Techno-ökonomische Analyse der Herstellung flüssiger Kohlenwasserstoffe unter Nutzung von H₂ und CO₂ aus industriellen Quellen

Wissen für Morgen

Daniel H. König, M. Freiberg, R.-U. Dietrich, A. Wörner

Jahrestreffen Energieverfahrenstechnik Bonn, 24. Februar 2015

Motivation

Verfahrenskonzept "Power-to-Liquid"

Synthesegaserzeugung (RWGS)

• Reformierung von CO₂ mittels reverser Wasser-Gas-Shift Reaktion

$$CO_2 + H_2 \rightleftharpoons CO + H_2O \qquad \Delta H_R^0 = 41 \, kJ/mol$$

• Endotherme heterogen katalysierte Reaktion

Fischer-Tropsch-Synthese (FTS)

• Exotherme heterogen katalysierte Reaktion an Fe- oder Co-Katalysatoren

 $n \cdot CO + 2n \cdot H_2 \rightleftharpoons (-CH_2 -)_n + n \cdot H_2O \quad \Delta H_R^0 = -152 \, kJ/mol$

Betriebsbedingungen

•
$$T = 225 \, ^{\circ}\text{C}$$
, $p = 25 \, \text{bar}$

Prozessfließbild des Syntheseprozesses

Prozessbewertungsgrößen

- Chemischer Wirkungsgrad $\eta_{H_2tL} = \frac{\dot{m}_{KWS} \cdot LHV_{KWS}}{\dot{m}_{H_2} \cdot LHV_{H_2}}$
- Power-to-Liquid Wirkungsgrad $\eta_{PtL} = \frac{\dot{m}_{KWS} \cdot LHV_{KWS}}{P_{EL} + P_{Utilities}}$
- Kohlenstoffausbeute

$$\eta_C = \frac{\dot{n}_{C,KWS}}{\dot{n}_{C,in}}$$

• Recycleverhältnis $R = \frac{\dot{n}_{FEED} + \dot{n}_{RECYCLE}}{\dot{n}_{FEED}} \rightarrow \text{Reaktorgröße FTS}$

Produktfraktionen

	LPG	Benzin	Kerosin	Diesel	Wachse
C-Atome	C1-C4	C5-C9	C8-C16	C12-C20	C20+

Produktzusammensetzung

Wärmeintegration

Ergebnisse der Wärmeintegration

- Wärmebedarf wird vollständig intern gedeckt
- 13,8 % der anfallenden Abwärme durch die FT-Synthese können intern verwendet werden

4: :4\/	Applikation	Wärmemenge	
Othity	Аррикацоп	%	MW
Kühlwasser	Kühlung Niedertemperatur	36,9	159,2
Kältemaschine 1	Kühlung für $T < 25$ °C	3,6	15,7
Kältemaschine 2	Kühlung für $T < 10$ °C	0,5	2,1
Dampferzeugung (Niederdruck)	Dampf bei 2,25 bar	7,4	31,8
Dampferzeugung (Mitteldruck)	Dampf bei 8,7 bar	1,7	7,5
Dampferzeugung (FT)	Dampf bei 20 bar	49,9	215,5
Summe			431,6

Prozessleistungsfähigkeit

Eintrag	
Stoffeintrag	t/h
H ₂ O	271,1
H ₂	30,3
CO ₂	235,7
Dampf	70,7
Brennerzuluft	388,4
Energetischer Eintrag	MW
H ₂	1010,8
Hilfsaggregate	38,7

Ausstoß	
Stoffausstoß	t/h
Kohlenwasserstoffe	55,8
O ₂	240,8
Reaktionswasser	238,7
Brennerabgas	430,1
Energetischer Ausstoß	MW
Kohlenwasserstoffe	682,9
Dampf	254,8
Bewertungsparameter	
R	3,6
η_{C}	73,0 %
$\eta_{H_2 tL}$	67,6 %

Bestimmung Power-to-Liquid Wirkungsgrad

Annahmen Elektrolyse ^[1]			
Effizienz AC/DC Konverter	96 %		
Energieverbrauch Elektrolyse	4,3 $kWh/Nm^{3}(H_{2})$		
Power-to-Liquid Wirkungsgrad			
Energiemengeneintrag	GWh/a		
Elektrolyse	13233,8		
Hilfsaggregate	338,6		
H ₂ -Speicherung	23,1		
Summe	13595,5		
Energiemengenaustoß	GWh/a		
Flüssige Kohlenwasserstoffe	5982,0		
η_{PtL}	44,0 %		

^[1]T. Smolinka, M. Günther, J. Garche, "Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien", NOW-Studie, 2010.

