, inverse regularization strength for LR training
κ measurement concentration for Bingham Mixture model
Nfeat maximum number of features used for rotation estimation per view

At first, a number of tests using simulated training and evaluation data has been per-
formed. The purpose of these tests was to provide a proof-of-concept evaluation as well as
to narrow down the whole parameter set to a couple of interesting and/or data dependent
parameters for tests with real data. Parameter-wise, the focus of the simulation tests were
on those parameters which have direct influence on the training data, namely Nviews, oTm

c ,
Nsets, rn and rf . The simulated tests where performed using two 3d models roughly 11cm
in height - a mug and a cartoon character, see figure 4.5 - and the simulation framework
within the Point Cloud Library (PCL) [29]. This simulation is based on rendering a 3d
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object model using virtual camera settings (focal length, view frustum, resolution) equal
to those of structured light depth sensors like the Microsoft Kinect or Asus Xtion. The
noise model applied is a simple Gaussian distributed noise with fixed standard deviation
of 0.15cm on the depth measurement of each pixel followed by the typical depth value
quantization. It does not include a depth varying noise model nor the typical artifacts
such as missing data at edges or on surfaces almost parallel to the camera’s optical axis.

For the simulated as well as the real data evaluation, the training view poses oTm
c for the

camera were generated to be approximately uniformly distributed on a viewing sphere
around the object and pointing towards the center of the sphere (which equals the object’s
center of mass). The number of poses Nviews was indirectly determined by the subdivision
level of the pose generation algorithm. Simulated tests were carried out using Nviews ∈
{12, 48} and a view radius of 1.0m. The average difference in rotation between a generated
pose and the closest neighboring pose (in terms of rotation difference) is 68.0◦±12.7◦ for the
pose set with Nviews = 12 and 31.1◦ ± 1.4◦ for the pose set with Nviews = 48. A qualitative
impression of the pose density for Nviews = 48 is given in figure 4.5. The training datasets
have been generated with Nsets = 3 sample sets in order to give the classifier a chance to
generalize over a particular view’s feature noise characteristic.

For the feature computation, the normal estimation radius rn and the FPFH computation
radius rf are the relevant parameters. For useful statistics over the estimated normals, it is
common practice to choose rf ≥ rn. For the simulated data (rn, rf ) ∈ {(.01m, .01m), (.02m, .03m)},
were explored. By these means, four training datasets based on simulated data have been
created combining the two possibilities for Nviews ∈ {12, 48} with the two feature estima-
tion parameter sets.

The parameters involving the classification pipeline (K and C) and the parameters in-
volving the rotation estimation (κ and Nfeat) were jointly evaluated. The classification
pipeline has been trained using K ∈ {1, 5, 10} and C = 1.0 on above four training datasets.
The pose estimation parameters have been varied according to κ ∈ {−900,−27,−18} and
Nfeat ∈ {100, 300, 1000}.

The simulation evaluation then has been carried out based on 20 random view se-
quences with 20 views per sequence. The random view sequences have been generated
by selecting camera poses uniformly on a viewing sphere but with the same radius as
used for training data generation. This means that the evaluation camera poses generally
do not coincide with the training camera poses, which is realistic given an online applica-
tion of the algorithm but also poses a significant challenge for the classification pipeline as
we will see in the later evaluation on real data. The same 20 sequences have been used for
all evaluations to ensure comparability. As fusion algorithm, the SMC based fusion with
M = 100000 samples was employed as it seemed to work better with measurement models
with many components.

Without a further quantitative analysis but by inspection of MAP error evolution plots
similar to figure 3.4, it showed that the evaluation runs based on Nviews = 12 or (rn, rf ) =
(.01m, .01m) do not lead to a converging rotation estimate over most of the 20 sequences
and these parameter values could be discarded for further evaluation. For the classifiers
based on Nviews = 48 and (rn, rf ) = (.02m, .03m), the remaining 27 parametrizations for
K, κ and Nfeat are ranked with respect to the MAP error averaged over the last 10 views of
the sequence and over all 20 sequences. This is the same error metric as in equation (3.24),
except now we average over 20 random sequences instead of three objects. Evaluation for
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Figure 4.5.: Top row: mug and cartoon character models used for simulation evaluation.
Bottom row: 48 training directions, top and side view.
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the mug and cartoon model has been performed independently and the rankings are given
in figure 4.6. As expected, a higher number of K-means clusters and taking more features
into account in the measurement model in general leads to a smaller average MAP error.
Regarding the concentration parameter, higher uncertainties κ ∈ {−18,−27} tend to work
better. It’s interesting to note, that the model’s geometric complexity, which manifests itself
in a more diverse feature vector set, has measurable influence on the overall obtainable
orientation error. The top ranked cartoon model parametrization obtains an average error
of 3.61◦ whereas the best parametrization for the mug model is on average more than 2◦

worse.

4.5.2. Evaluation using Real Data

Data Acquisition

In order to evaluate the rotation estimation on a real dataset, training and evaluation scans
of two objects - a mug and a bunny (cf. figure 4.7) - have been captured. For data acquisi-
tion an Asus Xtion camera mounted onto a Kuka KR-16 robot arm has been used. Through
a camera-to-robot calibration, the Kuka arm can position the camera accurately at the de-
sired locations oTm

c . Training and evaluation data has been captured by putting the object
in a known position on a flat table surface. Due to limitations of the robot’s workspace the
viewing sphere radius for the training and evaluation poses was set to 0.65m.

Training camera poses have been generated as in figure 4.5. Evaluation camera poses
were generated with one subdivision level more, where none of the evaluation camera
poses is identical to one of the training camera poses. As it is difficult to obtain real scans
from all directions on a viewing sphere, we limited training and evaluation to poses in the
upper half sphere above a table surface. This finally leads to Nviews = 28 training poses and
100 evaluation poses which are illustrated in figure 4.7. For every training pose, Nsets =
4 scans have been captured for classifier training and two additional ones as a separate
validation set. For the evaluation camera pose set, two scans have been captured. Using
knowledge about the object’s position and size, the data belonging to the object of interest
has been segmented from training as well as test scans by filtering out the planar table
surface and then applying a bounding box filter. Feature extraction has been performed
on the resulting segments using rn = 0.02m and rf = 0.03m.

Classifier Training

For the classifier training on real data, the parameter ranges K ∈ {1, 5, 10} for the number
of K-means clusters and C ∈ {.1, 1.0, 10.0} for the logistic regression regularization have
been explored by means of a 4-fold cross validation. The 4 folds are defined by the four
sample sets acquired (Nsets = 4) and no further randomization or test/training split was
performed. The cross validation metric used is the logistic loss also known as cross entropy
loss. It takes the probabilistic output of the LR classifier into account and is defined as

logloss(t, p) =
∑

x

t(x) log(p(x)) (4.20)

for discrete probability distributions t(x) and p(x) over a space x ∈ X where t(x) repre-
sents the ground truth distribution and p(x) is the predicted distribution. In the classifi-
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avg.

MAP [◦] K κ Nfeat

1 3.61◦ 10 -18 1000
2 3.82◦ 10 -27 1000
3 4.17◦ 5 -27 1000
4 4.18◦ 10 -27 300
5 4.20◦ 10 -18 300
6 4.28◦ 5 -18 1000
7 4.48◦ 5 -18 300
8 4.51◦ 5 -27 300
9 5.32◦ 10 -27 100
10 5.62◦ 10 -18 100
11 6.49◦ 10 -120 1000
12 6.51◦ 10 -120 300
13 6.61◦ 5 -27 100
14 6.72◦ 10 -120 100
15 6.73◦ 5 -18 100
16 6.90◦ 5 -120 1000
17 7.08◦ 5 -120 300
18 7.98◦ 5 -120 100
19 9.57◦ 1 -27 1000
20 9.79◦ 1 -18 1000
21 9.79◦ 1 -120 1000
22 10.43◦ 1 -120 300
23 11.74◦ 1 -27 300
24 12.54◦ 1 -18 300
25 15.16◦ 1 -27 100
26 15.66◦ 1 -120 100
27 16.88◦ 1 -18 100

(a) cartoon character

avg.

MAP [◦] K κ Nfeat

1 5.74◦ 10 -27 300
2 6.20◦ 10 -27 1000
3 6.20◦ 5 -27 1000
4 6.73◦ 10 -18 300
5 7.07◦ 10 -120 1000
6 7.12◦ 10 -18 1000
7 7.26◦ 10 -27 100
8 7.29◦ 5 -18 1000
9 7.40◦ 10 -120 300
10 7.64◦ 10 -120 100
11 7.67◦ 5 -120 1000
12 8.40◦ 10 -18 100
13 10.03◦ 5 -120 300
14 10.85◦ 1 -120 300
15 11.28◦ 1 -120 1000
16 11.55◦ 1 -18 300
17 12.13◦ 1 -27 1000
18 12.46◦ 5 -27 300
19 13.06◦ 1 -27 300
20 14.01◦ 5 -18 300
21 14.27◦ 1 -18 1000
22 14.71◦ 1 -18 100
23 14.80◦ 5 -120 100
24 19.47◦ 5 -18 100
25 19.58◦ 1 -27 100
26 20.28◦ 1 -120 100
27 20.71◦ 5 -27 100

(b) mug

Figure 4.6.: Ranking of all parametrizations for the cartoon and mug model. Fixed param-
eters: Nviews = 48, Nsets = 3, (rn, rf ) = (.02m, .03m) and C = 1.0
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Figure 4.7.: Top row: images of the used real world objects refereed to as mug and bunny
object. Bottom row: training (blue) and evaluation (red) dataset poses for the
experiments with real data; on the left, top view of the camera poses and on
the right a side view. The object is in the center of the view sphere. Note that
evaluation and training viewing directions do not coincide on purpose.
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avg.

logloss
std.
dev. K C

-1.57886 0.43376 10 1.0
-1.58922 0.26503 10 0.1
-1.65085 0.53596 10 10.0
-1.84854 0.24731 5 0.1
-1.86035 0.36980 5 1.0
-1.88594 0.43127 5 10.0
-2.34703 0.33612 1 1.0
-2.34828 0.27285 1 0.1
-2.34982 0.34380 1 10.0

(a) bunny

avg.

log-loss
std.
dev. K C

-1.99539 0.16346 10 0.1
-2.05744 0.16180 5 0.1
-2.12633 0.33440 10 1.0
-2.13468 0.25056 5 1.0
-2.24397 0.31133 5 10.0
-2.30537 0.42968 10 10.0
-2.55143 0.14739 1 0.1
-2.59923 0.19464 1 1.0
-2.60467 0.19130 1 10.0

(b) mug

Figure 4.8.: Cross validation scores for explored parameter ranges.