Dimensionierung Windpark, Elektrolyse und H₂-Speicher

- Grundlage ist ein offshore Windprofil an der Nordseeküste Deutschlands^[2]
- Speicherung von H₂ in Kaverne

Ergebnisse	
Vollaststundenanteil	46,8 %
Installierte Leistung Windpark	3230,4 MW
Installierte Leistung Elektrolyse	3230,4 MW
H ₂ -Speichervorlage	22,5 kt
H ₂ -Speichergröße	29,1 kt
Anteil der jährlichen H ₂ -Menge	11,0 %
Installierte Leistung Kompressor	15,4 MW

^[2] Y. Scholz, "Renewable energy based electricity supply at low costs: development of the REMix model and application for Europe", Universität Stuttgart, 2012.

Methodik der Kostenschätzung

• Bestimmung der Komponentenpreise TPC

 $C_{2014} = f$ (Größe, Degressionskoeffizient, Referenzpreis, CEPCI)

• Berechnung der Gesamtinvestition *TCI*

TCI = *f* (Komponentenpreise, Zuschlagsfaktoren, Erstbefüllung Kaverne)

• Berechnung der jährlichen Kapitalkosten AAC

AAC = f (Komponentenpreise, Zuschlagsfaktoren, Zinsen, Lebensdauer)

• Berechnung der jährlichen Betriebskosten OC

0C = f (Komponentenpreise, Zuschlagsfaktoren, Hilfsstoffkosten, Eduktkosten)

Bilanzgrenze der Kostenschätzung

Referenzfall und Annahmen

Referenzfall			
Anlagenkapazität	$1000 MW_{LHV}(H_2)$		
Installierte Leistung Windpark/Elektrolyse	3230,4 MW		
Offshore Windpark mit H ₂ -Speicherung	46,8 % Volllastanteil		
Annahmen			
Elektrolyseurkosten inkl. Stack, Rohrleitungen, Konverter, Gasaufbereitung	768,00 €/kW ^[3]		
Windstrom	0, 10 €/ <i>kWh</i> ^[4]		
CO ₂	8,46€/t ^[5]		
Salzkaverne	0,04 €/kWh ^[6]		
Nebenprodukt O ₂	42,62€/ <i>t</i> ^[7]		

^[3] M. Penev, "Hybrid Hydrogen Energy Storage", 2013.
 ^[4] IEA "Technology Roadmap Wind energy", 2013.

^[5] Synapse Energy, "CO₂ Price Report", 2014.

[6] F. Cortogino, S. Huebner, "Energy Storage in Salt Caverns: Developments and Concrete Projects for Adiabatic Compressed Air and for Hydrogen Storage", 2008.

^[7] P. Rao, M. Muller, "Industrial Oxygen: Its Generation and Use", University of New Jersey, 2007.

Investitionskosten für Referenzfall 1000 $MW_{LHV}(H_2)$

Investitionskosten	
Anlagenkosten	2,79 <i>Mrd</i> .€
Gesamtinvestition	7,53 <i>Mrd</i> .€

Herstellungskosten für Referenzfall $1000 MW_{LHV}(H_2)$

Herstellungskosten

Herstellungskosten	5,51 €/ <i>kg</i> 3,61 €/ <i>l</i>
Jährliche Gesamtkosten	2,69 <i>Mrd</i> .€/a
Jährliche Betriebskosten	1,80 <i>Mrd</i> .€/a
Jährliche Kapitalkosten	0,89 <i>Mrd</i> .€/a

Sensitivitätsanalyse

Zusammenfassung

- Eine Option eines Herstellungsverfahren für synthetische Kohlenwasserstoffe wurde dargestellt
- Der Power-to-Liquid Wirkungsgrad wurde zu 44,0 % bestimmt
 → entspricht 27,8 kWh_{Stom}/kg_{KWS}
- Für die Nutzung fluktuierend auftretenden erneuerbaren Stromes sind Wasserstoffzwischenspeicher notwendig
- Die installierte Leistung des Windparks, installierte Elektrolyseleistung und Größe des Speichers hängt vom Windprofil ab
- Die Gesamtinvestitionskosten liegen f
 ür eine 1000 MW_{LHV}(H₂) bzw. 55,8 t/h KWS-Anlage bei 7, 53 Mrd. €
- Die Herstellungskosten im Referenzfall summieren sich auf 5,51 \in/kg
- Die Sensitivitätsanalyse zeigt Herstellungskosten im Bereich von 4,08 €/kg und 6,56 €/kg

Ausblick

- Untersuchung von Nutzungspfaden f
 ür die Abwärmenutzung der Fischer-Tropsch-Synthese
 - Technische und ökonomische Auswirkungen der Integration der CO₂-Abscheidung in den vorgestellten Prozess
- Ökonomische Berechnung für Überschussstromnutzung
- Kostenvergleiche für verschiedene erneuerbare Stromquellen

Vielen Dank!

Daniel H. König

DLR Institut für Technische Thermodynamik

daniel.koenig@dlr.de www.dlr.de\TT

Helmholtz-Energie-Allianz "Synthetische flüssige Kohlenwasserstoffe – Speicher höchster Energiedichte"

Wissen für Morgen