cation scenario, t(x) is defined as 1 for the correct class label and 0 everywhere else and
therefore the logistic loss collapses to the log-probability of the true class label. For a set of
predictions and ground truth labels the logistic loss averaged over the set is a measure of
the classifiers performance. Its ideal value would be zero and the worse the performance
the more negative the value gets. For the two class case, the logistic loss is equal to the
data likelihood function of the logistic regression model itself, but without the regulariza-
tion (cf. equation (4.3)). Figure 4.8 summarizes the cross validation results. Similar to what
we have seen in the evaluation on simulated data, more K-mean clusters work in general
better. The bunny model allows overall better classification results due to its greater vari-
ance in surface geometry which leads to less ambiguous classifications. This can be seen
in the logistic loss score in figure 4.8 as well as the confusion matrix plots in figure 4.9.
For the confusion plots the best parametrization has been selected and evaluated on previ-
ously unseen data - the two additional sample sets recorded. Although the confusion plot
for the mug reveal many misclassifications (off diagonal entries), this does not necessarily
have to lead to bad orientation estimates in general. While the confusion plots are based
on the single most likely class, the orientation estimation takes the complete predicted
distribution into account and thus as long as the view ambiguity of a feature is correctly
represented in the output distribution it will not lead the orientation estimation into a
wrong direction. For the subsequent evaluation of the sequential rotation estimation, the
best scoring classifier parametrization according to the cross validation was used.

Rotation Estimation Results

Two experiments targeting the convergence and correctness of the rotation estimation have
been carried out. Similar to the evaluation on simulated data, they are based on assessing
the MAP error on 20 random sequences with 20 views per sequence. The first set of se-
quences was created by randomly choosing views out of the 100 evaluation camera poses
and will be termed S100, the second set was created by using training view poses (S28).
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Figure 4.9.: Confusion matrices for the best classifier parametrization for each object
model. Predicted labels are the 28 training view directions.
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Whereas the first set of sequences thus resembles an online application in which the views
of the object generally will not coincide with training views, the second set is a best case
scenario by providing the classification pipeline with online data from the viewpoints it
was trained on. Such viewpoints could potentially be chosen in a real online application
via a next-best-view planning approach, but this remains to be proven. For the S28 se-
quences, the two captured sample sets which were not used for classifier training have
been used for the evaluation. Hence all evaluations are based on data not previously used
for training.

The evaluation on the S100 sequences was carried out with orientation estimation pa-
rameters ranging in κ ∈ {−27,−60,−120} and Nfeat ∈ {300, 1000}. The obtained perfor-
mance measured via the average MAP error over all sequences and the last 10 views is
given in figure 4.10. For the best ranked parametrizations, the MAP error evolution for all
20 sequences is plotted in figure 4.11. The results obtained on real data are similar to the
previous results with simulated data. Rotation estimation for the geometrically rich bunny
object converges to estimates with an average of error 4.74◦with the best parametrization,
whereas the mug object with a largely ambiguous surface area (the body) on average per-
forms much worse (average error of 9.08◦ with the best parametrization). As none of the
camera poses of the S100 sequences are camera poses actually used for training the classi-
fiers, it is interesting to see how much this degrades the estimation performance. To assess
this, an exemplary evaluation using Nfeat = 300 and κ = −27 has been carried out using
the S28 sequences, which contain data unseen by the classification pipeline but captured
exactly from the training views. The resulting MAP error plots are given in figure 4.12.
As can be seen qualitatively, the average MAP error is significantly lower compared figure
4.11. The MAP error averaged over the last 10 views and all 20 sequences for the bunny
object is 0.67◦, for the mug object it is 0.78◦. The large difference in the remaining error
after convergence between on- and off-training direction sequences is explainable by the
discrete nature of the viewing direction classification. For views obtained from the train-
ing directions, the classification is stable and mostly correct as the S28 sequences show.
Views obtained in between training directions should ideally result in a classification dis-
tribution with probabilistic weight partitioned over nearby training directions. Together
with the modeled uncertainty of the training directions via the Bingham distribution, this
would result in correct continuous rotation estimates even for non-training directions. In
practice, however, the results suggest that the classification does not partition the probabil-
ities as wanted but instead most probabilistic weight falls into one of the nearby views. As
the distance between neighboring views among the 28 training views is roughly 31◦, this
can result in a theoretical MAP error of up to ∼ 15.5◦ and explains why some of random
sequences of the S100 sequences converge to estimates with a remaining error of over 10◦.

Despite the average MAP error numbers just given, the behavior of the sequential esti-
mation especially during the first couple views as seen in figure 4.11 and 4.12 is representa-
tive of the inner workings of the presented method. After view zero, no matter how perfect
this view was recognized by the classifier, the plots show rotation errors of almost 180◦for
the S100 as well as the S28 experiments. These errors stem from the inherent rotational
invariance around the camera axis which was introduced into the measurement model
as the used features are rotational invariant and no further feature frame is estimated or
used. In theory, at least one additional view (so two views in total), ideally orthogonal to
the first one, is necessary to resolve this ambiguity. This resolving behavior is clearly seen
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at view 2 in the S28 sequences for both objects, where the MAP error drops below 10◦for
most random sequences. In case of the S100 sequences, a similar behavior can be observed
although much more uncertainty is left during the first views because the view classifi-
cation for off-training direction views is more ambiguous, partly wrong or partitioned in
a biased way over nearby training directions. The higher classification ambiguity with
off-training directions shows as generally slower convergence behavior compared to the
S28 sequences and wrong classifications, which lead to intermediate increases in the MAP
errors of some random view sequences, occur more often for the S100 sequences as well.
The MAP error evolution plot for the mug (figure 4.11) shows one particularly bad se-
quence which does not converge until the 14th view. A closer investigation here revealed
that for this sequence, in views 0, 2, 4, 5 and 10 (of which 0, 2 and 5 coincidentally were
the same viewing direction) many of the features were classified with high certainty to a
completely wrong training view direction which thus misleads the orientation estimation.
The larger tendency for wrong feature classifications for the mug model compared to the
cartoon model is visible in many sequences during the first eight views of the S100 set as
the MAP error for many mug sequences tend to jump up and down a few times before
convergence.

The difference in estimation behavior for the on-training direction sequences in S28 com-
pared to the off-sequences in S100 suggest that deviations from the training directions have
a great impact on the classification pipeline. Although the used FPFH features are com-
puted locally and in principle rotation and scale invariant, it seems that the object’s self
occlusion and thus missing or additional surface points play an important role for the fea-
ture computation and thus affect the classification performance. On the one hand, self
occlusion allows for characteristic features exploitable by the classifier, on the other hand,
these patterns sometimes seem to vary rather strongly even with slight changes in the
viewing direction. Figure 4.13 illustrates this behavior for the mug object and the best
ranked classification pipeline in figure 4.8. For every point of the displayed scans, the
respective feature has been classified and the classification probability p(D = m|f) for
a specific training view direction m is visualized color coded. Whereas the left column
shows scans obtained from exactly the training view direction m, the right column shows
a scan from the closest evaluation viewing direction. The scan pairs in one row have been
transformed in the same reference frame, hence the small view dependent variation in the
scans is easily visible. Due to the small change in viewing direction, some of the proba-
bilistic mass should be partitioned away from the direction visualized on the left to other
training directions close to the evaluation direction. This effect can be seen in the top row
where the largely red area around the handle on the left image gets lower probabilities on
the right image, for example red regions shift to orange and orange regions to green. We
also see some topological changes in the point clouds due to the shift in viewing direction.
For example, the rim on the left side of the mug is closed from the training perspective
but open on the evaluation point cloud. This leads to spurious regions with high proba-
bility for the training direction where the original training point clouds did not show any
significant probability. Such regions disturb the orientation estimation . The bottom row
shows a more severe case of non-robustness against slight changes in viewing direction.
The training point cloud shows clear regions of high probability mass where the handle
touches the mug body which don’t carry over to the close-by evaluation view. An inves-
tigation for this view pair revealed that most of the probability mass for the evaluation
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avg.

MAP [◦] κ Nfeat

4.74 -27 1000
5.58 -60 1000
6.15 -120 1000
6.70 -27 300
7.17 -60 300
7.79 -120 300

(a) bunny

avg.

MAP [◦] κ Nfeat

9.08 -120 1000
9.27 -60 300
9.56 -60 1000
10.38 -27 300
12.33 -27 1000
14.82 -120 300

(b) mug

Figure 4.10.: Ranking for pose estimation evaluation on the S100 sequence set.

view is concentrated at a viewing direction on the other side of the view sphere which will
significantly disturb the orientation estimation. The evaluation view in this bottom row
illustration turns out to be the 0th, 2nd and 5th of the outlier mug run mentioned before,
which explains the long lasting phase with a rotation error of almost 180◦.

4.6. Summary

Summing up this chapter, a method for estimating the orientation of known objects in
3d based on depth information has been presented. A conceptually simple feature-to-
viewing direction classification together with an appropriate probabilistic measurement
model based on Bingham mixture models allows to estimate an object’s rotation with real
world orientation errors below 10◦ after fusion of of about 10 views of the object. This
accuracy is not yet comparable to state-of-the-art single view methods, however, promis-
ing results with errors below one degree have been achieved when restricting the relative
orientation between object and camera to training view directions. Further, the local and
dense nature of the approach without the necessity to match features to previously ex-
tracted interest points makes the approach interesting to scenarios with occlusions and
applicable to objects with simple geometric shapes such as a mug. The implicit view-
related object model built by training a viewing direction classifier will be investigated in
the next chapter and is another interesting aspect of the presented method.
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Figure 4.11.: MAP Rotational Error plots for 20 random sequences with 20 views.
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Figure 4.12.: MAP Rotational Error plots for 20 random sequences constrained to viewing
directions present in the training data.
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(a) (b)

(c) (d)

Figure 4.13.: Left column: point clouds obtained from training directions m = 1 (a)) and
m = 18 (c)). Right column: point clouds for the respective closest evaluation
direction. Each row’s clouds are rotated into a common frame. Color coded is
the classification probability p(D = m|f); in a) and b) p(D = 1|f), in c) and d)
p(D = 18|f). Per row, regions which obtain high probabilities on the left point
cloud should obtain almost as high probabilities on the right point cloud. This
indicates that the classification is stable also for deviations from training view
directions as some of the probabilistic weight is shifted to nearby training
directions. While the top row’s scan pair exhibits this behavior, the bottom
row’s pair fails to do so.
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5. Viewing Direction Classification:
Application to View Planning

In the previous chapter an approach to orientation estimation based on viewing direction
classification was presented. The viewing direction classification is motivated by the idea,
that this classification allows an insight into which viewing directions and also which ob-
ject parts are significant for the pose estimation of the object. This chapter now investigates
this for the simulated datasets and shows how a local model of informativeness is obtained
using the previously described classification framework. In the last section suggestions for
possible next-best-view criteria are derived from the gained insight.

5.1. View Informativeness

As described in detail in chapter 4, the classification pipeline is trained to predict the train-
ing view direction a feature is observed from. As the used LR classifier outputs a proba-
bility over training view directions p(D = m|f) given a single feature f , the classification
pipeline implicitly encodes a model of view-related surface ambiguity. The broader and
more uniform a feature’s view distribution is, the less it tells us about how the object is
oriented with respect to the camera.

We can exploit the classifier’s model of surface ambiguity by evaluating which training
view directions have features which identify the view correctly. The training view which
results in the most unambiguous classification in this sense is the most informative for es-
timating the object’s orientation. For every training direction m′ separately, the training
views are analyzed by first extracting features with the same settings as used by the online
applied classifier. The features are ranked according to the entropy of their classification
distribution and the top Nfeat features are selected to estimate the view’s informativeness.
This basic feature ranking and selection procedure is the same as performed before ori-
entation estimation and described in section 4.4. The selected feature’s view distributions
are summed and a measure of correctness is obtained by calculating the discrete KL diver-
gence between the correct distribution p∗ and the extracted summed distribution psum. The
KL divergence measures the difference of the extracted distribution from the theoretically
correct distribution and is defined as

dKL(p
∗||psum) =

∑

m

p∗(m) ln
p∗(m)

psum(m)
(5.1)

= ln
1.0

psum(m′)
(5.2)

where the correct distribution is defined as 1.0 for the training view direction of concern
m′ and 0.0 everywhere else. The simplification in the second equality is thus possible due

57



5. Viewing Direction Classification: Application to View Planning

to the form of p∗. We can see that the KL divergence is zero for a perfect summed feature
distribution with psum(m′) = 1.0 and goes to positive infinity as psum(m′) approaches
zero. For an expected informativeness ranking of a viewing direction, the KL divergences
of all training point clouds for that direction are averaged and ranked in ascending order.
The resulting ranking is illustrated in figure 5.1 using simulated data for the cartoon and
mug model. For interpretation purposes, some of the viewing directions are illustrated by
means of a rendering of the object observed from that viewing direction.

For the mug model one can observe that the best viewing directions lie on the plane
defining the reflective symmetry of the mug whereas the least informative views show
large parts of the body of the mug. This is intuitively correct as features on the body of
the mug can be observed from many directions. Furthermore, as the features are rotational
invariant and the classification is based on individual features and therefore local informa-
tion, most views, even if they show the handle, are ambiguous as the reflective symmetry
cannot be resolved. The most unambiguous views are therefore correctly identified as the
ones on the reflection plane which additionally show large parts of the handle or the inside
of the mug.

For the cartoon model there is no clear intuitive ranking of views from a human per-
spective, but we will shed light on which parts of an object are informative and thus the
reason for this ordering within the next section.

5.2. Model Surface Informativeness

The view ranking in the previous section was based on accumulating information of sev-
eral features of a view into a summed distribution and assessing the correctness of this
distribution. This way we obtained information about the informativeness of a viewing
direction. In this section, we accumulate information of features within a small neighbor-
hood of a point on the object’s surface and thus assess how informative a surface point
is.

For the method presented here, we assume the availability of a set of points S = {s0, . . . , sN},
si ∈ R

3 representing the complete surface of the object. For the cartoon and mug object
in this evaluation, we have 3d models and thus the set S was generated by sampling the
surface of the 3d model with uniform density using the stratified sampling approach de-
scribed in Nehab and Shilane [26] and Doria [7]. Our objective is now to score every sur-
face points si by means of how informative the point is or more precisely, how informative
features originating from that point are. As a surface point may be visible from more than
one viewing direction, at first a scoring matrix K ∈ R

N×M is computed which ranks the
N surface points separately with respect to the M training view directions. For a given
surface point si and viewing direction m, the nearest neighbor points NNm(si) within a
radius of 0.5cm are obtained in the training point clouds for that viewing direction. The
corresponding features NNFm(si) in the training point clouds are extracted and the aver-
age KL divergence between the correct and the predicted view distributions is calculated
and stored

K[i,m] =
1

|NNFm(si)|
∑

f∈NNFm(si)

dKL(p
∗||p(D|f)) (5.3)

For further reference, the average KL divergence stored at K[i,m] will be termed view-
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Figure 5.1.: Training directions ranked by average view KL divergence for mug and car-
toon model. Below the bar charts, selected views are illustrated by renderings
of the object from those views. Note, the y-axis limits are different for both
plots showing.
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conditional score of surface point i to viewing direction m. If a surface point is not observ-
able from a direction and hence no nearest neighbors could be found, the score is set to
-1 to indicate this. The scoring matrix K thus encodes the visibility and view-conditional
informativeness of every surface point by assessing the average prediction correctness of
features computed at these locations. A global, not view-conditional measure of a points
informativeness is obtained by averaging the point’s scores for all viewing directions it
was observed from.

In figure 5.2 the view-conditional scores for a set of views - the same views as in figure 5.1
- are illustrated through a heatmap visualization. In other words, every pair of rendered
and heatmap images visualizes a specific column of the score matrix K for that object. The
colormap was chosen so that the color white corresponds to a KL divergence of zero and
black corresponds to the median KL divergence of the complete scoring matrix (ignoring
the -1 for non-visibility). This way, the same colormap is used for all shown views of an ob-
ject and the heatmaps can be compared to each other. White color indicates, that features
at this surface point are reliably recognized as originating from the viewing perspective
shown. The views presented are ordered left to right by the overall view ranking extracted
in the previous section and thus we clearly see which object parts make the most informa-
tive view (most left) better than the least informative view (most right). For the mug, our
intuition that the handle is more informative than the body is now quantitatively proved.
For the cartoon object, is seems that the concave regions within the character’s hair as well
as the rear part make the best view so informative.

Another interesting aspect is revealed when taking a closer look at the two left-most
views of the mug. The upper handle part is colored white in both views which might
seem contradictory at first as this means that features originating from the same physical
region can be reliably classified to more than one view. This behavior can be explained by
remembering that features are computed over geometry within a certain radius (here 3cm)
and thus encode the view-specific self-occlusion of the object, which turns out to be very
descriptive.

In figure 5.3, the global KL score is visualized by means of averaging a surface point’s
view-conditional score over all viewing directions. The colormap is scaled on a per object
basis to show white for the lowest observed KL score and black for the highest observed
score (first column for each object) or the median of the observed scores (second column of
each object). This measure and the illustration show where distinctive features on the ob-
ject’s surface can be expected, independent of the viewing direction. For the mug model,
again, regions on and around the handle are generally distinctive. For the cartoon model, a
general observation is the higher average classification correctness of features and surface
points. This is visible in the value range of the min-to-max colorbars and the feature dis-
tribution over that range as well as by comparing the total average KL divergence over all
surface points. For the cartoon character the average KL divergence over all model points
is 1.69 versus 2.15 for the mug model. Via the equation (5.2) this results in an average
probabilistic weight for the correct viewing direction of 18.4% for the cartoon character
versus 11.6% for the mug model. Regions of high informativeness for the cartoon charac-
ter appear to be within the character’s hair, the hands and the rear. Also, pointed surface
regions like the feet and hair tips show high ambiguity or wrong classification which is
probably due to unstable normal estimation in those areas.
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Figure 5.2.: View-conditional KL scores for chosen example viewing directions. For com-
parability, the same viewing directions as shown in figure 5.1 are shown. Cor-
responding image pairs show a plain rendering of the object obtained from the
viewing direction and below a heatmap visualization of the view-conditional
KL scores, with white representing a KL value of zero (low classification am-
biguity) and black representing the median view-conditional KL value of the
score matrix K.
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(a) Mug: color scale
from min. to max.
value

(b) Mug: color scale
from min. to median
value

(c) Cartoon: color scale
from min. to max.
value

(d) Cartoon: color scale
from min. to median
value

Figure 5.3.: Global KL score obtained by averaging view-conditional scores over all view-
ing directions for every surface point. For each object a view along x-axis,
y-axis, z-axis and an isometric view are given. The lower the KL score for a
point, the more informative are features computed from there.
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5.3. Proof-of-Concept Evaluation of Informativeness Values

In order to show the practical value of the extracted model surface informativeness, a
proof-of-concept experiment using the simulated mug model under varying degrees of
occlusion was conducted. The visible part of the mug was manually chosen to consist of
regions of high informativeness according to the findings in the previous section and figure
5.3. The overall experimental setup is identical to the evaluation in section 4.5 apart from
the added occlusions. 20 random view sequences with 20 views per sequence have been
generated and the development of the MAP rotational error after each view is analyzed.

To simulate the occlusion of parts of the mug which have been found to be uninforma-
tive (mainly the body of the mug), two points on the mug handle where selected manually,
one on the upper side of the handle and one on the lower side, which together with a vis-
ibility radius rvis around those points define the fixed observable region of the mug. The
simulation pipeline proceeds by first generating a complete point cloud of the mug as seen
from a given viewing direction and then selecting the sub-cloud within the distance rvis
around the two selected points as final simulation output. Normal estimation and feature
computation is then done on the extracted sub-cloud. The experiment was performed six
times with visibility radii in rvis ∈ [3cm, 4cm, 5cm, 6cm, 7cm, 8cm]. The visible part of the
mug for the different radii is illustrated in figure 5.4. For radii of 6cm and larger, the visible
part includes surface regions on the rim and the inside of the mug, which allow a unique
orientation estimate in contrast to radii smaller than 6cm.

For all experiments, the best parametrization in table 4.6 was used for the orientation
estimation and classification pipeline (this means a feature estimation radius of 3cm). A
selected subset of the resulting MAP error plots is given in figure 5.5. A summarizing
comparison between all visibility radii is given in figure 5.6 by displaying the median
MAP error over all 20 sequences for the different visibility settings. As observable in the
median plots, the sequential estimation converges slower as the visible surface region gets
smaller. For visibility radii of 8cm, 7cm and 6cm the error after convergence is comparable
to the baseline experiment with no occlusion (visibility radius ’All’). Starting with a visi-
bility radius of 5cm and smaller, the error of convergence gets significantly larger. For the
5cm setting, this is largely due to an ambiguity between the upright (mug opening in posi-
tive z-direction) and the flipped orientation (opening in negative z-direction) which arises
because the handle is symmetric and the visible surface area does not include the rim and
inner surface of the mug (cf. figure 5.4). This is clearly visible in the sequence plot for the
5cm setting in figure 5.5, especially in the EGI plot to the right where the flip in z-axis di-
rection becomes apparent. Due the orientation representation as Bingham mixture model,
an interesting question here is whether the flip-ambiguity is present in the orientation es-
timate as two separate mixture components. An investigation for the 5cm case revealed,
that this is, however, not the case and random sequences either converge to a unimodal
distribution with the mode close to the flipped or the non-flipped orientation.

Overall, the results presented show the robustness of the orientation estimation to oc-
clusions of up to 81.9% respective rvis ≥ 6cm. This is achieved due to the local and
correspondence-less nature of the viewing direction classification. It also shows that model
surface informativeness ranking extracts surface areas relevant for orientation estimation
as the increase in orientation error when occluding presumably uninformative parts is
small. Therefore, it seems valuable to actively plan views in such a way that regions of
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high estimated informativeness are visible.

5.4. Outlook: View Planning Approaches

Given the assessment of robustness towards occlusions of uninformative parts and the
described assessment of view and surface point informativeness, the next step towards
an active orientation estimation system is to derive and evaluate possible next-best-view
planning approaches. This chapter introduces thoughts and ideas for next-best-view crite-
ria, but no principled evaluation has been performed yet and thus no quantitative analysis
can be presented. Experiences with some early experimental view planning implementa-
tions using simulated data are given where possible.

From the generic active state estimation model presented in chapter 2 we know that
the pose (or orientation) measurement process has implications for the planning approach
as it defines what data and how the data is processed into a measurement. For the pre-
sented approach to orientation estimation based on viewing direction classification, there
are mainly three aspects which have to be considered in the planning approach:

• rotational invariance of the orientation estimate with respect to the camera opti-

cal axis: This is a principal drawback and complicates view planning in two ways.
Firstly, this leads to high uncertainty about the object’s orientation, especially during
the first couple views. This makes planning more challenging as a large uncertainty
for the object’s current orientation also means large variety in the expected mea-
surements for every possible next viewing direction. If the measurement prediction
is not precise enough, this might lead to no significant difference for the expected
information gain for different viewing directions and thus reduce the planned to a
practically random view selection strategy. Especially for the second view in any
sequence, the camera axis invariance introduces a limitation for the planning. Even
if the first view of the object led to a perfect viewing direction recognition, the ori-
entation invariance around the camera axis makes the second view unoptimizable.
This becomes intuitively clear when one tries to decide for a direction in which to
rotate around the object as no direction can be preferred due to the invariance. The
only statement which can be made at this point is that the second view should be
as orthogonal as possible to the first view in order to resolve the camera axis ambi-
guity. The second aspect comes into play when considering the use of precomputed
statistics like the view or model surface informativeness. These rankings are based
on the informativeness of the discrete distribution over viewing directions and hence
do not include the additional camera axis invariance which will be part of the actual
measurement.

• local, individual processing of features and known regions of high and low infor-

mativeness: The local processing of features without the need to match features and
find correspondences makes view planning easier as one does not have to reason
over the simultaneous visibility of a pair or a triplet of features. Further, the local
ranking of model surface points with respect to their classification performance is a
useful indicator of what surface parts should be observed and can be used to guide
the planning while considering environment occlusions.
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rvis[cm]
visible surface

area [%]

All 100.0
8 30.8
7 24.6
6 18.1
5 11.4
4 7.7
3 4.9

Figure 5.4.: Top row: mug surface visibility for different visibility radii rvis ∈ [3, 4, 5, 6, 7, 8]
in centimeters. The 3cm radius is depicted as black region with the larger radii
corresponding to blue, cyan, green, yellow and red regions with progressively
more surface area. Bottom row: maximum support region for the feature de-
scriptor computation. For an example surface point marked in red and the
feature estimation radius of rf = 3cm used in all occlusion experiments, the
maximum region of influence is illustrated via the green sphere centered at
the point and by the coloring of the mug surface. Note that by the way FPFH
features are computed, information from a radius up to 2rf can influence the
feature descriptor (cf. section 4.2.2 and reference [30]). The visualized sphere
and the highlighted surface region is thus based on the maximum influence
radius of 6cm.
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Figure 5.5.: Left: MAP error sequence plots for visibility radii rvis ∈ [+∞, 7cm, 5cm]. Right:
EGI plots of the MAP rotations after the last view. For more explanations, see
the text. The plots for all other tested visibility radii are given in the appendix
in figures B.1, B.2 and B.3.
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Figure 5.6.: Median MAP error over all sequences for all visibility settings.

• varying robustness to deviations from training view directions: This aspect is cen-
tral to view planning in the sense that it makes the difference between convergence
errors in the single digit range (use of non-training view directions) and errors smaller
than one degree (use of training view directions). The difference in estimation perfor-
mance for both settings was discussed in depth in the previous chapter and suggests
that planning should try to establish training view directions.

Based on above insights, the subsequent paragraph will motivate ideas for dealing with
these aspects and ways to achieve view planning:

• Planning for training directions: To plan a view from or close to training viewing
directions, one needs to consider the current orientation estimate in some way. The
simplest way to do so is to consider the current MAP orientation of the object and
restrict the next view to be parallel to a training view direction for the MAP orien-
tation. A more probabilistic way would be to sample the current object orientation
distribution and derive viewing directions which minimize the angular distance to
the training viewing directions observed via the sampled object orientations.

• Planning for informative surface regions: Informative views could be established
by a voting scheme based on the precomputed statistics. One way would be to sam-
ple several object orientations from the current estimate and let informative regions
vote for viewing directions they can be observed from. The voting space could be
a view sphere around the object or a discretized 3d space whose voxels accumulate
the vote weights. When votes originate from model points one could account for the
visibility of this point’s neighborhood (depending on the feature estimation radius)
by checking for occluding geometry in the line of sight between the camera position
being voted for and the model point. A more coarse voting could be based on the
view statistics in section 5.1 rather than model points.

• Planning for effective viewing directions considering the camera-axis invariance:
In addition to considering informative viewing directions, we also need to consider
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the effect of the camera axis invariance inherent to a viewing direction. In order to
account for this, the viewing axes of a planned view sequence should be chosen to
be as orthogonal as possible to resolve this ambiguity. In the voting and scoring
framework outlined in the previous point, this could be integrated for example by
weighting a proposed viewing direction by the angular difference between it and the
closest already visited viewing direction.

Early view planning experiments using the simulation environment were conducted
using an informative surface voting as described in the middle bullet point above. These
experiments did not lead to improvements over choosing camera positions at random and
for some settings even deteriorated the estimation performance as views where not scat-
tered around the view sphere as in the random setting but concentrated to similar viewing
directions.

5.5. Summary

This chapter demonstrated how the viewing direction classification as part of the orienta-
tion estimation presented in chapter 4 can be used to extract view-related as well as model
surface related informativeness values. Using surface areas which where estimated to be
of high informativeness, the general robustness of the orientation estimation to simulated
occlusions has been demonstrated in a proof-of-concept experiment for the mug model.
The findings in this and the previous chapter justify further investigations into how to
actively plan for viewing directions for which some directions of future work have been
outlined.
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The initial goal of this thesis was the investigation and development of an active multi-
view pose estimation system. Throughout the literature review, two ingredients for such a
system stood out to be of major interest and thus ended up being the main concern of the
presented work: firstly, the probabilistic representation of 3d rotations and the sequential
fusion of object rotation measurements; secondly, the nature and flexibility of in advance
computed, object related knowledge with an application to online next-best-view plan-
ning.

To address the first issue, the Bingham distribution, a parametric probability density
function over 3d rotations represented as unit quaternions, has been investigated. In a
first experiment, its applicability to sequential fusion of orientation measurements has
been evaluated by fusing orientation measurements of view sequences for three objects ob-
tained by a block box pose estimation algorithm. Sequential fusion using Bingham mixture
models was compared to a particle filter, a discrete Bayes filter (histogram filter) and a pose
clustering approach on the same data. For the Bingham mixture fusion an approximate al-
gebraic solution to the fusion problem via a mixture multiply & reduce (M+R) approach
as well as a sequential Monte Carlo (SMC) approach has been implemented and evaluated
with a simple two component Bingham mixture measurement model (one Gaussian-like
component + one uniform ’outlier’ component) and a more complex five component mix-
ture model tailored towards the specific symmetries of one of the used objects. The eval-
uation showed that the sequential fusion using the simple two component measurement
model with either SMC or M+R implementation achieves competitive results compared to
the three comparison approaches. The more complex Bingham measurement model gives
no advantage over the two-component model, but revealed that the SMC implementation
is more suited for dealing with multi component and multi-modal measurement models.

For the second mentioned issue, a key point of interest and distinction with respect to
other published approaches was to build a fine grained model of object surface informa-
tiveness related to the goal of orientation estimation. The underlying motivation was to
precompute which object parts are essential and most informative for estimating an ob-
ject’s orientation. Based on this knowledge, one could derive view planning approaches
to achieve accurate and fast converging orientation estimation. Due to the interplay be-
tween the orientation measurement process and the planning process, an orientation esti-
mation based on a feature-to-viewing direction classification was developed. A classifica-
tion pipeline is trained to predict the relative orientation (viewing direction) between the
camera and a known object by means of independently processed and locally computed
features. Due to the rotational invariance of the used features, this orientation can only be
determined up to the rotation around the camera optical axis. This behavior is correctly
modeled using a Bingham mixture distribution as probabilistic measurement model. In
simulated as well as real experiments it was then shown that sequential orientation estima-
tion using the proposed viewing direction classification is possible, but can only compare
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6. Conclusion

to the accuracy of state-of-the-art object pose estimation algorithms when the relative ori-
entation between object and camera is restricted to training view directions. In the general
case with arbitrary deviations from training view directions, errors in the range of zero to
nine degrees are possible even after fusion of ten or more views.

In a next investigation, the implicit model of feature ambiguity inherent to the classi-
fication pipeline was leveraged to build a model of viewing direction and object surface
informativeness which is directly coupled to the presented orientation estimation. The ex-
periments show plausible results for a geometrically simple mug object whose orientation
relevant parts are determined to be on and around the handle. A simulated experiment in
which only the informative part of the mug (manually selected area close to the handle)
is observable and the rest is occluded shows that the orientation estimation is robust to
occlusion and achieves orientation errors comparable to the baseline experiment with no
occlusion. This highlights the relevance of the extracted regions of high informativeness.

A principled investigation of next-best-view criteria and the evaluation of a fully inte-
grated active orientation estimation approach is at an early stage and no quantitative re-
sults could be presented on this matter. Exploring and evaluating different next-best-view
criteria would thus be one direction of further research for which insights and suggestions
were given in the outlook section 5.4.

A general disadvantage of the presented approach and therefore direction for possible
future work is the orientation measurement invariance around the camera optical axis.
This invariance, introduced by the rotationally invariant 3d features, complicates view
planning by: 1) leading to high estimation uncertainties in the first couple views in general,
2) preventing effective planning for the second view in a sequence and 3) introducing a
semantic gap between the actual measurement uncertainty of a viewing direction (includes
rotational invariance) and the pre-computed informativeness measures (do not include
rotational invariance). A direction for further research is therefore to experiment with
different features and/or introducing unique local feature frames as in Salti et al. [32] to
get rid of the uncertainty around the camera axis.

Another interesting direction of further research would be to make use of negative in-
formation, for example the absence of expected features, for the orientation estimation.
Grundmann [17] implements such a system for their SIFT features based pose estimation
by reasoning over measured/unmeasured and expected/unexpected features. To achieve
this, the presented method would need to be extended to model the relationship between
feature descriptors and their location on the surface of the object in addition to the current
modeled relationship between features and the viewing directions they can be observed
from. The work in [16] could be a starting point for further research in this direction as they
propose an approach based on modeling the surface distribution of densely computed 3d
features.
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A. Complete Rankings for Rotation Fusion
Evaluation

On the subsequent pages, the complete rankings for all parametrizations evaluated in sec-
tion 3.7 are given.
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A. Complete Rankings for Rotation Fusion Evaluation
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B. All Sequence Plots for Occlusion
Experiment

On the subsequent pages, the complete sequence plots for the proof-of-concept evaluation
in section 5.3 are given.
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Figure B.1.: Left: MAP error sequence plots for visibility radii rvis ∈ [+∞, 8cm]. Right: EGI
plots of the MAP rotations after the last view.

81
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Figure B.2.: Left: MAP error sequence plots for visibility radii rvis ∈ [7cm, 6cm, 5cm]. Right:
EGI plots of the MAP rotations after the last view.
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Figure B.3.: Left: MAP error sequence plots for visibility radii rvis ∈ [4cm, 3cm]. Right: EGI
plots of the MAP rotations after the last view.
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